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Abstract. In this paper, we show how to take interval uncertainty into
account when solving conflict situations. Algorithms for conflict situa-
tions under interval uncertainty are known under the assumption that
each side of the conflict maximizes its worst-case expected gain. How-
ever, it is known that a more general Hurwicz approach provides a more
adequate description of decision making under uncertainty. In this ap-
proach, each side maximizes the convex combination of the worst-case
and the best-case expected gains. In this paper, we describe how to re-
solve conflict situations under the general Hurwicz approach to interval
uncertainty.

1 Conflict Situations Under Interval Uncertainty:
Formulation of the Problem and What Is Known So
Far

How conflict situations are usually described. In many practical situations
– e.g., in security – we have conflict situations in which the interests of the
two sides are opposite. For example, a terrorist group wants to attack one of
our assets, while we want to defend them. In game theory, such situations are
described by zero-sum games, i.e., games in which the gain of one side is the loss
of another side; see, e.g., [9].

To fully describe such a situation, we need to describe:

– for each possible strategy of one side and
– for each possible strategy of the other side,

what will be the resulting gain to the first side (and, correspondingly, the loss
to the other side). Let us number all the strategies of the first side, and all the
strategies of the second side, and let uij be the gain of the first side (negative if
this is a loss). Then, the gain of the second side is vij = −uij .
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While zero-sum games are a useful approximation, they are not always a per-
fect description of the situation. For example, the main objective of the terrorists
may be publicity. In this sense, a small attack in the country’s capital may not
cause much damage but it will bring them a lot of media attention, while a more
serious attack in a remote location may be more damaging to the country, but
not as media-attractive. To take this difference into account, we need, for each
pair of strategies (i, j), to describe both:

– the gain uij of the first side and
– the gain vij of the second side.

In this general case, we do not necessarily have vij = −uij [9].

How to describe this problem in precise terms. It is a well-known fact that
in conflict situations, instead of following one of the deterministic strategies, it
is beneficial to select a strategy at random, with some probability. For example,
if we only have one security person available and two objects to protect, then
we have two deterministic strategies:

– post this person at the first objects and
– post him/her at the second object.

If we exactly follow one of these strategies, then the adversary will be able to
easily attack the other – unprotected – object. It is thus more beneficial to every
time flip a coin and assign the security person to one of the objects at random.
This way, for each object of attack, there will be a 50% probability that this
object will be defended.

In general, each corresponding strategy of the first side can be described by
the probabilities p1, . . . , pn of selecting each of the possible strategies, so that

n∑
i=1

pi = 1. (1.1)

Similarly, the generic strategy of the second side can be described by the prob-
abilities q1, . . . , qm for which

m∑
j=1

qj = 1. (1.2)

If the first side selects the strategy p = (p1, . . . , pn) and the second side selects
the strategy q = (q1, . . . , qm), then the expected gain of the first side is equal to

g1(p, q) =

n∑
i=1

m∑
j=1

pi · qj · uij , (1.3)

while the expected gain of the second side is equal to

g2(p, q) =
n∑

i=1

m∑
j=1

pi · qj · vij . (1.4)
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Based on this, how can we select a strategy? It is reasonable to assume that
once a strategy is selected, the other side knows the corresponding probabilities
– simply by observing the past history. So, if the first side selects the strategy
p, the second side should select a strategy for which, under this strategy of the
first side, their gain is the largest possible, i.e., the strategy q(p) for which

g2(p, q(p)) = max
q

g2(p, q). (1.5)

In other words,
q(p) = arg max

q
g2(p, q). (1.6)

Under this strategy of the second side, the first side gains the value g1(p, q(p)). A
natural idea is to select the strategy p for which this gain is the largest possible,
i.e., for which

g1(p, q(p)) → max
p

, where q(p)
def
= arg max

q
g2(p, q). (1.7)

Similarly, the second side select a strategy q for which

g2(p(q), q) → max
q

, where p(q)
def
= arg max

p
g1(p, q). (1.8)

Towards an algorithm for solving this problem. Once the strategy p of
the first side is selected, the second side selects q for which its expected gain
g2(p, q) is the largest possible.

The expression g2(p, q) is linear in terms of qj . Thus, for every q, the resulting
expected gain is the convex combination

g2(p, q) =
m∑
j=1

qj · q2j(p) (1.9)

of the gains

g2j(p)
def
=

n∑
i=1

pi · vij (1.10)

corresponding to different deterministic strategies of the second side. Thus, the
largest possible gain is attained when q is a deterministic strategy.

The j-th deterministic strategy will be selected by the second side if its gain
at this strategy are larger than (or equal to) gains corresponding to all other
deterministic strategies, i.e., under the constraint that

n∑
i=1

pi · vij ≥
n∑

i=1

pi · vik (1.11)

for all k ̸= j.
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For strategies p for which the second side selects the j-th response, the gain
of the first side is

n∑
i=1

pi · uij . (1.12)

Among all strategies p with this “j-property”, we select the one for which the
expected gain of the first side is the largest possible. This can be found by opti-
mizing a linear function under constraints which are linear inequalities – i.e., by
solving a linear programming problem. It is known that for linear programming
problems, there are efficient algorithms; see, e.g., [6].

In general, we thus have m options corresponding to m different values j =
1, . . . ,m. Among all these m possibility, the first side should select a strategy for
which the expected gain is the largest possible. Thus, we arrive at the following
algorithm.

An algorithm for solving the problem. For each j from 1 to m, we solve
the following linear programming problem:

n∑
i=1

p
(j)
i · uij → max

p
(j)
i

(1.13)

under the constraints

n∑
i=1

p
(j)
i = 1, p

(j)
i ≥ 0,

n∑
i=1

p
(j)
i · vij ≥

n∑
i=1

p
(j)
i · vik for all k ̸= j. (1.14)

Out of the resulting m solutions p(j) =
(
p
(j)
1 , . . . , p

(j)
n

)
, 1 ≤ j ≤ m, we select the

one for which the corresponding value
n∑

i=1

p
(j)
i · uij is the largest.

Comment. Solution is simpler in zero-sum situations, since in this case, we only
need to solve one linear programming problem; see, e.g., [9].

Need for parallelization. For simple conflict situations, when each side has a
small number of strategies, the corresponding problem is easy to solve.

However, in many practical situations, especially in security-related situa-
tions, we have a large number of possible deterministic strategies of each side.
This happens, e.g., if we assign air marshals to different international flights. In
this case, the only way to solve the corresponding problem is to perform at least
some computations in parallel.

Good news is that the above problem allows for a natural parallelization:
namely, all m linear programming problems can be, in principle, solved on dif-
ferent processors. (Not so good news is that this exhausts the possibility of par-
allelization: once we get to the linear programming problems, they are P-hard,
i.e., provably the hardest to parallelize; see, e.g., [8].)

Need to take uncertainty into account. The above description assumed
that we know the exact consequence of each combination of strategies. This is
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rarely the case. In practice, we rarely know the exact gains uij and vij . At best,
we know the bounds on these gains, i.e., we know:

– the interval [uij , uij ] that contains the actual (unknown) values uij , and

– the interval [vij , vij ] that contains the actual (unknown) values vij .

It is therefore necessary to decide what to do in such situations of interval un-
certainty.

How interval uncertainty is taken into account now. In the above descrip-
tion of a conflict situation, we mentioned that when we select the strategy p, we
maximize the worst-case situation, i.e., the smallest possible gain g1(p, q) under
all possible actions of the second side. It seems reasonable to apply the same
idea to the case of interval uncertainty, i.e., to maximize the smallest possible
gain g1(p, q) over all possible strategies of the second side and over all possible
values uij ∈ [uij , uij ].

For some practically important situations, efficient algorithms for such worst-
case formulation have indeed been proposed; see, e.g., [3].

Need for a more adequate formulation of the problem. In the case of ad-
versity, it makes sense to consider the worst-case scenario: after all the adversary
wants to minimize the gain of the other side.

However, in case of interval uncertainty, using the worst-case scenario may
not be the most adequate idea. The problem of decision making under uncer-
tainty, when for each alternative a, instead of the exact value u(a), we only
know the interval [u(a), u(a)] of possible values of the gain, has been thoroughly
analyzed.

It is known that in such situations, the most adequate decision strategy is
to select an alternative a for which the following expression attains the largest
possible value:

uH(a)
def
= α · u(a) + (1 − α) · u(a), (1.5)

where α ∈ [0, 1] describes the decision maker’s attitude; see, e.g., [1, 4, 5]. This
expression was first proposed by the Nobelist Leonid Hurwicz and is thus, known
as the Hurwicz approach to decision making under interval uncertainty.

In the particular case of α = 0, this approach leads to optimizing the worst-
case value u(a), but for other values α, we have different optimization problems.

What we do in this paper. In this paper, we analyze how to solve conflict
situations under this more adequate Hurwicz approach to decision making under
uncertainty.

In this analysis, we will assume that each side knows the other’s parameter α,
i.e., that both sides know the values αu and αv that characterize their decision
making under uncertainty. This can be safely assumed since we can determine
these values by analyzing past decisions of each side.
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2 Conflict Situation under Hurwicz-Type Interval
Uncertainty: Analysis of the Problem

Once the first side selects a strategy, what should the second side do?
If the first side selects the strategy p, then, for each strategy q of the second

side, the actual (unknown) gain of the second side is equal to
n∑

i=1

m∑
j=1

pi · qj · vij .

We do not know the exact values vij , we only know the bounds vij ≤ vij ≤ vij .
Thus, once:

– the first side selects the strategy p and
– the second side selects the strategy q,

the gain of the second side can take any value from

g
2
(p, q) =

n∑
i=1

m∑
j=1

pi · qj · vij (2.1)

to

g2(p, q) =
n∑

i=1

m∑
j=1

pi · qj · vij . (2.2)

According to Hurwicz’s approach, the second side should select a strategy q
for which the Hurwicz combination

gH2 (p, q)
def
= αv · g2(p, q) + (1 − αv) · g

2
(p, q) (2.3)

attains the largest possible value.
Substituting the expressions (2.1) and (2.2) into the formula (2.3), we con-

clude that

gH2 (p, q) =
n∑

i=1

m∑
j=1

pi · qj · vHij , (2.4)

where we denoted

vHij
def
= αv · vij + (1 − αv) · vij . (2.5)

Thus, once the first side selects its strategy p, the second side should select a
strategy q(p) for which the corresponding Hurwicz combination gH2 (p, q) is the
largest possible, i.e., the strategy q(p) for which

gH2 (p, q(p)) = max
q

gH2 (p, q). (2.6)

In other words,

q(p) = arg max
q

gH2 (p, q). (2.7)
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Based on this, what strategy should the first side select? Under the
above strategy q = q(p) of the second side, the first side gains the value

g1(p, q(p)) =

n∑
i=1

m∑
j=1

pi · qj · uij . (2.8)

Since we do not know the exact values uij , we only know the bounds uij ≤ uij ≤
uij , we therefore do not know the exact gain of the first side. All we know is
that this gain will be between

g
1
(p, q(p)) =

n∑
i=1

m∑
j=1

pi · qj · uij (2.9)

and

g1(p, q(p)) =
n∑

i=1

m∑
j=1

pi · qj · uij . (2.10)

According to Hurwicz’s approach, the first side should select a strategy p for
which the Hurwicz combination

gH1 (p, q)
def
= αu · g1(p, q(p)) + (1 − αu) · g

1
(p, q(p)) (2.11)

attains the largest possible value.
Substituting the expressions (2.9) and (2.10) into the formula (2.11), we

conclude that

gH1 (p, q) =

n∑
i=1

m∑
j=1

pi · qj · uH
ij , (2.12)

where we denoted
uH
ij

def
= αu · uij + (1 − αu) · uij . (2.13)

What strategy should the second side select? Thus, the first side will
select the strategy p for which this Hurwicz combination is the largest possible,
i.e., for which

gH1 (p, q(p)) → max
p

, where q(p)
def
= arg max

q
gH2 (p, q). (2.14)

Similarly, the second side select a strategy q for which

gH2 (p(q), q) → max
q

, where p(q)
def
= arg max

p
gH1 (p, q). (2.15)

We thus reduce the interval-uncertainty problem to the no-
uncertainty case. One can easily see that the resulting optimization problem
is exactly the same as in the no-uncertainty case described in Section 1, with
the gains uH

ij and vHij described by the formulas (2.13) and (2.5).
Thus, we can apply the algorithm described in Section 1 to solve the interval-

uncertainty problem.



8 B. J. Kubica, A. Pownuk, and V. Kreinovich

3 Algorithm for Solving Conflict Situation under
Hurwicz-Type Interval Uncertainty

What is given. For every deterministic strategy i of the first side and for every
deterministic strategy j of the second side, we are given:

– the interval [uij , uij ] of the possible values of the gain of the first side, and
– the interval [vij , vij ] of the possible values of the gain of the second side.

We also know the parameters αu and αv characterizing decision making of each
side under uncertainty.

Preliminary step: forming appropriate combinations of gain bounds.
First, we compute the values

uH
ij

def
= αu · uij + (1 − αu) · uij (3.1)

and
vHij

def
= αv · vij + (1 − αv) · vij . (3.2)

Main step. For each j from 1 to m, we solve the following linear programming
problem:

n∑
i=1

p
(j)
i · uH

ij → max
p
(j)
i

(3.3)

under the constraints

n∑
i=1

p
(j)
i = 1, p

(j)
i ≥ 0,

n∑
i=1

p
(j)
i · vHij ≥

n∑
i=1

p
(j)
i · vHik for all k ̸= j. (3.4)

Final step. Out of the resulting m solutions p(j) =
(
p
(j)
1 , . . . , p

(j)
n

)
, 1 ≤ j ≤ m,

we select the one for which the corresponding value

n∑
i=1

p
(j)
i · uH

ij (3.5)

is the largest.

Comment. In view of the fact that in the no-uncertainty case, zero-sum games
are easier to process, let us consider zero-sum games under interval uncertainty.
To be more precise, let us consider situations in which possible values vij are
exactly values −uij for possible uij :

[vij , vij ] = {−uij : uij ∈ [uij , uij ]}. (3.6)

One can easily see (see, e.g., [2, 7]) that this condition is equivalent to

vij = −uij and vij = −uij . (3.7)
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In this case, we have

vHij = αv · vij + (1 − αv) · vij = αv · (−uij) + (1 − αv) · (−uij), (3.8)

and thus,
vHij = −((1 − αv) · uij + αv · uij). (3.9)

By comparing this expression with the formula (3.1) for uH
ij , we can conclude

that the resulting game is zero-sum (i.e., vHij = −uH
ij ) only when αu = 1 − αv.

In all other cases, even if we start with a zero-sum interval-uncertainty game,
the no-uncertainty game to which we reduce that game will not be zero-sum –
and thus, the general algorithm will be needed, without a simplification that is
available for zero-sum games.

4 Conclusion

In this paper, we show how to take interval uncertainty into account when solving
conflict situations.

Algorithms for conflict situations under interval uncertainty are known under
the assumption that each side of the conflict maximizes its worst-case expected
gain. However, it is known that a more general Hurwicz approach provides a more
adequate description of decision making under uncertainty. In this approach,
each side maximizes the convex combination of the worst-case and the best-case
expected gains.

In this paper, we describe how to resolve conflict situations under the general
Hurwicz approach to interval uncertainty.
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