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Abstract—In many practical situations, it is important to know
the correlation between different quantities – finding correlations
helps find the causes of different phenomena, and helps to find
way to improve the situation. Often, there is not enough empirical
data to experimentally determine all possible correlation. In
such cases, a natural idea is to supplement this situation with
expert estimates. Expert estimates are rather crude. So, to decide
whether to act based on these estimates, it is desirable to know
how accurate are expert estimates. In this paper, we propose
several techniques for gauging this accuracy.

I. FORMULATION OF THE PROBLEM

Correlations are important. How can we cure diseases? How
can we prevent diseases? Often, we do not know what causes a
disease, and we do not know what helps against this diseases.
In such situations, we collect the data about the patients and
try to find the solutions by analyzing the data.

If a certain disease is strongly correlated with, e.g., smoking,
then probably either smoking causes this disease or, alterna-
tively, smoking weakens the body’s natural defenses against
this disease. If a disease is correlated with the presence of a
certain variant gene (or, more generally, with a combination of
variant genes), then people with this combination should reg-
ular check again this disease and/or perform some additional
preventive measures against this disease.

Similarly, in geosciences, if oil locations are strongly cor-
related with certain types of geological structures, then we
should actively look for oil in area where such structures are
present.

In many application areas, correlations are important.

It is often not possible to find correlations experimentally,
so we need to rely on experts. In the ideal world, we should
be able to determine all the correlations from the experiments.
In practice, however, it is not always possible.

An ideal way to estimate the correlation between the two
quantities x and y is to have a sample of data points in which
only x changes – all other parameters remain the same – and
we are interested in how y changes depending on the change
in x. This may be possible if we analyze how a given photo-
sensor reacts to temperature, but it is not realistic to expect

many situations in which patients are identical in almost all
characteristics – expect them some of them do not smoke,
some smoke lightly, and some smoke heavily. Similarly, in
geosciences, we cannot expect situations in which all the
geological characteristics are identical except for one feature.

In most practical situations, we have many factors affecting
each situation, and there is often not enough data points to
separate the effect of these factors.

In situations when we cannot determine all the correlations
empirically, a natural idea is to ask experts. Experts can
often provide their estimates of correlation between different
quantities.

What type of information can experts provide? First,
experts can provide us with numerical estimates for the
correlation between the given n quantities x1, . . . , xn. In other
words, for every i ̸= j, the experts will provide us with an
estimate aij of the correlation between the quantities xi and
xj . Due to the properties of correlation, we always have

aij = aji.

Since correlation between a quantity and itself is 1, all
diagonal elements of this matrix are 1s. As a result, by adding
1s on the diagonal, we get a symmetric matrix A = (aij)i,j
in which all diagonal elements are equal to 1.

While experts can (and do) produce numbers, they are
not 100% confident in these numbers. As a next step, it is
therefore reasonable to capture this expert’s uncertainty. The
experts often describe their uncertainty in terms of imprecise
(fuzzy) words from natural language, such as “close to”. To
describe the expert’s uncertainty, it is therefore reasonable
to use techniques specifically developed for translating such
statements into numerical form – namely, the techniques of
fuzzy logic; see, e.g., [6], [9], [11]. As a result, each estimate
aij is no longer a number – it is a fuzzy number, describing
the expert’s uncertainty.

How accurate are expert’s estimates of correlation? As
we have mentioned, expert’s estimates are approximate. How
accurate are they? This is important to know since this will



determine whether we should act on these correlations or
maybe perform more experiments.

For example, if an expert claims that there is a 70%
correlation between a certain gene and a disease, and the
expert’s accuracy is ±20%, this means that we are confident
that there is a strong positive correlation. On the other hand, if
an expert estimates the correlation at 20% and his/her accuracy
is ±30%, then maybe there is no positive correlation at all –
or even a small negative correlation.

It is therefore important to determine how accurate are the
expert’s estimates of correlation. Estimating this accuracy is
what we will do in this paper.

II. OUR MAIN IDEA AND RESULTING PRECISE
FORMULATIONS OF THE PROBLEM

A natural idea is not always applicable. If for some pairs,
we have both empirical correlations and expert estimates, then
we can gauge the accuracy of expert estimates by comparing
these values. But what if we do not have such pairs?

Our main idea. Our main idea is to use the fact that the
actual correlation matrix aij must be non-negative definite,
i.e.,

∑
i,j

aij ·zi ·zj ≥ 0 for all possible vectors z = (z1, . . . , zn).

Indeed, correlation aij between xi and xj is defined as

aij
def
=

E[∆xi ·∆xj ]

σi · σj
,

where E[·] means expected value, ∆xi
def
= xi − E[xi], and

σ2
i

def
= E[(∆xi)

2]. Thus, the desired sum

S
def
=
∑
i,j

aij · zi · zj =
∑
i,j

E[∆xi ·∆xj ]

σi · σj
· zi · zj

can be equivalently described as

S =
∑
i,j

E

[
zi ·∆xi

σi
· zj ·∆xj

σj

]
,

i.e., as S = E[s], where

s
def
=
∑
i,j

zi ·∆xi

σi
· zj ·∆xj

σj
.

The expression s is nothing else but the square

s =

(∑
i

zi ·∆xi

σi

)2

.

This square s is always non-negative, thus its expected value
S = E[s] is also always non-negative, so the correlation matrix
is indeed non-negative definite.

If the experts could provide the exact correlation values,
then the matrix formed by their estimates would always be
non-negative definite. However, as we have mentioned, the
expert’s estimates are approximate, i.e., they differ from the
actual (unknown) correlation values. It is known that if we
perturb a positive definite matrix by adding some random
noise, then, if the noise is large enough, the perturbed matrix

will stop to be positive definite. If an expert provides many
estimates, inevitably at some point, his estimates will violate
the non-negative definiteness condition.

Our idea is thus to gauge the accuracy of the expert’s
estimates by computing how much we need to change expert’s
estimates to make the matrix non-negative definite.

Let us describe this idea in precise terms. We will describe
it for different settings.

Case when we only have experts’ numerical estimates. In
this case, we have a matrix ãij formed by expert’s estimates
and 1s on the diagonal, and we want to find the smallest
possible value ε > 0 for which there exists a non-negative
definite matrix aij such that a11 = . . . = ann = 1 and

|ãij − aij | ≤ ε

for all i ̸= j.
Once we find this value ε, we know that the expert’s

estimates may be ε-far from the actual correlation values.
Thus, at best, based on each expert estimate ãij , we can
only conclude that the actual value aij of the corresponding
correlation is somewhere within the interval [ãij − ε, ãij + ε].

Case when we have both some empirical correlations and
expert’s estimates of some correlations. In the previous case,
we assumed that no empirical correlations are known at all,
all correlation values come from an expert.

This may occur sometimes, but a more realistic situation
is when we also know some empirical correlations. Empirical
correlations are also approximate – any statistical estimates
based on a finite sample are approximate – but these statistical
correlations are usually much more accurate than the expert
estimates, so in our analysis, we can safely ignore their
inaccuracy and assume that these correlations are known
exactly.

In this case:
• we know the exact values eij for some set of pairs S of

different elements, and
• we know expert estimates ãij for some set of pairs X of

pairs of different elements.
In this case, we want to find the smallest possible value ε > 0
for which there exists a non-negative definite matrix aij such
that:

• aii = 1 for all i,
• aij = eij for all pairs (i, j) ∈ S, and
• |ãij − aij | ≤ ε for all pairs (i, j) ∈ X .
Once we find this value ε, we can then conclude that aij

belongs to the interval [ãij − ε, ãij + ε].

Case when we have fuzzy estimates. For each pair (i, j) ∈ X
for which an expert provides an estimate, we can extract, in
addition to the numerical estimate, a fuzzy number describing
the expert’s opinion about the correlation.

A fuzzy number describing each correlation aij can be
alternatively described as a nested sequence of intervals



[a−ij(α), a
+
ij(α)] (α-cuts) corresponding to different levels of

confidence α.
Our goal is to find the largest α for which there exists a

non-negative definite matrix aij such that:
• aii = 1 for all i,
• aij = eij for all pairs (i, j) ∈ S, and
• aij ∈ [a−ij(α), a

+
ij(α)] for all pairs (i, j) ∈ X .

(We want largest α, since the larger α, the narrower the
intervals, and we want the narrowest intervals.)

Once we find this degree α, we can then conclude that for
every i and j, the actual (unknown) value aij of the correlation
belongs to the interval [a−ij(α), a

+
ij(α)].

III. WHAT IS KNOWN ABOUT THIS PROBLEM AND
SIMILAR PROBLEMS

What is known about this problem. We want to be able to
check, for a given matrix ãij and for a given ε > 0, whether
in the ε-vicinity of this matrix there is a non-negative definite
matrix. Unfortunately, in general, this problem is known to be
NP-hard; see, e.g., [7].

This means, crudely speaking, that, unless P = NP (and
most computer scientists believe that this is not possible), no
feasible algorithm can exactly solve all particular cases of this
problem.

This does not mean that we have to give up: many problems
are NP-hard but become feasibly solvable when the approxi-
mation errors are relatively small – and this is the assumption
we will make in this paper. If the approximation errors are
huge, this means that experts are completely wrong, and,
honestly, their estimates are practically useless.

What is known about similar problems. If instead of looking
for the largest possible difference ãij−aij , we would look for
the mean squared difference, then the corresponding problem
becomes feasibly solvable; see, e.g., [1], [2], [3], [4], [5], [8],
[10].

It is tempting to use the corresponding algorithms, but they
are not good for our purpose: we are interested in individual
values aij , and the fact that “on average” the deviation is small
does not prevent us from the possibility that for this particular
pairs (i, j), the difference ãij − aij is huge.

IV. ANALYSIS OF THE PROBLEM: CASE OF NUMERICAL
EXPERT ESTIMATES

What we start with. For some pairs (i, j) – namely, for
the pairs from the set S – we know, from experiments, the
correlations eij . As we have mentioned, we can safely assume
these correlations to be known exactly. For pairs that do not
belong to the set S, all know is the expert estimates ãij .

Thus, we get a matrix a
(0)
ij whose elements are equal:

• to 1 when i = j,
• to eij when (i, j) ∈ S, and
• to ãij when (i, j) ̸∈ S.

In general, the resulting estimate for the covariance matrix
may not be non-negative definite. As we have mentioned,

due to the fact that expert estimates are approximate, the ma-
trix a

(0)
ij is only approximately equal to the actual covariance

matrix, and may, thus, be not non-negative definite.
We would like to use this property to gauge the accuracy

of expert estimates.

Reformulation in terms of eigenvalues. The above definition
of a non-negative definite matrix requires that we try all
possible vectors z. From the computational viewpoint, this
is not realistic. However, there is a known easier-to-check
equivalent property: namely, it is known that a matrix is non-
negative definite if and only if all its eigenvalues are non-
negative. This is easier to check, since there are efficient
algorithms for computing the eigenvalues (and eigenvectors)
of a matrix.

Thus, if a function is not non-negative definite, this means
that some of the eigenvalues are negative.

The smallest of the negative eigenvalues is the most
important one. When there is only one negative eigenvalue,
then all we need is make it non-negative.

We want the smallest possible change, thus we want to
select a non-negative eigenvalue which is the closest to the
original negative eigenvalue. Such a value, of course, is 0. So,
we want to change the original negative eigenvalue to 0.

We may have several negative eigenvalues. The smaller the
negative eigenvalue, the more change we need to make to
bring it to 0. Thus, to gauge the main effort, it is necessary to
consider the smallest negative eigenvalue – i.e., the eigenvalues
which is the furthest away from the desired set of all non-
negative numbers.

How eigenvalues change when we change the matrix.
• Let λ < 0 be the smallest negative eigenvalue of the

matrix a
(0)
ij .

• Let us denote by (e1, . . . , en) the corresponding unit
eigenvector.

The fact this is a unit vector means that
n∑

j=1

e2j = 1,

and the fact that this vector is an eigenvector corresponding
to the eigenvalue λ means that∑

j

a
(0)
ij · ej = λ · ei.

The values a
(0)
ij for (i, j) ∈ S are known exactly, but the

values corresponding to (i, j) ̸∈ S (i ̸= j) are known only
approximately. We want to change the values a

(0)
ij for all the

pairs (i, j) ̸∈ S for which i ̸= j, so that for the updated matrix
a
(0)
ij +∆aij , the corresponding eigenvalue will be 0.
As we have mentioned, we consider the case when the esti-

mation inaccuracy is relatively small, so that terms quadratic
in terms of this inaccuracy can be safely ignored. Since the
updated matrix a

(0)
ij + ∆aij is close to the original matrix

a
(0)
ij , the corresponding unit eigenvector should be close to



the original eigenvector ej . Thus, the corresponding unit
eigenvector of the updated matrix can be written as ej +∆ej ,
where the deviations ∆ej are small.

The fact that the vector ej+∆ej is a unit vector means that
n∑

j=1

(ej +∆ej)
2 =

n∑
j=1

(
e2j + 2ej ·∆ej + (∆ej)

2
)
= 1,

i.e., that
n∑

j=1

e2j + 2
n∑

j=1

ej ·∆ej +
n∑

j=1

(∆ej)
2 = 1.

This formula can be simplified due to the fact that:
• as we have mentioned, quadratic terms (∆ej)

2 can be
safely ignored, and

• the first sum is equal to 1:
n∑

j=1

e2j = 1.

Thus, the above condition takes the form
n∑

j=1

ej ·∆ej = 0.

In geometric terms, this means that the deviation vector ∆ej
is orthogonal to the original eigenvector ej .

The condition that the new eigenvalue is 0 means that
n∑

j=1

(a
(0)
ij +∆aij) · (ej +∆ej) = 0

for all i. If we open the parentheses and ignore quadratic terms
– i.e., for this formula, terms proportional to the product

∆aij ·∆ej ,

we get the following formula:
n∑

j=1

a
(0)
ij · ej +

n∑
j=1

∆aij · ej +
n∑

j=1

a
(0)
ij · ej = 0.

The first term in the left-hand side is equal to λ · ei, so we
conclude that

n∑
j=1

a
(0)
ij ·∆ej = |λ| · ei −

n∑
j=1

∆aij · ej .

This formula has the form
n∑

j=1

a
(0)
ij ·∆ej = fi,

where we denoted

fi
def
= |λ| · ei −

n∑
j=1

∆aij · ej .

We have a system of linear equations for the unknowns
∆ej . We want to find a solution ∆ej of this system of
linear equations, a solution which is orthogonal to the original
eigenvector ej .

The possibility of finding such a solution is the easiest to
check if instead of the original orthonormal basis, we consider
the othonormal basis consisting of eigenvectors of the original
matrix a

(0)
ij .

• Let us denote the components of the vectors fi and ∆ei
in the new basis by Fk and ∆Ek, and

• let us denote the components of the matrix a
(0)
ij in the

new basis by A
(0)
kℓ .

In the new basis, the matrix a
(0)
ij takes a diagonal form

A
(0)
kℓ = λk · δkℓ, where λk is the k-th eigenvalue and δkℓ is

the Kronecker symbol, i.e.:
• δkk = 1 for all k, and
• δkℓ = 0 for all k ̸= ℓ.

Thus, in the new basis, our system of linear equations takes
the form λk · ∆Ek = Fk for all k. The solution to this new
system of equation is straightforward: we get a vector with
components

∆Ek =
Fk

λk
.

Thus, in the original basis, the solution has the form

∆ej =

n∑
k=1

Fk

λk
· e(k)j ,

where e
(k)
j is the eigenvector corresponding to the k-th eigen-

value. In other words, the solution is a linear combination of
different eigenvectors.

All eigenvectors from the original basis are orthogonal to
each other. Thus, a linear combination of all eigenvectors
different from the original eigenvector ej = e

(k0)
j is also

orthogonal to ej . So, the requirement that this solution be
orthogonal to the eigenvector ej means that the corresponding
component Fk0 should be 0.

For the orthonormal basis, this component is nothing else
but a scalar (dot) product of the vector fi and the unit
eigenvector ei. Thus, for the equation to be solvable, this scalar
product must be equal to 0:

n∑
i=1

fi · ei =
n∑

i=1

|λ| · e2i −
n∑

i=1

n∑
j=1

∆aij · ei · ej .

Here, since ei is a unit vector, we have
n∑

i=1

e2i = 1.

The values ∆aij are only different from 0 when (i, j) ̸∈ S
and i ̸= j. Thus, we must have∑

(i,j)̸∈S & i ̸=j

∆aij · ei · ej = |λ|. (1)

Resulting reformulation of our problem: case of numerical
estimates. Thus, in case of numerical estimates, the problem
takes the following form: find the smallest possible value ε > 0



for which there exists values ∆aij for which |∆aij | ≤ ε for
all i and j and for which the formula (1) is true.

How to solve the resulting optimization problem. For every
ε, due to |∆aij | ≤ ε, we have |∆aij · ei · ej | ≤ ε · |ei| · |ej |.
Thus,∣∣∣∣∣∣

∑
(i,j)̸∈S & i ̸=j

∆aij · ei · ej

∣∣∣∣∣∣ ≤
∑

(i,j)̸∈S& i ̸=j

|∆aij · ei · ej | ≤

∑
(i,j) ̸∈S& i ̸=j

ε · |ei| · |ej | = ε · S0,

where we denoted

S0
def
=

∑
(i,j)̸∈S& i ̸=j

|ei| · |ej |.

So, if ε · S0 < |λ|, i.e., if

ε <
|λ|
S0

,

we cannot satisfy the formula (1).
When we reach the value

ε =
|λ|
S0

,

then it is already possible to satisfy the equation (1): namely,
it is sufficient to take ∆aij = ε · sign(ei) · sign(ej), where
sign(x) means the sign of the number x:

• sign(x) = 1 when x > 0, and
• sign(x) = −1 when x < 0.

For this choice of ∆aij , we have∑
(i,j)̸∈S& i ̸=j

∆aij · ei · ej =

ε ·
∑

(i,j)̸∈S& i ̸=j

sign(ei) · sign(ej) · ei · ej .

For every number x, we have x · sign(x) = |x|, thus, we get∑
(i,j) ̸∈S& i̸=j

∆aij · ei · ej = ε ·
∑

(i,j)̸∈S & i ̸=j

|ei| · |ej | =

ε · S0 =
|λ|
S0

· S0 = |λ|.

So, the smallest possible ε is equal to the ratio

|λ|
S0

.

What if for some pairs (i, j), we have both empirical
correlations eij and expert estimates ãij? In this case, we
need to take the difference between them into account as well.
Thus, the smallest ε takes the form

max

(
|λ|
S0

, max
(i,j)∈S∩X

|ãij − eij |
)
.

What if we only have expert estimates? In this case, the
condition that (i, j) ̸∈ S and i ̸= j covers all the pairs –
except for the pairs (i, i) for which the correlation is always
1 and hence, cannot be changed. Thus, here,

S0 =
∑

(i,j)̸∈S & i ̸=j

|ei| · |ej | =
∑
i,j

|ei| · |ej | −
∑
i

|ei|2.

The first sum in the right-hand side is simply equal to the
product (

n∑
i=1

|ei|

)
·

 n∑
j=1

|ej |

 ,

i.e., to the square (
n∑

i=1

|ei|

)2

.

Thus, we get

S0 =

(
n∑

i=1

|ei|

)2

−
n∑

i=1

e2i .

So, we arrive at the following algorithm.

V. RESULTING ALGORITHM

What is given.
• For some pairs (i, j), we are given the values eij of the

empirical covariances. The set of all such pairs is denoted
by S.

• For some pairs (i, j), we are given the expert estimates
ãij of the covariances. The set of all such pairs will be
denoted by X .

We assume that for every pair of different indices, we have
either an empirical value or an expert estimate (or both).

What we want to estimate. We want to estimate the accuracy
of the expert estimates, i.e., the smallest ε for which we can
change the estimates ãij by no more than ε and get a non-
negative definite correlation matrix.

Cases. We consider two possible cases:
• the case when S ∩X = ∅, i.e., when for every pair, we

have either an empirical covariance or an expert estimate,
but not both; and

• the case when S ∩X ̸= ∅, when for some pairs, we have
both the empirical value of the covariance and the expert
estimate.

In the first case, we will specifically consider the subcase when
S = ∅, i.e., when we have no empirical correlation values, only
expert estimates.

Algorithm.

1. Let us form a matrix a
(0)
ij as follows:

• for i = j, we take a
(0)
ij = 1,

• for (i, j) ∈ S, we take a
(0)
ij = eij , and

• for (i, j) ̸∈ S and i ̸= j, we take a
(0)
ij = ãij .



2. For the matrix a
(0)
ij , we compute the smallest eigenvalue

λ. The following actions depend on whether this smaller
eigenvalue if non-negative or negative.

2.1. If λ ≥ 0, then the matrix a
(0)
ij is already non-negative

definite.

2.1.1. In the first case, when S ∩ X = ∅, this means we
cannot make any conclusions about the accuracy of the expert
estimates: it could be that the expert estimates are exact.

2.1.2. In the second case, when S ∩ X ̸= ∅, as an estimate
for expert accuracy, we take the largest difference between the
expert estimates and the empirical correlations:

ε = max
(i,j)∈S∩X

|ãij − eij |.

2.2. If λ < 0, then we compute the corresponding unit
eigenvector ei, and then we compute the value

S0 =
∑

(i,j)̸∈S& i ̸=j

|ei| · |ej |.

When S = ∅, we can compute S0 by using a simplified
formula

S0 =

(
n∑

i=1

|ei|

)2

−
n∑

i=1

e2i .

The resulting estimate for ε depends on the case.

2.2.1. In the first case, when S ∩X = ∅, we take

ε =
|λ|
S0

.

2.2.2. In the second case, when S ∩X ̸= ∅, we take

ε = max

(
|λ|
S0

, max
(i,j)∈S∩X

|ãij − eij |
)
.

VI. FUZZY CASE: ANALYSIS OF THE PROBLEM

What is the problem: reminder. Which α should we select?
• First, we want to make sure that when for some pairs,

we have both empirical correlations and expert estimates,
the empirical correlation lies within the corresponding
interval, i.e., that for all such pairs, we have

a−ij(α) ≤ eij ≤ a+ij(α).

• Second, we want to make sure that within selected
intervals, we have values aij for which the correlation
matrix is non-negative definite.

We have nested intervals. The intervals [a−ij(α), a
+
ij(α)] grow

when α decreases. Thus, if the above two conditions are
satisfied for some α, they are also satisfied for all smaller
values α′ < α as well.

Bisection idea. Thus, to find the largest α for which both
conditions are satisfied, we can use the following natural
bisection idea:

• First, we check whether both conditions are satisfied for
α = 1. If they are satisfied, then α = 1 is the value we
take.

• If one or both of the above conditions are not satisfied
for α = 1, then we check whether they are satisfied for

α = 0.

• If they are not even satisfied for α = 0, this means that the
expert underestimates his/her uncertainty, so we cannot
reply on this fuzzy information to gauge this uncertainty.

• If both conditions are satisfied for α = 0, this means that
we have:

– a value α (in this case, α = 0) for which both
conditions are satisfied, and

– a value α (in this case, α = 1) for which at least of
the conditions is not satisfies.

• In this case, we know that the desired value α is some-
where between α and α, i.e., somewhere on the interval

[α, α].

• Once we get this information, we can check whether both
conditions are satisfied for the midpoint

αm =
α+ α

2

of this interval.
– If both conditions are satisfied, then we have a new

interval [αm, α] of half the size that contains the
desired value α.

– On the other hand, if at least one of the conditions
is not satisfied, then we also have a new interval of
half size containing α: namely, the interval [α, αm].

• In both cases, we decreases the size of the interval in
half.

How many iterations do we need?
• We start with an interval [0, 1] of width 1.
• Thus, in four iterations, we get an interval of width

1/24 = 1/16 = 0.0625.
• Experts do not describe their degree of certainty withy

higher accuracy that one decimal digit.
• So, 4 iterations are more than enough for find the main

digit of the desired value α.

Remaining question. The remaining question is how, given
α, we can check whether both conditions are satisfied.

• Checking the first condition is easy: we simply check the
corresponding inequalities.

• How can we check the second condition?
To answer this question, let us recall the above case – when
we had numerical estimates.

Fuzzy estimate is an extension of a numerical estimate. A
fuzzy estimate for the correlation aij is an extension of the
numerical estimate. We start with the numerical value – which
corresponds to degree of certainty 1, and we add intervals
containing this value: the smaller degree of confidence that



all these values are indeed possible, the wider the interval. In
this case, the numerical value corresponds to the top α-cut,
corresponding to α = 1: ãij = a−ij(1) = a+ij(1).

Sometimes, experts start not with a numerical estimate, but
with an interval [a−ij(1), a

+
ij(1)] of positive width. In this case,

it makes sense to take, as a representative numerical value, a
midpoint of this interval

ãij =
a−ij(1) + a+ij(1)

2
.

How to check non-negative definiteness. For each α, possible
values of aij lie within the interval [a−ij(α), a

+
ij(α)]. Thus,

possible values of ∆aij = aij − ãij lie between a−ij(α)− ãij
and a+ij(α)− ãij .

Non-negative positiveness, as we have shown, means that
we must have ∑

(i,j)̸∈S & i ̸=j

∆aij · ei · ej ≥ |λ|

for some ∆aij .
What is the largest value that the sum in the left-hand side

of this inequality can take? To find out, let us describe the
largest possible value of each of the terms ∆aij · ei · ej .

• When the product ei ·ej is positive, then the maximum of
this term is attained for positive values ∆aij . The largest
positive value vij of ∆aij is equal to a+ij(α)− ãij .

• When the product ei · ej is negative, the maximum of
the i-th term in the sum is attained for negative values
∆aij . The largest absolute value of these negative values
is vij = ãij − a−ij(α).

In both cases, for each term ∆aij · ei · ej , the largest possible
value of this term is vij · |ei| · |ej |. Thus, the largest possible
value of the desired sum is equal to∑

(i,j)̸∈S& i ̸=j

vij · |ei| · |ej |.

• If this sum is smaller than |λ|, this means we cannot
reach |λ| by selecting appropriate deviations – and thus,
that the corresponding value α is too large.

• On the other hand, if this sum is larger than or equal
to |λ|, this means that for this α, it is possible to attain
non-negative positiveness.

So, we arrive at the following algorithm.

VII. FUZZY CASE: ALGORITHM

What is given.
• For some pairs (i, j), we know the empirical correlations

eij . The set of all such pairs will be denoted by S.
• For some pairs (i, j), experts give us fuzzy estimates

[a−ij(α), a
+
ij(α)] corresponding to different values α. The

set of all such pairs (i, j) will be denoted by X .
We assume that for every pair of different indices, we have
either an empirical value or an expert estimate (or both).

What is our objective. Our goal is to return the value α
so that, for each (i, j) ̸∈ S for which i ̸= j, the interval
[a−ij(α), a

+
ij(α)] is used as the range of possible values of

correlation.

Algorithm: preliminary stage.
• First, for each (i, j) ̸∈ S for which i ̸= j, we then

compute the value

ãij =
a−ij(1) + a+ij(1)

2
.

• We then compute the following matrix a
(0)
ij :

– for i = j, we take a
(0)
ij = 1,

– for (i, j) ∈ S, we take a
(0)
ij = eij , and

– for (i, j) ̸∈ S and i ̸= j, we take a
(0)
ij = ãij .

• After that, we compute the smallest eigenvalue λ of the
matrix a

(0)
ij and the corresponding unit eigenvector ei.

The results of all these preliminary computations are used in
the main stage of the algorithm.

Algorithm: main stage. Once the first stage is over, the main
stage starts.

• First, we use an auxiliary algorithm – described below
– to check whether the above-mentioned conditions are
satisfied for α = 1. If they are satisfied, we return α = 1
and stop.

• If the conditions are not satisfied for α = 1, we check
whether they are satisfied for α = 0. If they are not
satisfied, then we ignore all the fuzzy information as
useless and use only the numerical values ãij as described
in the previous section.

• If the conditions are satisfied for α = 0 and not satisfied
for α = 1, then we set α = 0 and α = 1 and start
iterations.

• On each iteration, we check whether the condition is
satisfied for

αm =
α+ α

2
.

– If the conditions are satisfied for αm, then we replace
α with αm, while keeping α unchanged.

– If the conditions are not satisfied for αm, then we
replace α with αm while keeping α unchanged.

• Iterations stop when α − α ≤ δ for a given δ (e.g., for
δ = 0.1). At this point, we return the midpoint

αm =
α+ α

2

as the desired value α.

Auxiliary algorithm. In this algorithm, we are also given a
number α, and we want to check whether the conditions are
satisfied for this α.

• First, we check whether for all (i, j) ∈ S ∩X , we have

a−ij(α) ≤ eij ≤ a+ij(α).



If at least one of these inequalities is not satisfied, we stop
the auxiliary algorithm and conclude that the conditions
are not satisfied for this α.

• If all the above inequalities are satisfied and λ ≥ 0, we
conclude that both conditions are satisfied.

• If all double inequalities are satisfied but λ < 0, then for
all (i, j) ̸∈ S for which i ̸= j, we compute the following
value vij :

– when sign(ei) · sign(ej) > 0, we take

vij = a+ij(α)− ãij ;

– when sign(ei) · sign(ej) < 0, we take

vij = ãij − a−ij(α).

• Then, we check whether∑
(i,j) ̸∈S & i ̸=j

vij · |ei| · |ej | ≥ |λ|.

– If this inequality is satisfied, we conclude that both
conditions are satisfied for the given α.

– If this inequality is not satisfied, we conclude that
at least one of the conditions is not satisfied for the
given α.
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