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Abstract In many practical situations, it is impor-
tant to know the correlation between different quanti-
ties – finding correlations helps to gain insights into
various relationships and phenomena, and helps to
inform analysts. Often, there is not enough empirical
data to experimentally determine all possible corre-
lations. In such cases, a natural idea is to supplement
this situation with expert estimates. Expert estimates
are rather crude. So, to decide whether to act based
on these estimates, it is desirable to know how accu-
rate are expert estimates. In this paper, we propose
several techniques for gauging this accuracy.

1 Formulation of the Problem

In this section, we formulate the problem – of esti-
mating how accurate are expert estimations of corre-
lation – and explain why this problem is important.

1.1 Correlations are important

How can we cure diseases? How can we prevent dis-
eases? Often, we do not know what causes a disease,
and we do not know what helps against this disease.
In such situations, we collect the data about the pa-
tients and try to find the solutions by analyzing the
data.
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If a certain disease is strongly correlated with,
e.g., smoking, then probably either smoking causes
this disease or, alternatively, smoking weakens the
body’s natural defenses against this disease. If a
disease is correlated with the presence of a certain
variant gene (or, more generally, with a combination
of variant genes), then people with this combination
should regularly check again this disease and/or per-
form some additional preventive measures against
this disease.

Similarly, in geosciences, if oil locations are
strongly correlated with certain types of geological
structures, then we should actively look for oil in an
area where such structures are present. In many ap-
plication areas, correlations are important.

1.2 It is often not possible to find correla-
tions experimentally, so we need to rely
on experts

In the ideal world, we should be able to determine
all the correlations from experiments. In practice,
however, it is not always possible.

An ideal way to estimate the correlation between
the two quantities x and y is to have a sample of data
points in which only x changes – all other parame-
ters remain the same – and we are interested in how
y changes depending on the change in x. This may
be possible if we analyze how a given photo-sensor
reacts to temperature, but it is not realistic to expect
many situations in which patients are identical in al-
most all characteristics – expect that some of them
do not smoke, some smoke lightly, and some smoke
heavily. Similarly, in geosciences, we cannot expect
situations in which all the geological characteristics
are identical except for one feature.

In most practical situations, we have many fac-
tors affecting each situation, and there is often not
enough data points to separate the effect of these fac-
tors. In situations when we cannot determine all the

correlations empirically, a natural idea is to ask ex-
perts. Experts can often provide their estimates of
correlation between different quantities.

1.3 What type of information can experts
provide?

First, experts can provide us with numerical esti-
mates for the correlation between the given n quan-
tities x1, . . . ,xn. In other words, for every i ̸= j, the
experts will provide us with an estimate ai j of the
correlation between the quantities xi and x j. Due to
the properties of correlation, we always have

ai j = a ji.

Since correlation between a quantity and itself is
1, all diagonal elements of the correlation matrix are
1s. As a result, by adding 1s on the diagonal, we get a
symmetric matrix ai j in which all diagonal elements
are equal to 1.

While experts can (and do) produce numbers, they
are not 100% confident in these numbers. As a next
step, it is therefore reasonable to capture this ex-
pert uncertainty. The experts often describe their un-
certainty in terms of imprecise (fuzzy) words from
natural language, such as “close to”, “much smaller
than”, “about”. To describe the expert’s uncertainty,
it is therefore reasonable to use techniques specifi-
cally developed for translating such statements into
numerical form – namely, the techniques of fuzzy
logic; see, e.g., [7, 10, 13]. As a result, each esti-
mate ai j is no longer a number – it is a fuzzy number,
describing the expert’s uncertainty.

1.4 How accurate are expert’s estimates of
correlation?

As we have mentioned, expert’s estimates are ap-
proximate. How accurate are they? It is important to
know this since it will determine whether we should
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act on these correlations or maybe perform more ex-
periments.

For example, if an expert claims that there is a
70% correlation between a certain gene and a dis-
ease, and the expert’s accuracy is ±20%, this means
that we are confident that there is a strong positive
correlation. On the other hand, if an expert estimates
the correlation at 20% and his/her accuracy is ±30%,
then maybe there is no positive correlation at all – or
even a small negative correlation.

It is therefore important to determine how accurate
are the expert’s estimates of correlation. This paper
proposes a method to do this.

Comment. A preliminary version of this paper was
published in the Proceedings of the 2017 IEEE Sym-
posium on Computational Intelligence for Engineer-
ing Solutions CIES’2017 [1]. In that version, we
only considered an idealized case, when all the em-
pirical correlations are assumed to be exact. In this
extended version, we take into account that the em-
pirical estimates of correlation are also approximate.

2 The Main Idea and Resulting Pre-
cise Formulations of the Problem

In this section, we show how to formulate our main
problem in precise terms.

2.1 A natural idea is not always applicable

If for some pairs (i, j), we have both empirical corre-
lations and expert estimates, then we can gauge the
accuracy of expert estimates by comparing these val-
ues. But what if we do not have such pairs?

2.2 The main idea

The main idea is to use the fact that the actual cor-
relation matrix ai j must be non-negative definite,

i.e., ∑
i, j

ai j · zi · z j ≥ 0 for all possible vectors z =

(z1, . . . ,zn).
Indeed, correlation ai j between xi and x j is defined

as

ai j
def
=

E[∆xi ·∆x j]

σi ·σ j
,

where E[·] means expected value, ∆xi
def
= xi −E[xi],

and σ2
i

def
= E[(∆xi)

2]. Thus, the desired sum

S def
= ∑

i, j
ai j · zi · z j = ∑

i, j

E[∆xi ·∆x j]

σi ·σ j
· zi · z j

can be equivalently expressed as

S = ∑
i, j

E
[

zi ·∆xi

σi
·

z j ·∆x j

σ j

]
,

i.e., as S = E[s], where

s def
= ∑

i, j

zi ·∆xi

σi
·

z j ·∆x j

σ j
.

The expression s is nothing else but the square

s =

(
∑

i

zi ·∆xi

σi

)2

.

This square s is always non-negative, thus its ex-
pected value S = E[s] is also always non-negative,
so the correlation matrix is indeed non-negative def-
inite.

If the experts could provide the exact correlation
values, then the matrix formed by their estimates
would always be non-negative definite. However,
as we have mentioned, the expert’s estimates are ap-
proximate, i.e., they differ from the actual (unknown)
correlation values. It is known that if we perturb
a positive definite matrix by adding some random
noise, then, if the noise is large enough, the perturbed
matrix will stop being positive definite. If an expert
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provides many estimates, inevitably at some point,
his estimates will violate the non-negative definite-
ness condition.

Our idea is thus to gauge the accuracy of the ex-
pert’s estimates by computing how much we need
to change the expert’s estimates to make the matrix
non-negative definite.

Let us describe this idea in precise terms. We will
describe it for different settings.

2.3 Case when we only have experts’ nu-
merical estimates

In this case, we have a matrix ãi j formed by ex-
pert’s estimates and 1s on the diagonal, and we want
to find the smallest possible value ε > 0 for which
there exists a non-negative definite matrix ai j such
that a11 = . . .= ann = 1 and

|ãi j −ai j| ≤ ε

for all i ̸= j.
Once we find this value ε, we know that the ex-

pert’s estimates may be ε-far from the actual corre-
lation values. Thus, at best, based on each expert
estimate ãi j, we can only conclude that the actual
value ai j of the corresponding correlation is some-
where within the interval [ãi j − ε, ãi j + ε].

2.4 Case when we have both some empiri-
cal correlations and expert’s estimates
of some correlations

In the previous case, we assumed that no empirical
correlations are known at all, all correlation values
come from an expert.

This may occur sometimes, but a more realistic
situation is when we also know some empirical cor-
relations. Empirical correlations are also approxi-
mate – any statistical estimates based on a finite sam-
ple are approximate – but these statistical correla-

tions are usually much more accurate than the ex-
pert estimates, so in the first approximation, we can
safely ignore their inaccuracy and assume that these
correlations are known exactly. (In Chapter 9 we dis-
cuss what happens if we take into account that em-
pirical estimates are also only approximate.)

In this case:

• we know the exact values ei j for some set of
pairs S of different elements, and

• we know expert estimates ãi j for some set of
pairs X of different elements.

In this case, we want to find the smallest possible
value ε> 0 for which there exists a non-negative def-
inite matrix ai j such that:

• aii = 1 for all i,

• ai j = ei j for all pairs (i, j) ∈ S, and

• |ãi j −ai j| ≤ ε for all pairs (i, j) ∈ X .

Once we find this value ε, we can then conclude
that ai j belongs to the interval [ãi j − ε, ãi j + ε].

2.5 Case when we have fuzzy estimates

For each pair (i, j) ∈ X for which an expert provides
an estimate, we can extract, in addition to the numer-
ical estimate, a fuzzy number describing the expert’s
opinion about the correlation.

A fuzzy number describing each correlation ai j

can be alternatively described as a nested sequence
of intervals [a−i j(α),a

+
i j(α)] (α-cuts) corresponding to

different levels of confidence α.
Our goal is to find the largest α for which there

exists a non-negative definite matrix ai j such that:

• aii = 1 for all i,

• ai j = ei j for all pairs (i, j) ∈ S, and
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• ai j ∈ [a−i j(α),a
+
i j(α)] for all pairs (i, j) ∈ X .

(We want the largest α, since the larger α, the nar-
rower the intervals, and we want the narrowest inter-
vals.)

Once we find this degree α, we can then conclude
that for every i and j, the actual (unknown) value ai j

of the correlation belongs to the interval

[a−i j(α),a
+
i j(α)].

3 What Is Known About This Prob-
lem and Similar Problems

In this section, we overview what is known about the
solution of this problem and similar problems.

3.1 What is known about this problem

We want to be able to check, for a given matrix ãi j

and for a given ε > 0, whether in the ε-vicinity of
this matrix there is a non-negative definite matrix.
Unfortunately, in general, this problem is known to
be NP-hard; see, e.g., [8].

This means, crudely speaking, that, unless P = NP
(and most computer scientists believe that this is not
possible), no feasible algorithm can exactly solve all
particular cases of this problem.

This does not mean that we have to give up: many
problems are NP-hard but become feasibly solvable
when the approximation errors are relatively small –
and this is the assumption we will make in this paper.
If the approximation errors are huge, this means that
experts are completely wrong, and, honestly, their
estimates are practically useless.

3.2 What is known about similar problems

If instead of looking for the largest possible differ-
ence ãi j − ai j, we would look for the mean squared

difference, then the corresponding problem becomes
feasibly solvable; see, e.g., [2, 3, 4, 5, 6, 9, 11].

It is tempting to use the corresponding algorithms,
but they are not good for our purpose: we are inter-
ested in individual values ai j, and the fact that “on
average” the deviation is small does not prevent us
from the possibility that for this particular pair (i, j),
the difference ãi j −ai j is huge.

4 Analysis of the Problem: Case of
Numerical Expert Estimates

In this section, we analyze our problem – so as to
come up with a solution.

4.1 What we start with

For some pairs (i, j) – namely, for the pairs from the
set S – we know, from experiments, the correlations
ei j. As we have mentioned, we can safely assume
these correlations to be known exactly. For pairs that
do not belong to the set S, all we know is the expert
estimates ãi j.

Thus, we get a matrix a(0)i j whose elements are
equal:

• to 1 when i = j,

• to ei j when (i, j) ∈ S, and

• to ãi j when (i, j) ̸∈ S.

4.2 In general, the resulting estimate for
the correlation matrix may not be non-
negative definite

As we have mentioned, due to the fact that expert es-
timates are approximate, the matrix a(0)i j is only ap-
proximately equal to the actual correlation matrix,
and may, thus, be not non-negative definite.
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We would like to use this property to gauge the
accuracy of expert estimates.

4.3 Reformulation in terms of eigenvalues

The above definition of a non-negative definite ma-
trix requires that we try all possible vectors z. From
the computational viewpoint, this is not realistic.
However, there is a known easier-to-check equiva-
lent property: namely, it is known that a matrix is
non-negative definite if and only if all its eigenvalues
are non-negative. This is easier to check, since there
are efficient algorithms for computing the eigenval-
ues (and eigenvectors) of a matrix.

Thus, if a function is not non-negative definite,
this means that some of the eigenvalues are negative.

4.4 The smallest of the negative eigenvalues
is the most important one

When there is only one negative eigenvalue, then all
we need is make it non-negative.

We want the smallest possible change, thus we
want to select a non-negative eigenvalue which is the
closest to the original negative eigenvalue. Such a
value, of course, is 0. So, we want to change the
original negative eigenvalue to 0.

We may have several negative eigenvalues. The
smaller the negative eigenvalue, the more change we
need to make to bring it to 0. Thus, to gauge the
main effort, it is necessary to consider the smallest
negative eigenvalue – i.e., the eigenvalue which is the
furthest away from the desired set of all non-negative
numbers.

4.5 How does the matrix change when we
change eigenvalues

• Let λ < 0 be the smallest negative eigenvalue of
the matrix a(0)i j .

• Let us denote by (e1, . . . ,en) the corresponding
unit eigenvector.

The fact this is a unit vector means that
n

∑
j=1

e2
j = 1,

and the fact that this vector is an eigenvector corre-
sponding to the eigenvalue λ means that

∑
j

a(0)i j · e j = λ · ei.

The values a(0)i j for (i, j) ∈ S are known exactly,
but the values corresponding to (i, j) ̸∈ S (i ̸= j) are
known only approximately. We want to change the
values a(0)i j for all the pairs (i, j) ̸∈ S for which i ̸= j,

so that for the updated matrix a(0)i j +∆ai j, the corre-
sponding eigenvalue will be 0.

As we have mentioned, we consider the case when
the estimation inaccuracy is relatively small, so that
terms quadratic in terms of this inaccuracy can be
safely ignored. Since the updated matrix a(0)i j +∆ai j

is close to the original matrix a(0)i j , the correspond-
ing unit eigenvector should be close to the origi-
nal eigenvector e j. Thus, the corresponding unit
eigenvector of the updated matrix can be written as
e j +∆e j, where the deviations ∆e j are small.

The fact that the vector e j +∆e j is a unit vector
means that

n

∑
j=1

(e j +∆e j)
2 =

n

∑
j=1

(
e2

j +2e j ·∆e j +(∆e j)
2)= 1,

i.e., that

n

∑
j=1

e2
j +2

n

∑
j=1

e j ·∆e j +
n

∑
j=1

(∆e j)
2 = 1.

This formula can be simplified due to the fact that:
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• as we have mentioned, quadratic terms (∆e j)
2

can be safely ignored, and

• the first sum is equal to 1:

n

∑
j=1

e2
j = 1.

Thus, the above condition takes the form

n

∑
j=1

e j ·∆e j = 0.

In geometric terms, this means that the deviation
vector ∆e j is orthogonal to the original eigenvector
e j.

The condition that the new eigenvalue is 0 means
that

n

∑
j=1

(a(0)i j +∆ai j) · (e j +∆e j) = 0

for all i. If we open the parentheses and ignore
quadratic terms – i.e., for this formula, terms pro-
portional to the product

∆ai j ·∆e j,

we get the following formula:

n

∑
j=1

a(0)i j · e j +
n

∑
j=1

∆ai j · e j +
n

∑
j=1

a(0)i j ·∆e j = 0.

The first term in the left-hand side is equal to λ · ei,
so we conclude that

n

∑
j=1

a(0)i j ·∆e j = |λ| · ei −
n

∑
j=1

∆ai j · e j.

This formula has the form

n

∑
j=1

a(0)i j ·∆e j = fi,

where we denoted

fi
def
= |λ| · ei −

n

∑
j=1

∆ai j · e j.

We have a system of linear equations for the un-
knowns ∆e j. We want to find a solution ∆e j of this
system of linear equations, a solution which is or-
thogonal to the original eigenvector e j.

The possibility of finding such a solution is the
easiest to check if instead of the original orthonormal
basis, we consider the othonormal basis consisting of
eigenvectors of the original matrix a(0)i j .

• Let us denote the components of the vectors fi

and ∆ei in the new basis by Fk and ∆Ek, and

• let us denote the components of the matrix a(0)i j

in the new basis by A(0)
kℓ .

In the new basis, the matrix a(0)i j takes a diagonal

form A(0)
kℓ = λk · δkℓ, where λk is the k-th eigenvalue

and δkℓ is the Kronecker symbol, i.e.:

• δkk = 1 for all k, and

• δkℓ = 0 for all k ̸= ℓ.

Thus, in the new basis, our system of linear equations
takes the form λk ·∆Ek = Fk for all k. The solution to
this new system of equations is straightforward: we
get a vector with components

∆Ek =
Fk

λk
.

Thus, in the original basis, the solution has the
form

∆e j =
n

∑
k=1

Fk

λk
· e(k)j ,

where e(k)j is the eigenvector corresponding to the k-
th eigenvalue. In other words, the solution is a linear
combination of different eigenvectors.
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All eigenvectors from the original basis are or-
thogonal to each other. Thus, a linear combination
of all eigenvectors different from the original eigen-
vector e j = e(k0)

j is also orthogonal to e j. So, the
requirement that this solution be orthogonal to the
eigenvector e j means that the corresponding compo-
nent Fk0 should be 0.

For the orthonormal basis, this component is noth-
ing else but a scalar (dot) product of the vector fi and
the unit eigenvector ei. Thus, for the equation to be
solvable, this scalar product must be equal to 0:

n

∑
i=1

fi · ei =
n

∑
i=1

|λ| · e2
i −

n

∑
i=1

n

∑
j=1

∆ai j · ei · e j.

Here, since ei is a unit vector, we have

n

∑
i=1

e2
i = 1.

The values ∆ai j are only different from 0 when
(i, j) ̸∈ S and i ̸= j. Thus, we must have

∑
(i, j) ̸∈S& i̸= j

∆ai j · ei · e j = |λ|. (1)

4.6 Resulting reformulation of our prob-
lem: case of numerical estimates

In case of numerical estimates, the problem takes the
following form: find the smallest possible value ε >
0 for which there exist values ∆ai j for which |∆ai j| ≤
ε for all i and j and for which the formula (1) is true.

4.7 How to solve the resulting optimization
problem

For every ε, due to |∆ai j| ≤ ε, we have |∆ai j ·ei ·e j| ≤
ε · |ei| · |e j|. Thus,∣∣∣∣∣ ∑
(i, j)̸∈S& i̸= j

∆ai j · ei · e j

∣∣∣∣∣≤ ∑
(i, j)̸∈S& i ̸= j

|∆ai j · ei · e j| ≤

∑
(i, j)̸∈S& i̸= j

ε · |ei| · |e j|= ε ·S0,

where we denoted

S0
def
= ∑

(i, j)̸∈S& i ̸= j
|ei| · |e j|.

So, if ε ·S0 < |λ|, i.e., if

ε <
|λ|
S0

,

we cannot satisfy the formula (1).
When we reach the value

ε =
|λ|
S0

,

then it is already possible to satisfy the equation (1):
namely, it is sufficient to take ∆ai j = ε · sign(ei) ·
sign(e j), where sign(x) means the sign of the num-
ber x:

• sign(x) = 1 when x > 0, and

• sign(x) =−1 when x < 0.

For this choice of ∆ai j, we have

∑
(i, j)̸∈S& i ̸= j

∆ai j · ei · e j =

ε · ∑
(i, j)̸∈S& i̸= j

sign(ei) · sign(e j) · ei · e j.

For every number x, we have x · sign(x) = |x|, thus,
we get

∑
(i, j) ̸∈S& i ̸= j

∆ai j · ei · e j = ε · ∑
(i, j)̸∈S& i̸= j

|ei| · |e j|=

ε ·S0 =
|λ|
S0

·S0 = |λ|.

So, the smallest possible ε is equal to the ratio

|λ|
S0

.
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4.8 What if for some pairs (i, j), we have
both empirical correlations ei j and ex-
pert estimates ãi j?

In this case, we need to take the difference between
them into account as well. Thus, the smallest ε takes
the form

max
(
|λ|
S0

, max
(i, j)∈S∩X

|ãi j − ei j|
)
.

What if we only have expert estimates? In this
case, the condition that (i, j) ̸∈ S and i ̸= j covers all
the pairs – except for the pairs (i, i) for which the cor-
relation is always 1 and hence, cannot be changed.
Thus, here,

S0 = ∑
(i, j)̸∈S& i̸= j

|ei| · |e j|= ∑
i, j
|ei| · |e j|−∑

i
|ei|2.

The first sum in the right-hand side is simply equal
to the product (

n

∑
i=1

|ei|

)
·

(
n

∑
j=1

|e j|

)
,

i.e., to the square (
n

∑
i=1

|ei|

)2

.

Thus, we get

S0 =

(
n

∑
i=1

|ei|

)2

−
n

∑
i=1

e2
i .

So, we arrive at the following algorithm.

5 Resulting Algorithm

In this section, we describe the resulting algorithm.

5.1 What is given

• For some pairs (i, j), we are given the values ei j

of the empirical correlations. The set of all such
pairs is denoted by S.

• For some pairs (i, j), we are given the expert
estimates ãi j of the correlations. The set of all
such pairs will be denoted by X .

We assume that for every pair of different indices, we
have either an empirical value or an expert estimate
(or both).

5.2 What we want to estimate

We want to estimate the accuracy of the expert esti-
mates, i.e., the smallest ε for which we can change
the estimates ãi j by no more than ε and get a non-
negative definite correlation matrix.

5.3 Cases

We consider two possible cases:

• the case when S∩X = /0, i.e., when for every
pair, we have either an empirical correlation or
an expert estimate, but not both; and

• the case when S∩X ̸= /0, when for some pairs,
we have both the empirical value of the correla-
tion and the expert estimate.

In the first case, we will specifically consider the sub-
case when S = /0, i.e., when we have no empirical
correlation values, only expert estimates.

5.4 Algorithm

1. Let us form a matrix a(0)i j as follows:

• for i = j, we take a(0)i j = 1,
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• for (i, j) ∈ S, we take a(0)i j = ei j, and

• for (i, j) ̸∈ S and i ̸= j, we take a(0)i j = ãi j.

2. For the matrix a(0)i j , we compute the small-
est eigenvalue λ. The following actions depend on
whether this smallest eigenvalue is non-negative or
negative.

2.1. If λ ≥ 0, then the matrix a(0)i j is already non-
negative definite.

2.1.1. In the first case, when S∩X = /0, this means
we cannot make any conclusions about the accuracy
of the expert estimates: it could be that the expert
estimates are exact.

2.1.2. In the second case, when S∩X ̸= /0, as an es-
timate for expert accuracy, we take the largest differ-
ence between the expert estimates and the empirical
correlations:

ε = max
(i, j)∈S∩X

|ãi j − ei j|.

2.2. If λ < 0, then we compute the corresponding
unit eigenvector ei, and then we compute the value

S0 = ∑
(i, j) ̸∈S& i̸= j

|ei| · |e j|.

When S = /0, we can compute S0 by using a simpli-
fied formula

S0 =

(
n

∑
i=1

|ei|

)2

−
n

∑
i=1

e2
i .

The resulting estimate for ε depends on the case.

2.2.1. In the first case, when S∩X = /0, we take

ε =
|λ|
S0

.

2.2.2. In the second case, when S∩X ̸= /0, we take

ε = max
(
|λ|
S0

, max
(i, j)∈S∩X

|ãi j − ei j|
)
.

6 Fuzzy Case: Analysis of the Prob-
lem

In the previous sections, we considered the crisp cas.
In this section, we analyze the fuzzy case of our pro-
lem.

6.1 What is the problem: reminder

Which α should we select?

• First, we want to make sure that when for some
pairs, we have both empirical correlations and
expert estimates, the empirical correlation lies
within the corresponding interval, i.e., that for
all such pairs, we have

a−i j(α)≤ ei j ≤ a+i j(α).

• Second, we want to make sure that within se-
lected intervals, we have values ai j for which
the correlation matrix is non-negative definite.

6.2 We have nested intervals

The intervals [a−i j(α),a
+
i j(α)] grow when α de-

creases. Thus, if the above two conditions are satis-
fied for some α, they are also satisfied for all smaller
values α′ < α as well.

6.3 Bisection idea

Thus, to find the largest α for which both conditions
are satisfied, we can use the following natural bisec-
tion idea:

10



• First, we check whether both conditions are sat-
isfied for α = 1. If they are satisfied, then α = 1
is the value we take.

• If one or both of the above conditions are not
satisfied for α = 1, then we check whether they
are satisfied for

α = 0.

• If they are not even satisfied for α = 0, this
means that the expert underestimates his/her un-
certainty, so we cannot reply on this fuzzy infor-
mation to gauge this uncertainty.

• If both conditions are satisfied for α = 0, this
means that we have:

– a value α (in this case, α = 0) for which
both conditions are satisfied, and

– a value α (in this case, α = 1) for which at
least one of the conditions is not satisfied.

• In this case, we know that the desired value α is
somewhere between α and α, i.e., somewhere
on the interval

[α,α].

• Once we get this information, we can check
whether both conditions are satisfied for the
midpoint

αm =
α+α

2
of this interval.

– If both conditions are satisfied, then we
have a new interval [αm,α] of half the size
that contains the desired value α.

– On the other hand, if at least one of the
conditions is not satisfied, then we also
have a new interval of half size containing
α: namely, the interval [α,αm].

• In both cases, we decrease the size of the inter-
val in half.

How many iterations do we need?

• We start with an interval [0,1] of width 1.

• Thus, in four iterations, we get an interval of
width 1/24 = 1/16 = 0.0625.

• Experts do not describe their degree of certainty
with higher accuracy than one decimal digit.

• So, 4 iterations are more than enough for find-
ing the main digit of the desired value α.

6.4 Remaining question

The remaining question is how, given α, we can
check whether both conditions are satisfied.

• Checking the first condition is easy: we simply
check the corresponding inequalities.

• How can we check the second condition?

To answer this question, let us recall the above case
– when we had numerical estimates.

6.5 A fuzzy estimate is an extension of a nu-
merical estimate

A fuzzy estimate for the correlation ai j is an ex-
tension of the numerical estimate. We start with
the numerical value – which corresponds to the de-
gree of certainty 1, and we add intervals contain-
ing this value: the smaller the degree of confidence
that all these values are indeed possible, the wider
the interval. In this case, the numerical value cor-
responds to the top α-cut, corresponding to α = 1:
ãi j = a−i j(1) = a+i j(1).

Sometimes, experts start not with a numerical es-
timate, but with an interval [a−i j(1),a

+
i j(1)] of posi-

tive width. In this case, it makes sense to take, as a

11



representative numerical value, the midpoint of this
interval

ãi j =
a−i j(1)+a+i j(1)

2
.

6.6 How to check non-negative definiteness

For each α, possible values of ai j lie within the inter-
val [a−i j(α),a

+
i j(α)]. Thus, possible values of ∆ai j =

ai j − ãi j lie between a−i j(α)− ãi j and a+i j(α)− ãi j.
Non-negative positiveness, as we have shown,

means that we must have

∑
(i, j)̸∈S& i̸= j

∆ai j · ei · e j ≥ |λ|

for some ∆ai j.
What is the largest value that the sum in the left-

hand side of this inequality can take? To find out, let
us describe the largest possible value of each of the
terms ∆ai j · ei · e j.

• When the product ei · e j is positive, then the
maximum of this term is attained for positive
values ∆ai j. The largest positive value vi j of
∆ai j is equal to a+i j(α)− ãi j.

• When the product ei · e j is negative, the maxi-
mum of the i-th term in the sum is attained for
negative values ∆ai j. The largest absolute value
of these negative values is vi j = ãi j −a−i j(α).

In both cases, for each term ∆ai j · ei · e j, the largest
possible value of this term is vi j · |ei| · |e j|. Thus, the
largest possible value of the desired sum is equal to

∑
(i, j) ̸∈S& i ̸= j

vi j · |ei| · |e j|.

• If this sum is smaller than |λ|, this means we
cannot reach |λ| by selecting appropriate devia-
tions – and thus, that the corresponding value α
is too large.

• On the other hand, if this sum is larger than or
equal to |λ|, this means that for this α, it is pos-
sible to attain non-negative positiveness.

So, we arrive at the following algorithm.

7 Fuzzy Case: Algorithm

In this section, we describe the resulting fuzzy-case
algorithm.

7.1 What is given

• For some pairs (i, j), we know the empirical
correlations ei j. The set of all such pairs will
be denoted by S.

• For some pairs (i, j), experts give us fuzzy es-
timates [a−i j(α),a

+
i j(α)] corresponding to differ-

ent values α. The set of all such pairs (i, j) will
be denoted by X .

We assume that for every pair of different indices, we
have either an empirical value or an expert estimate
(or both).

7.2 What is our objective

Our goal is to return the value α so that, for each
(i, j) ̸∈ S for which i ̸= j, the interval [a−i j(α),a

+
i j(α)]

is used as the range of possible values of correlation.

7.3 Algorithm: preliminary stage

• First, for each (i, j) ̸∈ S for which i ̸= j, we com-
pute the value

ãi j =
a−i j(1)+a+i j(1)

2
.

• We then compute the following matrix a(0)i j :

12



– for i = j, we take a(0)i j = 1,

– for (i, j) ∈ S, we take a(0)i j = ei j, and

– for (i, j) ̸∈ S and i ̸= j, we take a(0)i j = ãi j.

• After that, we compute the smallest eigenvalue
λ of the matrix a(0)i j and the corresponding unit
eigenvector ei.

The results of all these preliminary computations are
used in the main stage of the algorithm.

7.4 Algorithm: main stage

Once the first stage is over, the main stage starts.

• First, we use an auxiliary algorithm – described
below – to check whether the above-mentioned
conditions are satisfied for α = 1. If they are
satisfied, we return α = 1 and stop.

• If the conditions are not satisfied for α = 1, we
check whether they are satisfied for α = 0. If
they are not satisfied, then we ignore all the
fuzzy information as useless and use only the
numerical values ãi j as described in the previ-
ous section.

• If the conditions are satisfied for α = 0 and not
satisfied for α = 1, then we set α = 0 and α = 1
and start iterations.

• On each iteration, we check whether the condi-
tion is satisfied for

αm =
α+α

2
.

– If the conditions are satisfied for αm, then
we replace α with αm, while keeping α
unchanged.

– If the conditions are not satisfied for αm,
then we replace α with αm while keeping
α unchanged.

• Iterations stop when α − α ≤ δ for a given δ
(e.g., for δ = 0.1). At this point, we return the
midpoint

αm =
α+α

2
as the desired value α.

7.5 Auxiliary algorithm

In this algorithm, we are also given a number α, and
we want to check whether the conditions are satisfied
for this α.

• First, we check whether for all (i, j)∈ S∩X , we
have

a−i j(α)≤ ei j ≤ a+i j(α).

If at least one of these inequalities is not satis-
fied, we stop the auxiliary algorithm and con-
clude that the conditions are not satisfied for
this α.

• If all the above inequalities are satisfied and
λ ≥ 0, we conclude that both conditions are sat-
isfied.

• If all double inequalities are satisfied but λ < 0,
then for all (i, j) ̸∈ S for which i ̸= j, we com-
pute the following value vi j:

– when sign(ei) · sign(e j)> 0, we take

vi j = a+i j(α)− ãi j;

– when sign(ei) · sign(e j)< 0, we take

vi j = ãi j −a−i j(α).

13



• Then, we check whether

∑
(i, j) ̸∈S& i̸= j

vi j · |ei| · |e j| ≥ |λ|.

– If this inequality is satisfied, we conclude
that both conditions are satisfied for the
given α.

– If this inequality is not satisfied, we con-
clude that at least one of the conditions is
not satisfied for the given α.

8 Numerical Example

Let us illustrate our algorithm on a simple numeri-
cal expert estimate. We assume that in a variability
quantification the following correlation matrix a(0)i j
has been derived from expert estimates: 1 0.6 −0.6

0.6 1 0.6
−0.6 0.6 1


.

The eigenvalues λk are as follows:−0.2
1.6
1.6


.

Because there is one negative eigenvalue λ = −0.2,
the correlation matrix is not non-negative definite.

The corresponding eigenvector ei is:

− 1√
3

1√
3

− 1√
3


.

Using the provided algorithms to generate the closest
non-negative definite correlation matrix, the smallest
possible change for all elements of ai j is

ε =
|λ|
S0

=
|λ|(

n
∑

i=1
|ei|
)2

−
n
∑

i=1
e2

i

= 0.1.

Via the changes

∆ai j = ε · sign(ei) · sign(e j),

the mathematically valid non-negative definite corre-
lation matrix is then obtained:

ai j =

 1 0.5 −0.5
0.5 1 0.5
−0.5 0.5 1


.

Now the eigenvalues are: 0
1.5
1.5


.

All eigenvalues are equal to or larger than 0, hence
we double-checked that the correlation matrix is
non-negative definite after the conversion, with the
largest diversion of the expert’s estimates ε = 0.1.

9 What If We Take Into Account
that Empirical Correlations Are
Also Only Approximately Known:
Analysis of the Problem

In the previous text, we ignored the fact that empir-
ical estimates are also only approximately known.
Let us see what needs to be modified if we take this
uncertainty into account.
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9.1 Formulation of the Problem

For each empirical value ei j, we can determine –
based on the sample size – the standard deviation σi j

of this approximate estimate; see, e.g., [12]. Asymp-
totically, the difference ai j − ei j between the actual
correlation ai j and its empirical estimate ei j is nor-
mally distributed, with 0 mean. Thus:

• each ratio
ai j − ei j

σi j
is distributed according to

the standard normal distribution – with 0 mean
and standard deviation 1;

• therefore, the sum of the squares of these ratios
is distributed according to the chi-square dis-
tribution χ2

n−1 with n− 1 degrees of freedom,
where n is the number of pairs (i, j) for which
we know the empirical correlation; see, e.g.,
[12].

So, for any desired degree of confidence 1−α (with
α > 0 small), we can conclude that

∑
i, j:(i, j)∈S

(ai j − ei j)
2

σ2
i j

≤ χ2
n−1,1−α, (2)

where χ2
n−1,1−α is the (1−α)-th quantile of the cor-

responding chi-square distribution, i.e., the value for
which, for the corresponding random variable χ2

n−1,
we have Prob(χ2 ≤ χ2

n−1,1−α) = 1−α.
So, we arrive at the following problem: find the

smallest possible value ε > 0 for which there exists a
non-negative definite matrix ai j such that:

• aii = 1 for all i,

• |ãi j −ai j| ≤ ε for all (i, j) ∈ X , and

• ∑
i, j:(i, j)∈S

(ai j − ei j)
2

σ2
i, j

≤ χ2
n−1,1−α.

9.2 Analysis of the problem

As before, since empirical correlations are more ac-
curate than expert estimates, in the first approxima-
tion, we take the values ei j whenever they are avail-
able, i.e., we take:

• a(0)i j = ei j for (i, j) ∈ S and

• a(0)i j = ãi j for all other pairs (i, j).

The resulting matrix a(0)i j can then be used to find
the corresponding eigenvalues. If there are negative
eigenvalues, then, as before, we denote:

• the smallest of these eigenvalues by λ, and

• the corresponding unit eigenvector by ei.

Then, we need to find the values ∆ai j for which
ai j = a(0)i j +∆ai j. In these terms, as we have shown,
the requirement that the resulting matrix ai j be non-
negative definite can be described by formula (1).

So, among all the values ∆ai j that satisfy formulas
(1) and

∑
i, j:(i, j)∈S

(∆ai j)
2

σ2
i j

≤ χ2
n−1,1−α, (2a),

we want to find the ones for which the maximum
max

i, j
|∆ai j| is as small as possible.

Since the empirical estimates are much more ac-
curate than expert estimates, the values ∆ai j that cor-
respond to the pairs (i, j) ∈ S (for which we know
the empirical correlations) are much smaller than
other values ∆ai j. Thus, for these pairs, we should
not worry about increasing the overall maximum
max

i, j
|∆ai j|. Hence, we should select the correspond-

ing values ∆ai j from the condition that these values
contribute as much as possible to the desired sum
∑
i, j

∆ai j · ei · e j.
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So, we arrive at the following auxiliary problem:
maximize the sum ∑

i, j:(i, j)∈S
∆ai j ·ei ·e j under the con-

dition (2a). If in (2a), we have strict inequality, then
we can multiply all involved terms ∆ai j by the same
constant, thus we will keep the inequality (2a) and
increase the contribution to the sum (1). So, the max-
imum cannot be attained in the case of strict inequal-
ity. Thus, when the contribution is maximized, the
inequality (2a) becomes equality.

So, we can reformulate our auxiliary problem as
follows: maximize the sum ∑

i, j:(i, j)∈S
∆ai j ·ei ·e j under

the constraint

∑
i, j:(i, j)∈S

(∆ai j)
2

σ2
i j

= χ2
n−1,1−α. (2b)

By using the Lagrange multiplier method, we can re-
duce this constraint optimization problem to the fol-
lowing unconstrained one: maximize the expression

∑
i, j:(i, j)∈S

∆ai j · ei · e j+

µ ·

(
∑

i, j:(i, j)∈S

(∆ai j)
2

σ2
i, j

−χ2
n−1,1−α

)
,

for some Lagrange multiplier µ (that needs to be de-
termined so as to satisfy the condition (2b)).

Differentiating the above expression by ∆ai j and
equating the derivative to 0, we conclude that

ei · e j +2µ ·
∆ai j

σ2
i j

= 0,

hence
∆ai j = ν · ei · e j ·σ2

i j,

where we denoted ν def
= − 1

2λ
. Substituting this ex-

pression for ∆ai j into the formula (2b), we conclude
that

∑
i, j:(i, j)∈S

ν2 · e2
i · e2

j ·σ2
i j = χ2

n−1,1−α,

hence

ν =

√√√√√ χ2
n−1,1−α

∑
i, j:(i, j)∈S

e2
i · e2

j ·σ2
i j
.

The resulting contribution to the sum (1) takes the
form

∑
i, j:(i, j)∈S

∆ai j · ei · e j = ν · ∑
i, j:(i, j)∈S

e2
i · e2

j ·σ2
i j.

Substituting the expression for ν into this formula,
we conclude that

ν0
def
= ∑

i, j:(i, j)∈S
∆ai j · ei · e j =

√
χ2

n−1,1−α ·
√

∑
i, j:(i, j)∈S

e2
i · e2

j ·σ2
i j.

So, for all other values ∆i j, there remains the differ-

ence
|λ|
S0

− ν0. We already know how to optimize

this sum. So, we arrive at the following modified
algorithm.

10 What If We Take Into Ac-
count that Empirical Correla-
tions Are Also Only Approxi-
mately Known: Resulting Algo-
rithm

In this section, we describe the resulting algorithm.

10.1 What is given

• For some pairs (i, j), we are given the values ei j

of the empirical correlations. For each of these
pairs, we also know the standard deviation σi j

of the corresponding estimate. The set of all
such pairs is denoted by S.
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• For some pairs (i, j), we are given the expert
estimates ãi j of the correlations. The set of all
such pairs will be denoted by X .

We assume that for every pair of different indices, we
have either an empirical value or an expert estimate
(or both).

10.2 What we want to estimate

We want to estimate the accuracy of the expert esti-
mates, i.e., the smallest ε for which we can change
the estimates ãi j by no more than ε and get a non-
negative definite correlation matrix.

10.3 Cases

We consider two possible cases:

• the case when S∩X = /0, i.e., when for every
pair, we have either an empirical correlation or
an expert estimate, but not both; and

• the case when S∩X ̸= /0, when for some pairs,
we have both the empirical value of the correla-
tion and the expert estimate.

In the first case, we will specifically consider the sub-
case when S = /0, i.e., when we have no empirical
correlation values, only expert estimates.

10.4 Algorithm

1. Let us form a matrix a(0)i j as follows:

• for i = j, we take a(0)i j = 1,

• for (i, j) ∈ S, we take a(0)i j = ei j, and

• for (i, j) ̸∈ S and i ̸= j, we take a(0)i j = ãi j.

2. For the matrix a(0)i j , we compute the small-
est eigenvalue λ. The following actions depend on
whether this smallest eigenvalue is non-negative or
negative.

2.1. If λ ≥ 0, then the matrix a(0)i j is already non-
negative definite.

2.1.1. In the first case, when S∩X = /0, this means
we cannot make any conclusions about the accuracy
of the expert estimates: it could be that the expert
estimates are exact.

2.1.2. In the second case, when S∩X ̸= /0, as an es-
timate for expert accuracy, we take the largest differ-
ence between the expert estimates and the empirical
correlations:

ε = max
(i, j)∈S∩X

|ãi j − ei j|.

2.2. If λ < 0, then we compute the corresponding
unit eigenvector ei, and then we compute the value

S0 = ∑
(i, j)̸∈S& i ̸= j

|ei| · |e j|.

When S = /0, we can compute S0 by using a simpli-
fied formula

S0 =

(
n

∑
i=1

|ei|

)2

−
n

∑
i=1

e2
i .

We also compute the value

ν0 =
√

χ2
n−1,1−α ·

√
∑

i, j:(i, j)∈S
e2

i · e2
j ·σ2

i j,

where n is the number of pairs in S, and 1−α is the
desired degree of confidence.

The resulting estimate for ε depends on the case.
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2.2.1. In the first case, when S∩X = /0, we take

ε =
|λ|
S0

−ν0.

2.2.2. In the second case, when S∩X ̸= /0, we take

ε = max
(
|λ|
S0

−ν0, max
(i, j)∈S∩X

|ãi j − ei j|
)
.

Comment. Similar to the previous case, we can natu-
rally extend this algorithm to the fuzzy case by con-
sidering the corresponding α-cuts.

Conclusion

In this paper, the uncertainty of the expert-estimated
correlation is quantified, in a way of satisfying
the mathematical meaning of a valid correlation
matrix—being non-negative definite. We provide al-
gorithms to generate a valid correlation matrix out of
an invalid one. For the fuzzy situation, we provide
algorithms to give the narrowest interval (with the
given confidence) containing a non-negative definite
correlation matrix.
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