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Abstract We show that taking into account interval and fuzzy uncertainty can lead
to more adequate statistical estimates.

1 Formulation of the Problem: Traditional Statistical Approach
to Data Processing Is Not Always Applicable

Data processing: a brief reminder. Some quantities, we can directly measure. For
example, on the Earth, we can usually directly measure the distance between the
two nearby points.

However, many other quantities X j we cannot measure directly. For example, we
cannot directly measure the spatial coordinates. To estimate such quantities X j, we
measure them indirectly, i.e.:

• we measure easier-to-measure quantities Y1, . . . ,Ym
• which are connected to X j in a known way: Yi = fi(X1, . . . ,Xn) for known func-

tions fi(X1, . . . ,Xn),

and then we reconstruct the values X j of the desired quantities from the measure-
ment results:

• we know the results Ỹi of measuring Yi;
• we want to estimate the desired quantities X j.
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This reconstruction is what is often understood by data processing.

Example. Suppose that we want to measure coordinates X j of an object. For this
purpose, we measure the distance Yi between this object and objects with known

coordinates X (i)
j : Yi =

√
3
∑
j=1

(X j−X (i)
j )2, and then reconstruct the coordinates based

on the measured values of these distances. This is how, e.g., GPS works – by esti-
mating the distances from the given location to satellites whose positions are known
with high accuracy.

Sometimes, measurement results also depend on additional factors of no inter-
est to us. Sometimes, the measurement results also depend on auxiliary factors of
no direct interest to us.

For example, the time delays used to measure distances depend not only on the
distance, but also on the amount of H20 in the troposphere and on the sensors’ time
offset.

In such situations, we can add these auxiliary quantities to the list X j of the un-
knowns. We may also use the result Yi of additional measurements of these auxiliary
quantities.

Usually, linearization is possible. In most practical situations, we know the ap-
proximate values X (0)

j of the desired quantities X j.
For example, in geodesy, we want to find the coordinates X j of different locations.

We do not know the exact values of these coordinates, but we usually know the
approximate location X (0)

j that was obtained by previous measurements. Our goal is
then to use the measurement results Ỹi to come up with more accurate estimates for
X j.

These approximations are usually reasonably good, in the sense that the differ-
ence x j

def
= X j−X (0)

j are small. In terms of x j, we have

Yi = f (X (0)
1 + x1, . . . ,X

(0)
n + xn).

For a good approximation, we can safely ignore terms quadratic in x j. Indeed,
even if the estimation accuracy is 10% (0.1), its square is 1%, which is much smaller
than 10%.

We can thus expand the dependence of Yi on x j in Taylor series and keep only
linear terms:

Yi = Y (0)
i +

n

∑
j=1

ai j · x j, where Y (0)
i

def
= fi(X

(0)
1 , . . . ,X (0)

n ), ai j
def
=

∂ fi

∂X j
.

By moving the value Y (0)
i to the other side of this formula, we conclude that

Yi−Y (0)
i =

n

∑
j=1

ai j · x j.
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Here, we know the values ai j – they are obtained by differentiating the known func-
tions fi(X1, . . . ,Xn). We also know the value Y (0)

i – we compute each of these values
by applying the known function fi(X1, . . . ,Xn) to the known approximate values
X (0)

j values that we knew before the measurements). We do not, however, know the
exact value Yj of the corresponding quantity. Instead, as a result of measuring this
quantity, we get the measurement result Ỹj ≈Yj. Since Ỹj ≈Yj, the known difference

yi
def
= Ỹi−Y (0)

i is approximately equal to Yi−Y (0)
i , and thus, approximately equal to

the sum
n
∑
j=1

ai j · x j.

Thus, to find the unknowns x j, we need to solve a system of approximate linear

equations
n
∑
j=1

ai j · x j ≈ yi, with known values yi and ai j.

The Least Squares approach. Usually, it is assumed that each measurement error
is normally distributed with 0 mean (and known standard deviation σi).

The distribution is indeed often normal; see, e.g., [10, 11]. Indeed, the measure-
ment error is usually a joint result of many independent factors, and the distribution
of the sum of many small independent errors is close to Gaussian (this result is
known as the Central Limit Theorem; see, e.g., [13]).

The assumption that the mean value of the measurement error is 0 also makes
sense: we calibrate the measuring instrument by comparing it with a more accurate,
so if there was a bias (non-zero mean), we delete it by re-calibrating the scale.

It is also assumed that measurement errors of different measurements are inde-
pendent. In this case, under the Gaussian assumption, for each possible combination
x = (x1, . . . ,xn), the probability of observing y1, . . . ,ym is equal to:

m

∏
i=1


1√

2π ·σi
· exp

−
(

yi−
n
∑
j=1

ai j · x j

)2

2σ2
i



 .

It is reasonable to select x j for which this probability is the largest, i.e., equivalently,
for which

n

∑
i=1

(
yi−

n
∑
j=1

ai j · x j

)2

σ2
i

→min .

(This natural idea is known as the Maximum Likelihood approach.) The set S of all
possible combinations x – known as the confidence set – has the following form,
where χ2 is the value of the chi-square statistic corresponding to the probability α

of the false alarm ([13]):
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S =


x :

n

∑
i=1

(
yi−

n
∑
j=1

ai j · x j

)2

σ2
i

≤ χ
2
m−n,α


.

Comment. If this set S is empty, this means that some measurements are outliers.

A simple example. Suppose that we have m measurements y1, . . . ,ym of the same
quantity x1, with 0 mean and standard deviation σi. Then, the least squares estimate
for x1 is

x̂1 =

m
∑

i=1
σ
−2
i · yi

m
∑

i=1
σ
−2
i

.

The accuracy (standard deviation) of this estimate is σ2[x1] =
1

m
∑

i=1
σ
−2
i

.

In particular, for σ1 = . . .= σm = σ , we get

x̂1 =
y1 + . . .+ ym

m
, with σ [x1] =

σ√
m
.

The Least Squares approach is not always applicable. While in many practical
situations, the Least Squares approach has been very successful, there are cases
when the Least Squares approach is not applicable.

The first case is when we use the most accurate measuring instruments. In this
case, we don’t have any more accurate instrument that we could use for calibration.
So, we do no know the mean, and we do not know the distribution.

The second case is when we have a large number of measurements. If we simply
measure the same quantity m times, we get an estimate (average) with accuracy

σ√
m
. So, if we, e.g., use GPS with 1 m accuracy million times, we can get 1 mm

accuracy, then microns etc. This makes no physical sense.
The explanation for this is simple. When we calibrate, we guarantee that the

systematic error (mean) is much smaller than the random error. However, when we
repeat measurements – and take the average – we decrease random error, while the
systematic error does not decrease. So, the systematic error becomes larger than the
remaining random error.

What we do in this paper. In this paper, we consider these two cases one by one,
and we show that in both cases, interval and fuzzy approaches can help make statis-
tical estimates more adequate.
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2 Case When We Do Not Know the Distributions: Enter Interval
and Fuzzy Uncertainties

What do we know: a question. Let us first consider the case when we do not know
the distribution of the measurement error. What do we know?

What do we know: case on interval uncertainty. In some such cases, we know the
upper bound ∆i on the i-th measurement error. Thus, based on the measured values

yi, we can conclude that the actual value of the quantity si
def
=

n
∑
j=1

ai j · x j (which is

approximately equal to yi) is in the interval yi
def
= [yi−∆i,yi +∆i]; see, e.g., [3, 7].

What do we know: case of fuzzy uncertainty. In other cases, we do not have a
guaranteed bound ∆i.

Instead, for each level of certainty p, we have a corresponding bound ∆i(p).

Thus, with certainty p, we can conclude that si ∈ yi(p) def
= [yi−∆i(p),yi +∆i(p)].

To get higher p, we need to enlarge the interval. Thus, we have a nested family
of intervals. Describing such a nested family of intervals is equivalent to describing
a fuzzy set with α-cuts yi(1−α); see, e.g., [5, 9, 16].

How to process interval uncertainty. For different yi ∈ yi, we get different values
x j. The largest possible value x j can be obtained by solving the following linear
programming problem:

x j→max under constraints yi−∆i ≤
n

∑
k=1

aik · xk ≤ yi +∆i.

The smallest possible value x j can be obtained by minimizing x j under the same
constraints.

There exist efficient algorithms for solving linear programming problems (see,
e.g., [6]), we can use them.

In general, the set S of possible values x is a polyhedron determined by the above
inequalities.

A simple example. Suppose that we have m measurements y1, . . . ,ym of the same
quantity x1, with bounds ∆i. Then, based on each measurement i, we can conclude
that x1 ∈ [yi−∆i,yi+∆i]. Thus, based on all m measurements, we can conclude that
x1 belongs to the intersection of these m intervals:

m⋂
i=1

[yi−∆i,yi +∆i] =

[
max

1≤i≤n
(yi−∆i), min

1≤i≤n
(yi +∆i)

]
.

The more measurements, the narrower the resulting interval.
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Comment. If the intersection is empty – or, more generally, if there are no values x j

for which
n
∑
j=1

ai j ·x j ∈ yi for all i – this means that some of the measurement results

are actually outliers; see, e.g., [14].

How to process fuzzy uncertainty. In the fuzzy case, we need to repeat the same
interval-related computation for each p, and get bounds x j(p) and x j(p) for each p.
The resulting nested intervals form a fuzzy set of possible values of x j.

In general, how do we describe the set S of possible values of x? In the first
approximation, we find the intervals [x j,x j]. Then, we can conclude that x =
(x1, . . . ,xn) belongs to the box [x1,x1]× . . .× [xn,xn].

Often, not all combinations from the box are possible. To get a better description
of the set S, we can also find the maximum and the minimum of the values

n

∑
i=1

αi · xi, with αi ∈ {−1,1}.

For example, for n = 2 (e.g., for localizing a point in the plane), we also find the
bounds on s1

def
= x1 + x2 and s2

def
= x1− x2. Using all these bounds leads to a better

description of the set S.
For example, for n = 2, we have bounds

x1 ≤ x1 ≤ x1, x2 ≤ x2 ≤ x2, s1 ≤ x1 + x2 ≤ s1, s2 ≤ x1− x2 ≤ s2.

If this description is not enough, we take values
n
∑

i=1
αi · xi, with αi ∈ {−1,0,1}

or, more generally, with:

αi ∈
{
−1,−1+

2
M
,−1+

4
M
, . . . ,1− 2

M
,1
}

for M = 1,2, . . .

Additional constraints. In some practical situations, we also have additional con-
straints. For example, we can have bounds on the amount of water in the tropo-
sphere.

From the computational viewpoint, dealing with these additional constraints is
easy: we simply add these additional constraints xk ≤ xk ≤ xk to the list of constraints
under which we optimize x j.

Comment. Alternatively, we can use zonotopes to describe the set of all possible
vectors x = (x1, . . . ,xn); see, e.g., [15].
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3 Case When We Need to Take into Account Systematic Error

Reminder. In the traditional approach, we assume that yi =
n
∑
j=1

ai j · x j + ei, where

the measurement error ei has 0 mean.
Sometimes, in addition to the random error er

i
def
= ei−E[ei] with 0 mean, we also

have a systematic error es
i

def
= E[ei]: yi =

n
∑
j=1

ai j · x j + er
i + es

i .

What do we know about the systematic error: interval and fuzzy cases. Some-
times, we know the upper bound ∆i on the systematic error: |es

i | ≤ ∆i.
In other cases, we have different bounds ∆i(p) corresponding to different degree

of confidence p.

What do we want? Based on all this information, what can we then say about x j?

Our main idea. If we knew the values es
i , then we would conclude that for

er
i = yi−

n

∑
j=1

ai j · x j− es
i ,

we have

m

∑
i=1

(er
i )

2

σ2
i

=
m

∑
i=1

(
yi−

n
∑
j=1

ai j · x j− es
i

)2

σ2
i

≤ χ
2
m−n,α .

In practice, we do not know the values es
i , we only know that these values are in the

interval [−∆i,∆i]. Thus, we know that the above inequality holds for some values
es

1, . . . ,e
s
m for which es

i ∈ [−∆i,∆i].
The above condition is equivalent to v(x)≤ χ2

m−n,α , where we denoted

v(x) def
= min

es
i∈[−∆i,∆i]

m

∑
i=1

(
yi−

n
∑
j=1

ai j · x j− es
i

)2

σ2
i

.

So, the set Sα of all combinations X = (x1, . . . ,xn) which are possible with con-
fidence 1−α has the following form: Sα = {x : v(x)≤ χ2

m−n,α}.
The range of possible values of x j can be obtained by maximizing and minimiz-

ing x j under the constraint v(x)≤ χ2
m−n,α . (In the fuzzy case, we have to repeat the

computations for every p.)

How to check consistency. We want to make sure that the measurements are con-
sistent – i.e., that there are no outliers. This means that we want to check that there
exists some x = (x1, . . . ,xn) for which v(x)≤ χ2

m−n,α .
This condition is equivalent to
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v def
= min

x
v(x) = min

x
min

es
i∈[−∆i,∆i]

m

∑
i=1

(
yi−

n
∑
j=1

ai j · x j− es
i

)2

σ2
i

≤ χ
2
m−n,α .

This is indeed a generalization of probabilistic and interval approaches. In the
case when ∆i = 0 for all i, i.e., when there is no interval uncertainty, we get the usual
Least Squares.

Vice versa, for very small σi, we get the case of pure interval uncertainty. In this
case, the above formulas tend to the set of all the values for which∣∣∣∣∣yi−

n

∑
j=1

ai j · x j

∣∣∣∣∣≤ ∆i.

For example, for m repeated measurements of the same quantity, we get the inter-
section of the corresponding intervals.

So, the new idea is indeed a generalization of the known probabilistic and interval
approaches.

From formulas to computations. The expression

(
yi−

n
∑
j=1

ai j · x j− es
i

)2

is a con-

vex function of x j.
The domain of possible values of es = (es

1, . . . ,e
s
m) is also convex: it is the box

[−∆1,∆1]× . . .× [−∆m,∆m].

There exist efficient algorithms for computing minima of convex functions over
convex domains; see, e.g., [1, 8]. These algorithms also compute locations where
these minima are attained. Thus, for every x, we can efficiently compute v(x) and
thus, efficiently check whether v(x)≤ χ2

m−n,α .

Similarly, we can efficiently compute v and thus, check whether v≤ χ2
m−n,α (i.e.,

whether the measurement results are consistent or we have outliers).
The set Sα is convex. We can approximate the set Sα by:

• taking a grid G,
• checking, for each x ∈ G, whether v(x)≤ χ2

m−n,α , and
• taking the convex hull of “possible” points.

We can also efficiently find the minimum x j of x j over x ∈ Sα . By computing the
minimum of the linear function −x j, we can thus efficiently compute the largest
possible values x j of x j over x ∈ Sα .
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4 Discussion

But where do we get the bounds on systematic errors? The above algorithms
require that we have some bounds on the systematic error component. But where
can we get these bounds?

To answer this question, let’s recall that we get σi from calibration. In the process
of calibration, we also get an estimate for the bias, and we use this estimate to re-
calibrate our instrument – so that its bias will be 0. If we could estimate the bias
more accurately, we would have eliminated it too. So, where do the bounds ∆i come
from?

The answer is simple: after the calibration, we get an estimate for the bias, but
this numerical estimate is only approximate. From the same calibration experiment,
we can extract not only this estimate b, but also the confidence interval [b,b] which
contains b with given confidence.

After we use the numerical estimate b to re-scale, the remaining bias is – with
given confidence – in the interval [b− b,b− b]. This is where the corresponding
bound ∆i comes from: it is simply the largest possible value from this interval, i.e.,

∆i = max(b−b,b−b).

Relation to uniform distributions: caution is needed. Usually, in probability the-
ory, if we do not know the exact distribution, then out of possible distributions,
we select the one with the largest entropy −

∫
ρ(x) · ln(ρ(x))dx, where ρ(x) is the

corresponding probability density function; see, e.g., [4].
In particular, if we only know that the random variable is located somewhere

on the interval [−∆i,∆i], then the Maximum Entropy approach leads to a uniform
distribution on this interval.

If a random variable η (corresponding to random error component) is distributed
with the probability density function ρ(x), then the sum of η and an m-dimensional
uniform distribution has the density ρ ′(x) = max

es
i∈[−∆i,∆i]

ρ(x− es). For this distribu-

tion, the maximum likelihood method ρ ′(x) → max is equivalent to minimizing
− ln(ρ ′(x))→min, where − ln(ρ ′(x)) = min

es
i∈[−∆i,∆i]

(− ln(ρ(x− es)).

In particular, for the normal distribution with 0 mean,

− ln(ρ(x)) = const+
1
2
·

m

∑
i=1

(er
i )

2

σ2
i

.

Thus, the maximum likelihood approach ρ ′(x)→max leads to

min
es

i∈[−∆i,∆i]

m

∑
i=1

(
yi−

n
∑
j=1

ai j · x j− es
i

)2

σ2
i

→min .
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The minimized expression is exactly our v(x).
Does this means that we can safely assume that the systematic error is uniformly

distributed on [−∆i,∆i]? This is, e.g., what International Organization for Standard-
ization (ISO) suggests; see [2, 12]. Our answer is: not always.

Indeed, e.g., for the sum s = x1+ . . .+xm of m such errors with ∆i = ∆ all we can
say is that s belongs to the interval [−m ·∆ ,m ·∆ ]. All the values from this interval
are clearly possible.

However, if we assume uniform distributions, then, for large m, due to the Cen-
tral Limit Theorem, the sum s is practically normally distributed, with 0 mean and
standard deviation proportional to

√
m ·σ .

So, with very high confidence, we can conclude that |s| ≤ const · (
√

m ·σ). For
large m, this bound is much smaller than m ·σ and is, thus, a severe underestimation
of the possible error.

Our conclusion is that in some calculations, we can use MaxEnt and uniform
distributions, but not always. In other words, we must be cautious.
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