
Simplest Polynomial for Which Naive

(Straightforward) Interval Computations Cannot

Be Exact

Olga Kosheleva1, Vladik Kreinovich1, and Songsak Sriboonchitta2
1University of Texas at El Paso

El Paso, TX 79968, USA
olgak@utep.edu, vladik@utep.edu

2Faculty of Economics, Chiang Mai University
Chiang Mai, Thailand, songsakecon@gmail.com

Abstract

One of the main problem of interval computations is computing the
range of a given function over given intervals. It is known that naive
interval computations always provide an enclosure for the desired range.
Sometimes – e.g., for single use expressions – naive interval computations
compute the exact range. Sometimes, we do not get the exact range
when we apply naive interval computations to the original expression,
but we get the exact range if we apply naive interval computations to
an equivalent reformulation of the original expression. For some other
functions – including some polynomials – we do not get the exact range
no matter how we reformulate the original expression. In this paper,
we are looking for the simplest of such polynomials – simplest in several
reasonable senses: that it depends on the smallest possible number of
variables, that it has the smallest possible number of monomials, that it
has the smallest degree, etc. We then prove that among all polynomials
for which naive interval computations cannot be exact, there exists a
polynomial which is the simplest in all these senses.

1 Formulation of the Problem

Interval computations and naive (straightforward) interval computa-
tions: a brief reminder. In many practical situations, we know an algorithm
y = f(x1, . . . , xn) that relates the desired quantity y with several other quanti-
ties x1, . . . , xn, and for each xi, we know the interval [xi, xi] that is guaranteed
to contain the actual (unknown) value of this quantity. In this case, the only
thing that we can conclude about the value of y is that this value belongs to

1



the range

[y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

The problem of computing this range based on the known values xi and xi is
known as the problem of interval computations; see, e.g., [2, 3].

For arithmetic operations such as f(x1, x2) = x1 ± x2, the range is easy to
compute:

• for the sum, the range is [y, y] = [x1 + x2, x1 + x2];

• for the difference, the range is [y, y] = [x1 − x2, x1 − x2];

• for the product, the range is [y, y] =

[min(x1 · x2, x1 · x2, x1 · x2, x1 · x2),max(x1 · x2, x1 · x2, x1 · x2, x1 · x2)];

• the ratio can be obtained as x1/x2 = x1 · (1/x2), and for y(x1) = 1/x1,
the range is also easy to compute: [y, y] = [1/x1, 1/x1] (of course, this is
only true if 0 6∈ [x1, x1]).

To these operations, we can also easily add min and max:

• for f(x1, x2) = min(x1, x2), the range if [y, y] = [min(x1, x2),min(x1, x2)];

• for f(x1, x2) = max(x1, x2), the range if [y, y] = [max(x1, x2),max(x1, x2)].

These formulas of interval arithmetic can be used to find the following
enclosure [Y , Y ] ⊇ [y, y] for the range [y, y] corresponding to any algorithm
f(x1, . . . , xn):

• first, we parse the algorithm f(x1, . . . , xn), i.e., represent it as a sequence
(i.e., composition) of elementary arithmetic operations;

• then, we replace each operation in this sequence by the corresponding
operation of interval arithmetic.

This way of computing the enclosure is known as naive or straightforward inter-
val computation.

As an example, let us consider the problem of finding the range of the func-
tion f(x1) = x1 · (1 − x1) on the interval [x1, x1] = [0, 1]. To compute this
expression, we first compute the intermediate result r = 1− x1, and then com-
pute y as x1 · r.

• For the first operation, interval arithmetic leads to

[r, r] = 1− [0, 1] = [1, 1]− [0, 1] = [1− 1, 1− 0] = [0, 1].

• For the second operation, we then get an enclosure [0, 1] · [0, 1] = [0, 1]
that contains in the actual range [0, 0.25].

2



This example is typical: by using naive interval computations, we usually get
an enclosure with a large “excess width” – i.e., with a large difference between
the enclosure and the actual range. As a result, naive interval computations are
not used to solve serious interval computation problems: much more efficient
interval computations algorithms are known [2, 3]. However, it is still useful to
study naive interval computations, since most of the modern interval computa-
tions algorithms, no matter how many sophisticated ideas they utilize, still use
naive interval computations at some stage.

Sometimes, we can get the exact range by applying naive interval
computations either to the original expression or to its equivalent re-
formulation. Sometimes, naive interval computations lead to the exact range:
e.g., when we have an single-use expression, i.e., an algebraic expression in which
each variable occurs only once, such as x1 · (x2 + 2).

In other cases, we can get the exact results if we first transform the original
expression into an equivalent form, and then apply naive interval computations

to this equivalent form. For example, for the expression
x1

x1 + x2
, naive interval

computations lead to excess width, but if we transform it into an equivalent

single-use expression form
1

1 + x2/x1
, then we get the exact range.

Similarly, any quadratic expression of one variable a · x2
1 + b · x1 + c can

be represented as an equivalent single-use expression a · (x1 − p)2 + q, where

p = − b

2a
and q = c − b2

4a
. Thus, if we add the computation of the range of x2

1

to the list of interval arithmetic operations, then for the equivalent expression,
naive interval computations lead to the exact range.

Sometimes, naive interval computations do not lead to the exact range
no matter how we reformulate the function. In some other cases, however,
no matter what equivalent reformulation of the original expression we take, we
never get the exact range.

For the case when we are only allow the usual interval arithmetic operations
(no x2

1 operation), the existence of such functions was proven in [1]: namely, the
square x2

1 itself is one of such functions.
In general, even if we allow x2

1 (and, more generally, any smooth unary or
binary operation), there always exists a function of three variables for which
naive interval computations – even computations using exact results of addi-
tional binary operations – will never lead to the exact range; see, e.g., [4].

Natural question: which is the simplest such function? If we do not
allow x2

1 in our list of interval arithmetic operations, then already f(x1) = x2
1 is

the simplest function for which naive naive interval computations cannot lead
to the exact range.

But what if we add computing the range of x2
1 – and of xn

1 for any natural
number n – to the list of allowed operations of interval arithmetic? This is easy
to do since for odd n, the range of xn

1 is simply [y, y] = [xn
1 , x

n
1 ], while for even

n, we also have a simple formula for the range [y, y]:

3



• [y, y] = [x2
1, (x1)2] when 0 ≤ x1;

• [y, y] = [(x1)2, x2
1] when x1 ≤ 0, and

• [y, y] = [0,max(x2
1, (x1)2)] when x1 < 0 < x1.

We can add explicit ranges for other operations.
What will then be the simplest function f(x1, . . . , xn) for which naive interval

computations do not always lead to an exact range?

What we do in this paper. In this paper, we formalize this question and
then answer this question by providing an example of such simplest function.

2 Towards a Formal Description of the Problem

What we need to formalize. To describe the above question in precise terms,
we need to formally describe two things:

• that for a function, naive interval computations cannot be exact, and

• that one function is simpler than another function.

What does it mean that for a function, naive interval computations
cannot be exact? The results of all operations of interval arithmetic – includ-
ing min, max, and raising to the n-th power – are either rational or piecewise-
rational functions of the inputs xi and xi. Thus, when we use naive interval
computations to compute the range of a function, the resulting dependence of
y and y is a composition of piecewise rational functions.

In principle, we can add other operations, but it make sense to assume that
for all the operations we add, the dependence of the resulting range on the inputs
is piecewise rational. Therefore, this is what we will mean by naive interval
computations: representing a function as a composition of several functions for
each of which the endpoints of the range are piecewise rational functions of the
inputs xi and xi.

When is one function simpler than another function? In this paper, we
limit ourselves to polynomials – functions that be represented as compositions
of addition, subtraction, and multiplication. There can be several comparisons
between polynomials:

• if one polynomial depends on fewer variable than another one, then it is
simpler;

• if one polynomial consists of fewer monomials that the other one, then
this polynomial is simpler;

• if one polynomial has smaller overall degree, then it is simpler; and, finally,

• if two polynomials have the same degree, but one of them has fewer mono-
mial of the maximum degree, then this polynomial is simpler.

4



Of course, these criteria are different: e.g., according to the first criterion, the
polynomial x3

1 is simpler than x1 + x2, but according to the third criterion, the
linear polynomial x1 + x2 is simpler. What we will prove is that there exists a
polynomial which is the simplest in all these senses.

Now, we are ready to formally describe our problem.

3 Definitions and the Main Result

Definition 1. We say that a function f(x1, . . . , xn) is piecewise rational if
there exist rational functions R1(x1, . . . , xn), . . . , Rm(x1, . . . , xn), so that for
every combination x = (x1, . . . , xn), the value f(x1, . . . , xn) is equal to one of
the values Rj(x1, . . . , xn).

Comment. One can easily show that the composition of finitely many piecewise
rational functions is also piecewise rational.

Notation. For every function f(x1, . . . , xn), we denote

y(x1, x1, . . . , xn, xn)
def
= min{f(x1, . . . , xn) : x1 ≤ x1 ≤ x1, . . . , xn ≤ xn ≤ xn};

y(x1, x1, . . . , xn, xn)
def
= max{f(x1, . . . , xn) : x1 ≤ x1 ≤ x1, . . . , xn ≤ xn ≤ xn}.

Definition 2. We say that for a function f(x1, . . . , xn), naive interval com-
putation cannot be exact if for this function, at least one of the dependencies
y(x1, x1, . . . , xn, xn) and y(x1, x1, . . . , xn, xn) is not piecewise rational.

Comment. In this case, the range dependence cannot be described as a com-
position of piecewise rational functions. Since each step of naive interval com-
putation computes a piecewise rational function, this means that naive interval
computations cannot exactly compute this function’s range – no matter how we
reformulate the original expression.

Notation. Let us denote the class of all the polynomials for which naive interval
computations cannot be exact by P.

Proposition. There exists a polynomial f ∈ P for which:

• the number of variables is the smallest possible among all polynomials
from P;

• the number of monomials is the smallest possible among all polynomials
from P;

• the overall degree is the smallest possible among all polynomials from P;
and

• the number of monomials of the highest degree is the smallest possible
among all polynomials from P.

5



Comments.

• As the desired polynomial, we will take f(x1, x2) = x3
1 − x1 · x2. The

Proposition says that this polynomial is the simplest – in many reason-
able senses – among all polynomials for which naive interval computations
cannot be exact.

• The above example is not the only simplest polynomial: e.g., one can see
that a polynomial f(x1, x2) = x3

1 + x1 · x2 also has the same property (in
the proof, we just need to replace x2 ∈ [1, 3] with x2 ∈ [−3,−1]).

4 Proof

1◦. Let us first prove that for our polynomial f(x1, x2) = x3
1 − x1 · x2, the

dependence of the range on the endpoints is not piecewise rational.

Indeed, let us fix x1 = 0 and x1 = 1 and consider only the cases when the
x2-interval is degenerate, i.e., when x2 = x2 = x2 for some x2. Let us consider
the dependence of the lower endpoint y(x1, x1, x2, x2) = y(0, 1, x2, x2) of the
resulting range on x2 for values x2 from the interval [1, 3].

The value y(0, 1, x2, x2) is, by definition, the smallest value of the polynomial

P (x1) = x3
1−x1 ·x2 on the interval x1 ∈ [0, 1]. This minimum is attained either

at one of the endpoint x1 = 0 and x1 = 1, or at a point where the derivative is

equal to 0, i.e., where 3x2
1−x2 = 0. This equation has two solutions x±1 = ±

√
x2√
3

.

The negative solution x−1 is outside the interval [0, 1], but the positive solution
x+
1 is, for x2 ≤ 3, inside this interval.

Thus, y(0, 1, x2, x2) is the smallest of the three values: P (0) = 0, P (1) =
1− x2, and

P (x+
1 ) = P

(√
x2√
3

)
=

x2 ·
√
x2

3 ·
√

3
−
√
x2√
3
· x2 = −2

3
·
x2 ·
√
x2√

3
.

This smallest value is clearly smaller than 0, so the corresponding extremum
point x+

1 is a minimum. Thus, after this point x+
1 , the function P (x1) increases,

hence the value P (1) is larger than P (x+
1 ).

Therefore, the value P (x1) attains its minimum on the interval [0, 1] at the
point x+

1 , and the value of the corresponding minimum is

y(0, 1, x2, x2) = −2

3
·
x2 ·
√
x2√

3
.

This is clearly not a piecewise rational function. The statement is proven.

2◦. To complete the proof, we now need to prove that the above polynomial is
indeed the simplest among polynomials from the class P. To prove this, let us
consider the simplicity properties from the Proposition one by one.

6



2.1◦. Let us first prove that every polynomial f ∈ P depends on at least two
variables xi.

Indeed, a polynomial of one variable f(x1) is piecewise monotonic. Thus,
for each x1 and x1, the endpoints of the corresponding range are either the
polynomial values f(x1) and f(x1), or the constant values at the corresponding
minimum or maximum points. Thus, for functions of one variable, the range
is always a piecewise polynomial – hence piecewise rational – function of the
endpoints x1 and x1.

Therefore, to find a polynomial for which the range is not piecewise rational,
we need to consider polynomials which depend on at least two different variables
x1 and x2 (and maybe more).

Thus, our polynomial indeed has the smallest possible number of variables
among all polynomials from the class P.

2.2◦. Let us now prove that every polynomial f ∈ P has at least two monomials.

Indeed, every polynomial can be represented as a sum of monomials, i.e.,
products of the type a · xk1

1 · . . . · xkn
n . We included raising to the power to the

list of elementary arithmetic operations for which we allow the corresponding
interval arithmetic operations in our naive-interval computations.

Thus, in our setting, each monomial is a single-use expression for which
naive interval computations compute the exact range. Therefore, to find a
polynomial for which naive computations do not compute the exact range, we
need to consider polynomials that have at least two monomials.

Thus, our polynomial indeed has the smallest possible number of monomials
among all polynomials from the class P.

2.3◦. Let us now prove that every polynomial f ∈ P must be of degree at least 3.

Indeed, let us prove that for a quadratic polynomial f(x1, . . . , xn), the de-
pendence of y and y on the endpoints xi and xi is piecewise rational.

Let us denote the point at which the polynomial f(x1, . . . , xn) attains its
maximum value y on the given box

[x1, x1]× . . .× [xn, xn]

by xmax = (xmax
1 , . . . , xmax

n ). According to calculus, when the function attains
its maximum on the box then for each i:

• either the maximum is attained at one of the borderline values xmax
i = xi

or xmax
i = xi,

• or the maximum is attained for some value xmax
i inside the open interval

(xi, xi), in which case the partial derivative
∂f

∂xi |xi=xmax
i

should be equal

to 0.

7



The derivative of a quadratic function f(x1, . . . , xn) is a linear function. Thus,
in all three cases, the corresponding condition xmax

i = xi, xmax
i = xi, or

∂f

∂xi |xi=xmax
i

= 0 is a linear relation between the unknowns xmax
1 , . . . , xmax

n .

We have three possible equations for each of n variables xi. We must have
one of these three equations for each i. Thus, overall, we have 3n – a finite
number – of possible combinations of these equations, i.e., 3n possible systems
of linear equations that the actual maximum must satisfy.

Due to Cramer’s rule, the solution to a system of linear equations is a ratio-
nal function of all the coefficients. Thus, the values xmax

i piecewise-rationally
depend on xi and xi. Substituting these piecewise-rational values xmax

i into the
polynomial expression f(x1, . . . , xn), we conclude that for quadratic functions,
the resulting maximum

y(x1, x1, . . . , xn, xn) = f(xmax
1 , . . . , xmax

n )

is a piecewise rational functions of the inputs xi and xi.
Similarly, we can prove that for quadratic functions f(x1, . . . , xn), the lower

endpoint y of the corresponding range is also a piecewise rational function of
the inputs xi and xi.

Thus, to get a polynomial for which the dependence of the range on the
inputs xi and xi is not piecewise rational, we need to make sure that at least
one of the monomials in this polynomial has an overall degree at least 3.

Hence, our polynomial indeed has the smallest possible overall degree num-
ber among all polynomials from the class P.

2.4◦. Finally, one can easily see that our polynomial has the smallest possible
number of monomials of the highest degree – namely, one – among all polyno-
mials from the class P.

Thus, among all polynomials from the class P, our polynomial is indeed the
simplest possible. The proposition is proven.

Acknowledgments

We acknowledge the partial support of the Center of Excellence in Economet-
rics, Faculty of Economics, Chiang Mai University, Thailand. This work was
also supported in part by the National Science Foundation grant HRD-1242122
(Cyber-ShARE Center of Excellence).

References

[1] P. Hertling, “A lower bound for range enclosure in interval arithmetic”,
Theoretical Computer Science, 2002, Vol. 279, No. 1–2, pp. 83–95.

[2] L. Jaulin, M. Kiefer, O. Dicrit, and E. Walter, Applied Interval Analysis,
Springer, London, 2001.

8



[3] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM, Philadelphia, 2009.

[4] H. T. Nguyen, V. Kreinovich, V. Nesterov, and M. Nakamura, “On hardware
support for interval computations and for soft computing: a theorem”, IEEE
Transactions on Fuzzy Systems, 1997, Vol. 5, No. 1, pp. 108–127.

9


