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Abstract

Privacy means that not everything about a person is known, that we
need to ask additional questions to get the full information about the
person. It therefore seems to reasonable to gauge the degree of privacy
in each situation by the average number of binary (“yes”-“no”) questions
that we need to ask to determine the full information – which is exactly
Shannon’s entropy. The problem with this idea is that it is possible, by
asking two binary questions – and thus, strictly speaking, getting only two
bits of information – to sometimes learn a large amount of information. In
this paper, we show that while entropy is not always an adequate measure
of the absolute loss of privacy, it is a good idea for gauging the average
loss of privacy. To properly evaluate different privacy-preserving schemes,
so also propose to supplement the average privacy loss with the standard
deviation of privacy loss – to see how much the actual privacy loss cab
deviate from its average value.

1 Formulation of the Problem

Statistical databases: tradeoff between privacy and benefits. Current
data mining techniques enable us to extract a lot of useful information from
data.

For example, by analyzing information about different medical patients –
what were the symptoms, what treatment was applied, what were the results
– we can uncover new dependencies and thus, potentially, come up with new
recommendations that would lead to a better cure. E.g., in situations where
there are two or more possible treatments, by taking into account the patients’
age, gender, ethnic origin, habits,, etc., we may be able to describe for which
patients which treatment is more promising.
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Similarly, by analyzing people’s reaction to different movies, books, or foods,
researchers have found unexpected correlations that enable them, based on the
user’s previous selections, to recommend new books (movies, foods, etc.) that
will be, with high probability, enjoyed by the user.

However, these benefits come at a price: to be able to achieve them, users
need to disclose a large amount of information that they would normally keep
private – e.g., details of their illnesses, their vices and habits. This information
can be potentially used to harm the person – e.g., insurance companies can
use information about a person’s health to increase the payments. companies
may want to fire people in imperfect health, etc. No matter how we try to
anonymize the data, if a database contain enough information about a person,
this information can often narrow the person down.

The more detailed information, the larger the benefits – but at the same
time the larger the corresponding loss of privacy. Then, the designers and users
of large databases must decide how much privacy they are willing to sacrifice to
get the corresponding benefits.

To maintain an appropriate tradeoff, we need to be able to gauge
privacy and benefits. To be able to formulate the corresponding problem in
precise terms, it is necessary to be able to gauge both the loss of privacy and
the corresponding gains.

Benefits are the easiest to gauge: simply by asking how much money the
user is willing to pay for the corresponding benefit. The monetary equivalents
of different benefits have been used in economics, in particular, in economics of
medicine and in economics of entertainment.

In contrast, gauging loss of privacy is not easy. Most people have a good
understanding how much they are willing to pay to improve their health or to
watch a good movie, but they do not have a good feeling for a loss of privacy:
in contrast to health and entertainment, the amount of money that people are
willing to pay for a certain loss of privacy varies widely.

Since we cannot gauge the loss of privacy based on people’s reactions, it is
desirable to come up with an objective measure for a loss of privacy.

Entropy as a natural measure of the amount of information. Privacy
meas that an outsider is uncertain about the state of the person. Loss of privacy
means that this uncertainty decreases – and a complete loss of privacy means
that there is no uncertainty left, an outsider knows everything about the given
person. Thus, as a measure of privacy, it is reasonable to consider the amount of
uncertainty – i.e., the entropy of the corresponding distribution; see, e.g., [4, 7].

Entropy can be defined as the average number of binary (“yes”-“no”) ques-
tions that we need to ask to uniquely determine the alternative. If we have n
alternatives, and we do not the probability of each of these alternatives, then
the entropy is equal to S = log2(n): since after k questions, we have 2k possible
combinations of answers and thus, we can determine 2k different alternatives.

If we know the probability p(ai) of different alternatives a1, . . . , an, then the

entropy is equal to S = −
n∑

i=1

p(ai) · log2(p(ai)).
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Problem with using entropy to gauge privacy. At first glance, entropy
sounds like a reasonable measure of loss of privacy. However, it has a problem;
see, e.g., [1, 2]. For example, suppose that a person – e.g., a celebrity – wants
to hide her address. We know that she lives in a certain town, on a street where
all rich people live, but we do not her house number. The street is long, it has
houses numbered from 1 to 2000, with all the numbers used.

The entropy of this situation is S ≈ 11. In other words, we need 11 binary
questions to uniquely determine the celebrity’s address.

A user can ask a simple “yes”-“no” question: Is the house number where
she lives smaller than 1000 or greater or equal than 1000? Upon receiving the
answer, the user get exactly 1 bit of information. This information does not
provide the user with much help in finding the desired house: no matter what
is the answer, yes or no, the user, instead of a very difficult task of searching
through 2,000 possible homes, now has a slightly simpler but still very difficult
task of searching through 1,000 possible home. In this case, disclosing one bit
of the information did not lead to a big loss of privacy. This makes sense.

But suppose now that the user asks a second question: is the house number
smaller than 1001 or greater than or equal to 1001? This is also a one-bit
question, and if this was the only question the user asked, it would not bring
the user much information.

However, if it so happens that the celebrity lives in the house number 1000,
then, by asking these two one-bit questions, the user will learn the celebrity’s
address: indeed,

• from the answer to the first question, the user will learn that the address
is greater than or equal to 1000, and

• from the answer to the second question, the user will learn that it is smaller
than 1001,

so 1000 is the only option.
Thus, by asking two simple open-bit questions, each of which does not de-

crease the privacy much, we can get a serious breach of privacy.

What we show in this paper. In this paper, we show that while entropy
may not be a good measure of exact loss of privacy, it is a perfect measure of
the average loss of privacy.

2 Describing the Problem in Precise Terms and
the Desired Result

Original situation. In the original situation, we have n possible alternatives
a1, . . . , an describing a person, with probabilities p(a1), . . . , p(an) of different

alternatives. These probabilities should of course add up to 1:
n∑

i=1

p(ai) = 1.
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The amount of privacy in this situation can be described by the entropy

S0 = −
n∑

i=1

p(ai) · log2(p(ai)). (1)

What is a query and how it decreases privacy. Let us consider a generic
query, not necessarily a binary question. Let m denote the number of possible
answers to this query. For each alternative ai, we get one of these m answers.

For every j from 1 to m, let us denote by Ej the set of all the alternatives ai
for which, as a result of this query, we got the j-th answer. The sets E1, . . . , Em

form a partition of the original set of n alternatives, in the sense that every
alternative ai belongs to one and only one of these sets.

Thus, after receiving the j-th answer, we know that the actual alternative ai
characterizing the person belongs to the set Ej . What is the resulting privacy?

Once we know that the alternative ai belongs to the set Ej , then the proba-
bilities of all alternatives from outside Ej become zeros, while the probabilities of
all alternatives inside Ej change from the original probabilities p(ai) to new val-

ues p(ai |Ej). Here, by definition of conditional probability, p(ai |Ej) =
p(ai)

p(Ej)
,

where
p(Ej) =

∑
k:ak∈Ej

p(ak).

Thus, in this case, the privacy decreases to the new value

Sj = −
∑

i:ai∈Ej

p(ai |Ej) · log2(p(ai |Ej)). (3)

So, in the case of the j-th answer, the privacy decreases from the original
value S0 to the new value Sj , with a decrease of S0 − Sj . We are interested in
the average decrease of privacy, i.e., in the average value of this difference

∆S({Ej})
def
=

m∑
j=1

p(Ej) · (S0 − Sj). (4)

We want to prove that entropy is a reasonable way of describing the
average loss of privacy. In view of the above example, we want to make sure
that if we ask two queries, the resulting average loss of privacy cannot exceed
the sum of the two average privacy losses corresponding to each of the queries.

In precise terms, we consider two possible queries:

• a query corresponding to a partition E1, . . . , Em, and

• a query corresponding to a different partition E′
1, . . . , E

′
m′ .
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If we ask both queries, then possible answers to both queries are possible pairs
(j, j′) of answers to both queries. For each such pair, we know that the alterna-
tive belongs to both sets Ej and E′

j′ and thus, that it belongs to the intersection
Ej ∩E′

j′ of these two sets. So, asking the two queries means that we consider a
new partition {Ej ∩ E′

j′} formed by such intersections.
What we want to prove is that the average loss of privacy corresponding to

asking both queries does not exceed the sum of average privacy losses corre-
sponding to each of these queries, i.e., that

∆S({Ej ∩ E′
j′}) ≤ ∆S({Ej}) + ∆S({E′

j′}). (5)

Discussion. In the celebrity example, if we assume all 2,000 homes to be
equally probable, with probability of each home being the actual celebrity’s
address equal to 1/2,000, then by asking the corresponding two questions, we can
sometimes gain a lot of information. However, the probability of this situation
is small (1/2,000), so the average loss of privacy will still be small – on average,
it will even less than 2 bits.

3 Proof of Our Main Result

To prove our result, let us find an easier-to-analyze expression for the average
privacy loss ∆S({Ej}). This value is computed in terms of entropies Sj corre-
sponding to different possible answers j. For each j, substituting the expression

p(ai |Ej) =
p(ai)

p(Ej)
for conditional probability into the formula (3) for Sj , we

conclude that

Sj = −
∑

i:ai∈Ej

p(ai)

p(Ej)
· log2

(
p(ai)

p(Ej)

)
. (6)

The denominator p(Ej) is a common denominator for all the terms in this sum,
so we can simplify the expression by moving this common denominator outside
the sum:

Sj = − 1

p(Ej)
·

∑
i:ai∈Ej

p(ai) · log2
(

p(ai)

p(Ej)

)
. (7)

Logarithm of the ratio is equal to the difference between the logarithms, so we
have

Sj = − 1

p(Ej)
·

 ∑
i:ai∈Ej

p(ai) · log2(p(ai))−
∑

i:ai∈Ej

p(ai) · log2(p(Ej))

 . (8)

In the second sum, the term log2(p(Ej)) does not depend on i and is, thus, a
common factor that can be taken out of the sum. The remaining sum is equal
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to
∑

i:ai∈Ej

p(ai), i.e., equal to p(Ej). Thus, the formula (8) takes the following

form:

Sj = − 1

p(Ej)
·

 ∑
i:ai∈Ej

p(ai) · log2(p(ai))− p(Ej) · log2(p(Ej))

 . (9)

The average loss of privacy is defined as

∆S({Ej}) =
m∑
j=1

p(Ej) · (S0 − Sj). (10)

We can separate this sum into a difference of two sums: corresponding to S0

and corresponding to Sj . Thus, we get

∆S({Ej}) =
m∑
j=1

p(Ej) · S0 −
m∑
j=1

p(Ej) · Sj . (11)

In the first term in the right-hand side, S0 is a common factor, so this sum takes

the form S0 ·
m∑
j=1

p(Ej). The sum of these probabilities is simply 1, so the first

sum in the right-hand side of the formula (11) is simply S0. Thus, the formula
(11) takes the following simplified form:

∆S({Ej}) = S0 −
m∑
j=1

P (Ej) · Sj . (12)

Substituting the expression (9) instead of Sj in the formula for the sum, we
conclude that

m∑
j=1

P (Ej) · Sj = −
m∑
j=1

∑
i:ai∈Ej

p(ai) · log2(p(ai)) +
m∑
j=1

p(Ej) · log2(p(Ej)). (13)

The first sum in the right-hand side of the formula (13) covers all possible
alternatives, no matter what answer we got to the query. Thus, this sum is

simply equal to −
n∑

i=1

p(ai) · log2(p(ai)), i.e., to the original entropy S0. Hence,

the formula (13) takes the simplified form

m∑
j=1

P (Ej) · Sj = S0 +
m∑
j=1

p(Ej) · log2(p(Ej)). (14)

Substituting this expression into the formula (12), we conclude that

∆S({Ej}) = −
m∑
j=1

p(Ej) · log2(p(Ej)). (15)
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Thus, after answering the query, the average amount of privacy that we lose
is equal to the entropy of the probability distribution of possible answers to the
corresponding query.

Let us use this fact to prove the desired property (5). Indeed, according to
what we have just found, the left-hand side ∆S({Ej ∩ E′

j′}) of this inequality
is the entropy of the joint distribution of pairs (j, j′) of indices. The two terms
∆S({Ej}) and ∆S({E′

j′}) are, similarly, the entropies of the corresponding
marginal distributions:

• the distribution of the index j corresponding to the first query and

• the distribution of the index j′ corresponding to the second query.

It has been proven (see, e.g., [4]) that if we know the two marginal distribu-
tions, then the largest possible entropy corresponds to the case when the joint
distribution is independent, and the entropy of such independent joint distribu-
tion is equal to the sum of the entropies of the original marginal distributions.
Thus, for every possible joint distribution, its entropy cannot exceed the sum of
the entropies of the two marginal distributions – and this is exactly the desired
inequality (5).

The statement is thus proven.

4 Beyond Average Privacy Loss

Need to go beyond the average privacy loss. In general, when we make
a decision, we take into account the expected gain or expected loss; see, e.g.,
[3, 5, 6, 8]. However, it is known that it is also important to take into account
risk: there is a difference between earning a dollar and participating in a lottery
in which we get nothing or two dollars with equal probability 0.5. To take
this difference into account, it is important to consider not just average gain
or average loss but also some characteristic describing how different the actual
gain or loss can be from the average value.

Idea. In statistics, the most widely used way to gauge this difference is by using
the standard deviation σ, which described the mean square deviation from the
mean: for a random variable ξ with the mean value µ, standard deviation is
defined by the formula σ2 = E[(ξ − µ)2], where E[·] denotes the mean value.
This formula can also be equivalently written as σ2 = E[ξ2]− µ2; see, e.g., [9].

Resulting suggestion. It is therefore reasonable to use a similar characteristic,
to gauge not just the mean value of the privacy loss, but also the standard
deviation of the privacy loss S0 − Sj .

The standard deviation the difference between the constant S0 and the re-
sulting privacy Sj is simply equal to the standard deviation of the privacy values,
i.e., to the value σ for which

σ2 =
m∑
j=1

p(Ej) · S2
j − (S)2, (16)
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where

S =
m∑
j=1

p(Ej) · Sj = S0 +
m∑
j=1

P (Ej) · log2(Ej).
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