
Decomposition Into Granules Speeds Up Data

Processing Under Uncertainty

Andrzej Pownuk and Vladik Kreinovich
Computational Science Program
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

ampownuk@utep.edu, vladik@utep.edu

Abstract

In many real-life situations, uncertainty can be naturally described as
a combination of several components, components which are described by
probabilistic, fuzzy, interval, etc. granules. In such situations, to process
this uncertainty, it is often beneficial to take this granularity into account
by processing these granules separately and then combining the results.

In this paper, we show that granular computing can help even in situa-
tions when there is no such natural decomposition into granules: namely,
we can often speed up processing of uncertainty if we first (artificially)
decompose the original uncertainty into appropriate granules.

1 Need to Speed Up Data Processing Under
Uncertainty: Formulation of the Problem

Need for data processing. One of the main reasons for data processing is
that we are interested in a quantity y which is difficult (or even impossible) to
measure or estimate directly. For example, y can be a future value of a quantity
of interest.

To estimate this value y, we:

• find easier-to-measure and/or or easier-to-estimate quantities x1, . . . , xn
which are related to y by a known dependence y = f(x1, . . . , xn),

• measure or estimate xi’s, and

• use the known relation y = f(x1, . . . , xn) to predict y.

Need to take uncertainty into account. Due to measurement uncertainty,
the measurement results x̃i are, in general, different from the actual values xi
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of the corresponding quantities. This is even more true to the results of expert
estimates.

Therefore, the value ỹ = f(x̃1, . . . , x̃n) that we obtain by processing the
measurement/estimation results is, in general, different from the desired value
y = f(x1, . . . , xn). It is therefore important to estimate the resulting uncer-

tainty ∆y
def
= ỹ − y; see, e.g., [1].

Measurement or estimation errors are usually relatively small. Mea-
surement and estimation errors are usually assumed to be relatively small, so
that terms quadratic in measurement errors can be safely ignored [1].

If we expand the expression

∆y = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series and ignore terms which are quadratic (or higher order) in terms
of ∆xi, then we get

∆y =

n∑
i=1

ci ·∆xi,

where ci
def
=

∂f

∂xi
.

This simplified expression enables us to estimate the uncertainty in the re-
sult y of data processing based on the known information about the uncertain-
ties ∆xi.

How to describe uncertainty. For measurements, we usually have a large
number of situations when we performed the measurement with our measuring
instrument and we also measured the same quantity with some more accurate
measuring instrument – so that we have a good record of past values of measure-
ment errors. For example, we may record the temperature outside by a reason-
ably cheap not-very-accurate thermometer, and we can find the measurement
errors by comparing these measurement results with accurate measurements
performed at a nearby meteorological station.

Based on such a record, we can estimate the probability of different values
of the measurement error. Thus, it is reasonable to assume that for each i, we

know the distribution of the measurement error ∆xi
def
= x̃i − xi.

Measurement errors corresponding to different variables are usually indepen-
dent.

In this paper, we consider an ideal case when we know:

• the exact dependence y = f(x1, . . . , xn),

• the probability distribution of each of the variables ∆xi, and

• the values ci.

Thus, we know the probability distribution of each of the terms ti = ci · ∆xi.
So, we arrive at the following problem:
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• we know the probability distributions of each of n independent random
variables t1, . . . , tn,

• we are interested in the probability distribution of their sum t =
n∑
i=1

ti.

How this problem is solved now. The usual way to represent a probability
distribution is by its probability density function (pdf) ρ(x). The pdf of the
sum t = t1 + t2 of two independent random variables with pdfs ρ1(t1) and ρ2(t2)
is equal to

ρ(t) =

∫
ρ1(t1) · ρ2(t− t1) dt1.

A straightforward way of computing each value ρ(t) is by replacing the integral
with a sum. If we use N different points, then we need N computations to
compute the sum corresponding to each of the N points, thus we need the total
of N2 computation steps; see, e.g., [2].

A faster computation can be done if we use characteristics functions χi(ω)
def
=

E[exp(i · ω · ti)], where E denotes the expected value. Then, from t = t1 + t2,
we conclude that

exp(i · ω · t) = exp(i · ω · t1) · exp(i · ω · t2)

and thus, since t1 and t2 are independent, that

E[exp(i · ω · t)] = E[exp(i · ω · t1)] · E[exp(i · ω · t2)],

i.e., χ(ω) = χ1(ω) · χ2(ω). Here:

• computing each characteristic function χi(ω) by Fast Fourier Transform
requires O(N · ln(N)) computational steps,

• computing point-by-point multiplication requires N steps, and

• the inverse Fourier Transform to reconstruct ρ(t) from its characteristic
function also takes O(N · ln(N)) steps.

So overall, we need O(N · ln(N)) steps, which is smaller than N2.

Can we do it faster? For large N , the time N needed for point-wise multi-
plication is still huge, so it is reasonable to look for the ways to make it faster.

2 Analysis of the Problem and Our Idea

Processing can be faster if both distributions are normal. If both ti are
normally distributed, then we do not need to perform these computations: we
know that the sum of two normal distributions with mean µi and variances Vi
is also normal, with mean µ = µ1 + µ2 and variance V = V1 + V2.

In this case, we need two computational steps instead of O(N).
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Other cases when we can speed up data processing. Same holds for any
infinitely divisible distribution, with characteristic function

χ(ω) = exp(i · µ · ω −A · |ω|α).

For example:

• For α = 2, we get normal distribution.

• For α = 1, we get Cauchy distribution, with the probability density func-
tion

ρ(x) =
1

π ·∆
· 1

1 +
(x− µ)2

∆2

for an appropriate ∆ > 0.

Indeed, in this case, once we know the distributions for t1 and t2, then, based
on the corresponding characteristic functions χ1(ω) = exp(i · µ1 · ω −A1 · |ω|α)
and χ2(ω) = exp(i · µ2 · ω − A2 · |ω|α), we can conclude that the characteristic
function χ(ω) for the sum t1 + t2 has the form

χ(ω) = χ1(ω) · χ2(ω) = exp(i · µ · ω −A · |ω|α),

where µ = µ1 + µ2 and A = A1 + A2. So, in this case too, we need two
computational steps instead of O(N):

• one step to add the means µi, and

• another step to add the values Ai.

Our idea. Our idea is to select several values α1, . . . , αk – e.g., α1 = 1 and
α2 = 2 – and approximate each random variable ti by a sum

ta,i = ti1 + . . .+ tij + . . .+ tik

of infinitely divisible random variables tij corresponding to the selected values
of αj .

The characteristic function χij(ω) for each variable tij has the form

χij(ω) = exp(i · µij · ω −Aij · |ω|αj ).

Thus, the characteristic function χa,i(ω) of the sum ta,i =
k∑
j=1

tik is equal to the

product

χa,i(ω) =

k∏
j=1

χij(ω) = exp

i · µi · ω −
k∑
j=1

Aij · |ω|αj

 ,
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where µi
def
=

k∑
j=1

µij .

From χ1(ω) ≈ χa,1(ω) and χ2(ω) ≈ χa,2(ω), we conclude that the charac-
teristic function χ(ω) = χ1(ω) · χ2(ω) for the sum t = t1 + t2 is approximately
equal to the product of the approximating characteristic functions:

χ(ω) ≈ χa(ω)
def
= χa,2(ω) · χa,2(ω) = exp

i · µ · ω −
k∑
j=1

Aj · |ω|αj

 ,

where µ = µ1 + µ2 and Aj = A1j +A2j .
In this case, to find the approximating distribution for the sum t, we need

to perform k + 1 arithmetic operations instead of N :

• one addition to compute µ and

• k additions to compute k values A1, . . . , Ak.

Comment. A similar idea can be applied to the case of fuzzy uncertainty; see
[3] for details.

3 How to Approximate

Natural idea: use Least Squares. We want to approximate the actual
distribution ρi(t) for each of the variables ti by an approximate approximate
distribution ρa,i(t). A reasonable idea is to use the Least Squares approximation,
i.e., to find a distribution ρa,i(t) for which the value

∫
(ρi(t)− ρa,i(t))2 dt is the

smallest possible.

Let us reformulate this idea in terms of the characteristic functions.
The problem with the above idea is that while for α = 1 and α = 2, we have
explicit expressions for the corresponding probability density function ρa,i(t),
we do not have such an expression for any other α. Instead, we have an ex-
plicit expression for the characteristic function χ(ω). It is therefore desirable to
reformulate the above idea in terms of characteristic functions.

We want to approximate the characteristic function χi(ω) by an expression

χa,i(ω) of the type exp

(
−
∑
j

cj · fj(ω)

)
for some fixed functions fj(ω); in our

case, f0(ω) = −i · ω and fj(ω) = |ω|αj for j ≥ 1.
This can be done, since, due to Parceval theorem, the least squares (L2)

difference
∫

(ρi(t)−ρa,i(t))2 dt between the corresponding pdfs ρi(t) and ρa,i(t) is
proportional to the least squares difference between the characteristic functions:∫

(ρi(t)− ρa,i(t))2 dt =
1

2π
·
∫

(χi(ω)− χa,i(ω))2 dω.
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So, minimizing the value
∫

(ρi(t)− ρa,i(t))2 dt is equivalent to minimizing

I
def
=

∫
(χi(ω)− χa,i(ω))2 dω.

How to approximate: computational challenge and its solution. The
problem with the above formulation is that the Least Squares method is very
efficient is we are looking for the coefficients of a linear dependence. However,
in our case, the dependence of the expression χa,i(ω) on the parameters µi and
Aij is non-linear, which makes computations complicated.

How can we simplify computations? We can borrow the idea from the case
of normal distributions: in this case, we start with the maximum likelihood
methods, in which we maximize the probability, and take negative logarithms
of the pdfs – which results in the known Least Squares method [2]. In our more
general case too, if we take the negative logarithm of the characteristic function,
we get a linear function of the unknowns:

− ln(χa,i(ω)) = −i · µi · ω +

k∑
j=1

Aij · |ω|αj .

To use this idea, let us reformulate the objective function∫
(χi(ω)− χa,i(ω))2 dω

in terms of the difference between the negative logarithms. We are interested
in situations in which the approximation is good, i.e., in which the difference

εi(ω)
def
= χa,i(ω)− χi(ω) is small. Then, χa,i(ω) = χi(ω) + εi(ω), hence

− ln(χa,i(ω)) = − ln(χi(ω) + εi(ω)) = − ln

(
χi(ω) ·

(
1 +

εi(ω)

χi(ω)

))
=

− ln(χi(ω))− ln

(
1 +

εi(ω)

χi(ω)

)
.

Since εi(ω) is small, we can ignore terms which are quadratic and higher order
in εi(ω) and get

ln

(
1 +

εi(ω)

χi(ω)

)
≈ εi(ω)

χi(ω)
.

Thus, in this approximation,

(− ln(χi(ω)))− (− ln(χa,i(ω))) =
εi(ω)

χi(ω)
,

hence

εi(ω) = χa,i(ω)− χi(ω) = χi(ω) · ((− ln(χa,i(ω)))− (− ln(χi(ω))),
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so the minimized integral takes the form

I =

∫
(χi(ω)− χa,i(ω))2 dω =

∫
χ2
i (ω) · ((− ln(χi(ω)))− (− ln(χa,i(ω)))2 dω,

or, equivalently, the form

I =

∫
(fi(ω)− fa,i(ω))2 dω,

where we denoted
fi(ω)

def
= −χi(ω) · ln(χi(ω))

and
fa,i(ω)

def
= −χi(ω) · ln(χa,i(ω)).

In our case

fa,i(ω) = −i · µi · ω · χi(ω) +

k∑
j=1

Aij · χi(ω) · |ω|αj .

In other words, we need to find the coefficients ck by applying the Least Squares
method to the approximate equality

− ln(χi(ω)) · χi(ω) ≈ −i · µi · ω · χi(ω) +

k∑
j=1

Aij · χi(ω) · |ω|αj .

4 Resulting Algorithm

Problem: reminder. We know the probability distributions for t1 = c1 ·∆x1
and t2 = c2 ·∆x2, We want to find the probability distribution for

t = t1 + t2 = c1 ·∆x1 + c2 ·∆x2.

Motivations: reminder. By repeating this procedure several times, we get:

• the probability distribution for c1 ·∆x1 + c2 ·∆x2 =
2∑
i=1

ci ·∆xi,

• then the distribution for (c1 ·∆x1 + c2 ·∆x2) + c3 ·∆x2 =
3∑
i=1

ci ·∆xi,

• then the distribution for(
3∑
i=1

ci ·∆xi

)
+ c4 ·∆x4 =

4∑
i=1

ci ·∆xi,

etc.,
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• until we get the desired probability distribution for the measurement error

∆y =

n∑
i=1

ci ·∆xi.

Preliminary step. We select the values α1 < . . . < αk. For example, we
can have these values uniformly distributed on the interval [1, 2], by taking

αj = 1 +
j − 1

k − 1
. For example:

• for k = 2, we get α1 = 1 and α2 = 2,

• for k = 3, we get α1 = 1, α2 = 1.5, and α3 = 2.

Comment. A (slightly) better selection of the values αj is described in the
Appendix.

First step: computing characteristic functions. First, we apply Fourier
transforms to the given probability distributions ρi(t), and get the corresponding
characteristic functions χi(ω).

Second step: approximating characteristic functions. For each of the
two characteristic functions, to find the parameters µi, Ai1, . . . , Aik, we use the
Least Squares method to solve the following system of approximate equations:

− ln(χi(ω)) · χi(ω) ≈ χa,i(ω)
def
= −i · µi · ω · χi(ω) +

k∑
j=1

Aij · χi(ω) · |ω|αj

for values ω = ω1, ω2, . . . , ωN .

Comment. If the resulting approximation error
∫

(χi(ω) − χa,i(ω))2 dω is too
large, we can increase k – and thus, get a better approximation.

Final step: describing the desired probability distribution for t =
t1 + t2. As a good approximation for the characteristic function χ(ω) of the
probability distribution for the sum t = t1 + t2, we can take the expression

χa(ω) = exp

i · µ · ω −
k∑
j=1

Aj · |ω|αj

 ,

where µ = µ1 + µ2 and Aj = A1j +A2j for j = 1, . . . , k.

5 Numerical Example

We tested our method on several examples, let us provide one such example.
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Let us assume that t1 is normally distributed with 0 mean and standard
deviation1. For this distribution, the characteristic function takes the form

χ1(ω) = exp

(
−1

2
· ω2

)
.

As t2, let us take the Laplace distribution, with probability density ρ2(t) =
1

2
· exp(−|t|) and the characteristic function χ2(ω) =

1

1 + ω2
.

To approximate both distributions, we used k = 3, with α1 = 1, α2 = 1.5,
and α3 = 2. In this case, the first distribution is represented exactly, with

µ1 = 0, A11 = A12 = 0, and A13 =
1

2
.

To find the optimal approximation for the characteristic function of the
Laplace distribution, we used the values ω uniformly distributed on the interval
[−5, 5]. As a result, we get the following approximation:

µ2 = 0, A21 = −0.162, A22 = 1.237, and A23 = −0.398.

Thus, for the characteristic function of the sum t = t1 + t2 we get

µ = 0, A1 = −0.162, A2 = 1.237, and A3 = 0.102.

By applying the inverse Fourier transform to this distribution, we get an approx-
imate probability density function ρa(t) for the sum. The comparison between
the actual probability distribution ρ(t) and the approximate pdf ρa(t) is given

on Fig. 1. The corresponding mean square error
√∫

(ρ(t)− ρa(t))2 dt is equal

to 0.01.
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A Non-Uniform Distribution of αj is Better

Idea. If we select two values αj too close to each other, there will be too
much correlation between them, so adding the function corresponding to the
second value does not add much information to what we know from a function
corresponding to the first value.

We are approximating a general function (logarithm of a characteristic func-
tion) as a linear combination of functions |t|αj . If two values αj and αj+1 are
close, then the function |t|αj+1 can be well approximated by a term linear in
|t|αj , thus, the term proportional to |t|αj+1 is not needed.

It therefore makes sense to select the values αj in such as way that for each
j, the part of |t|αj+1 that cannot be approximated by terms proportional to |t|αj

should be the largest possible.

Let us reformulate this idea in precise terms. For every two functions
f(t) and g(t), the part of g(t) which cannot be represented by terms a · f(t)
(proportional to f(t)) can be described as follows. It is reasonable to describe
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the difference between the two functions f(t) and g(t) by the least squares (L2)
metric

∫
(f(t)− g(t))2 dt. In these terms, the value of a function itself itself can

be described as its distance from 0, i.e., as
∫

(f(t))2 dt.
When we approximate a function g(t) by a term a · f(t), then the remainder

g(t)−a ·f(t) has the value
∫

(g(t)−a ·f(t))2 dt. The best approximation occurs
when this value is the smallest, i.e., when it is equal to min

a

∫
(g(t)−a ·f(t))2 dt.

Out of the original value
∫

(g(t))2 dt, we have unrepresented the part equal to
min
a

∫
(g(t)− a · f(t))2 dt. Thus, the relative size of what cannot be represented

by terms a · f(t) can be defined as a ratio

R(f(t), g(t)) =
min
a

∫
(g(t)− a · f(t))2 dt∫

(g(t))2 dt
.

Let us simplify the resulting expression. This expression can be simplified
if we find the explicit expression for a for which the value

∫
(g(t)− a · f(t))2 dt

is the smallest possible. Differentiating the minimized expression with respect
to a and equating the derivative to 0, we conclude that

−
∫

(g(t)− a · f(t)) · f(t) dt = 0,

i.e., that

a ·
∫

(f(t))2 dt =

∫
f(t) · g(t) dt,

and

a =

∫
f(t) · g(t) dt∫
(f(t))2 dt

.

For this a, the value
∫

(g(t)− a · f(t))2 dt takes the form∫
(g(t)− a · f(t))2 dt =

∫
(g(t))2 dt− 2a ·

∫
f(t) · g(t) dt+ a2 ·

∫
(f(t)) dt.

Substituting the above expression for a into this formula, we conclude that∫
(g(t)− a · f(t))2 dt =

∫
(g(t))2 dt−

2(
∫
f(t) · g(t) dt)2∫
(f(t))2 dt

+
(
∫
f(t) · g(t) dt)2∫

(f(t))2 dt
,

i.e., that ∫
(g(t)− a · f(t))2 dt =

∫
(g(t))2 dt−

(
∫
f(t) · g(t) dt)2∫

(f(t))2 dt
.

Thus, the desired ratio takes the form

R(f(t), g(t))
def
=

min
a

∫
(g(t)− a · f(t))2 dt∫

(g(t))2 dt
= 1−

(
∫
f(t) · g(t) dt)2

(
∫

(f(t))2 dt) · (
∫

(g(t))2 dt)
.
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Thus, we arrive at the following optimization problem.

Resulting optimization problem. To make sure that the above remainders
are as large as possible, it makes sense to find the values αopt

1 < . . . < αopt
k that

maximize the smallest of the remainders between the functions f(t) = |t|αj and
g(t) = |t|αj+1 :

min
j
R
(
|t|α

opt
j , |t|α

opt
j+1

)
= max
α1<...<αk

min
j
R(|t|αj , |t|αj+1).

Solving the optimization problem. Let us consider an interval [−T, T ] for
some T . Since the function is symmetric, it is sufficient to consider the values
from [0, T ].

For f(t) = tα and g(t) = tβ , the integral in the numerator of the ratio is
equal to ∫ T

0

f(t) · g(t) dt =

∫ T

0

tα · tβ dt =

∫ T

0

tα+β dt =
Tα+β+1

α+ β + 1
.

Similarly, the integrals in the denominator take the form∫ T

0

f2(t) dt =

∫ T

0

t2α dt =
T 2α+1

2α+ 1

and ∫ T

0

g2(t) dt =

∫ T

0

t2β dt =
T 2β+1

2β + 1
,

so

R = 1−

T 2(α+β+1)

(α+ β + 1)2

T 2α+1

2α+ 1
· T

2β+1

2β + 1

.

One can see that the powers of T cancel each other, and we get

R = 1− (2α+ 1) · (2β + 1)

(α+ β + 1)2
,

or, equivalently, if we denote r
def
=

β + 0.5

α+ 0.5
, we get

R = R(r)
def
= 1− 4 · r

(1 + r)2
.

The derivative of the function R(r) is equal to

dR

dr
= −4 · (1 + r)2 − 2 · (1 + r)

(1 + r)4
= −4 · (1 + r) · (1 + r − 2)

(1 + r)4
=
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4 · (1 + r) · (r − 1)

(1 + r)4
= 4 · r − 1

(1 + r)3
.

So this derivative is positive for all r > 1. Thus, the function R(r) is monoton-
ically increasing, and looking for the values αopt

j for which min
j
R(|t|αj , |t|αj+1)

is the largest is equivalent to looking for the values αopt
j for which the smallest

min
j

αj+1 + 0.5

αj + 0.5
of the ratios r =

αj+1 + 0.5

αj + 0.5
attains the largest possible value:

min
j

αopt
j+1 + 0.5

αopt
j + 0.5

= max
α1<...<αk

min
j

αj+1 + 0.5

αj + 0.5
.

One can check that this happens when αj + 0.5 = 1.5 ·
(

5

3

)(j−1)/(k−1)

.

Indeed, in this case, min
j

αj+1 + 0.5

αj + 0.5
=

(
5

3

)1/(k−1)

. We cannot have it larger: if

we had min
j

αj+1 + 0.5

αj + 0.5
>

(
5

3

)k−1

, then we would have
αj+1 + 0.5

αj + 0.5
>

(
5

3

)k−1

for all j. Here,

αk + 0.5 = (α1 + 0.5) · α2 + 0.5

α1 + 0.5
· α3 + 0.5

α2 + 0.5
· . . . · αk + 0.5

αk−1 + 0.5
.

The first factor α1 + 0.5 is ≥ 1.5, each of the other k − 1 terms is greater than(
5

3

)1/(k−1)

, so for their product, we get

αk + 0.5 > 1.5 ·

((
5

3

)1/(k−1)
)k−1

= 1.5 · 5

3
= 2.5,

while we assumed that all the values αj are from the interval [1, 2], and so, we
should have αk + 0.5 ≤ 2.5.

Resulting optimal values of αj. Thus, the optimal way is to not to take the
values uniformly distributed on the interval [1, 2], but rather take the values

αopt
j = 1.5 ·

(
5

3

)(j−1)/(k−1)

− 0.5

for which the logarithms ln(αopt
j +0.5) =

j − 1

k − 1
· ln
(

5

3

)
= ln(1.5) are uniformly

distributed.

Comment. It is worth mentioning that there is intriguing connection between
these values αj and music: for example, the twelves notes on a usual Western
octave correspond to the frequencies:
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• f1,

• f2 = f1 · 21/12,

• f3 = f1 · 22/12, . . . ,

• f12 = f1 · 211/12, and

• f13 = f1 · 2,

for which the logarithms ln(fj) are uniformly distributed. Similar formulas exist
for five-note and other octaves typical for some Oriental musical traditions.
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