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Abstract In many real-life situations, we need to process measurement re-
sults. Due to inevitable measurement errors, the measurement results are, in
general, somewhat different from the actual (unknown) values of the corre-
sponding quantities. As a result, the value that we obtained by processing the
measurement results is, in general, different from what we would have got if
we were able to process the actual (exact) values. In many practical situa-
tions, it is important to know how accurate is the resulting estimate. In such
situations, processing data under probabilistic uncertainty involves not only
processing the measurement results, but also providing a probability distribu-
tion describing how accurate is the result of this processing.

There exist several algorithms for such data processing under probabilistic
uncertainty, but the existing algorithms often require too much computation
time. To speed up the corresponding computations, we take into account the
fact that in many real-life situations, uncertainty can be naturally described
as a combination of several components, components which are described by
different granules. In such situations, to process this uncertainty, it is often
beneficial to take this granularity into account by processing these granules
separately and then combining the results.
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In this paper, we show that granular computing can help even in situations
when there is no such natural decomposition into granules: namely, we can
often speed up processing of uncertainty if we first (artificially) decompose the
original uncertainty into appropriate granules.

Keywords Granular computing · Probabilistic Uncertainty · Faster
Algorithm

1 Introduction

Need for data processing. Often, we are interested in a quantity y which
is difficult (or even impossible) to measure or estimate directly. For example,
y can be the amount of oil in a given oilfield, distance to a faraway star, or
the future value of a quantity of interest.

To estimate this value y, we:

– find easier-to-measure and/or or easier-to-estimate quantities x1, . . . , xn
which are related to y by a known dependence y = f(x1, . . . , xn),

– measure xi’s, and
– use the results x̃i of measuring xi and the known relation y = f(x1, . . . , xn)

to estimate y as ỹ = f(x̃1, . . . , x̃n).

Applying the known algorithm f to measurement results x̃1, . . . , x̃n is an im-
portant case of data processing.

For example, to find the distance to a faraway star, we can:

– measure the directions x1 and x2 to this star in two different seasons, when
the Earth is on the opposite sides of the Sun, and then

– use trigonometry to find the desired distance y.

To estimate the amount of oil in a given oil field, we:

– perform a large number of seismic experiments – by setting up small ex-
plosions and measuring resulting seismic waves at different locations;

– then, we can use known algorithms for solving the corresponding systems of
partial differential equations (that describe wave propagation) to estimate
the desired quantity y based on the results x̃i of seismic measurements.

As a simple example of data processing, we can use the application of
Ohm’s law V = I ·R relating the voltage V , the current I, and the resistance
R. Because of this law, to measure the voltage, we can:

– measure the current x1 = I passing through a resistor with known resis-
tance x2 = R, and then

– estimate the desired voltage y = V as ỹ = f(x̃1, x̃2), where the correspond-
ing algorithm has a simple form f(x1, x2) = x2 · x2.

Comment. In this example, the algorithm is very simple, but, as we have men-
tioned earlier, in general, we may have very complex algorithms f(x1, . . . , xn)
for processing data.
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Need to take uncertainty into account. Due to measurement uncertainty,
the measurement results x̃i are, in general, different from the actual values xi
of the corresponding quantities.

Therefore, the value ỹ = f(x̃1, . . . , x̃n) that we obtain by processing
the measurement results is, in general, different from the desired value y =
f(x1, . . . , xn).

For example:

– if the actual value of the current is x1 = 1.0 and the actual value of the
resistance is x2 = 2.0, then we should get y = 1.0 · 2.0 = 2.0.

– However, if we measure with uncertainty, we may get e.g., x̃1 = 1.1 and
x̃2 = 1.9, in which case the result ỹ = x̃1 · x̃2 = 1.1 · 1.9 = 2.09 will be
slightly different from the desired value y = 2.

In general, it is important to estimate the resulting uncertainty ∆y
def
= ỹ − y;

see, e.g., [5].
For example, if we estimate that the oil field contains approximately 100

million cubic meters, then at first glance, this is good news: since this estimate
makes the oil field very rich and worth exploiting. However, due to measure-
ment uncertainty, this value is inaccurate, and what action to take depends
on the accuracy:

– If it is 100± 10, this is great news.
– However, if it is 100±200, then maybe there is practically no oil in this field

at all, so it may be better to perform some further measurements before
we invest money in digging an expensive oil well.

Because of this practical importance, there are many techniques for data
processing under uncertainty, both in the case when the relation is given in
the form of an explicit algorithm (see, e.g., [5] and references therein), and
in the case when this relation is given in terms of systems of equations; see,
e.g., [2–4].

Measurement errors are usually relatively small. Measurement errors
are usually assumed to be relatively small, so that terms quadratic in mea-
surement errors can be safely ignored [5].

For example, if the measurement error is 10%, then the square of this value
is 1% which is definitely much smaller than 10%.

In this case, we can expand the expression

∆y = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series and ignore terms which are quadratic (or higher order) in
terms of ∆xi. Then, we get

∆y =

n∑
i=1

ci ·∆xi, (1)

where we denoted ci
def
=

∂f

∂xi |xj=x̃j

.
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In the Ohm’s law example, when f(x1, x2) = x1 ·x2, we have c1 =
∂f

∂x1
= x2

and c2 =
∂f

∂x1
= x1, so the above formula takes the form

∆y = x̃2 ·∆x1 + x̃1 ·∆x2.

In general, the simplified expression (1) enables us to estimate the uncer-
tainty in the result y of data processing based on the known information about
the uncertainties ∆xi.

Enter probabilistic uncertainty. For measurements, we usually have a large
number of situations when we performed the measurement with our measur-
ing instrument and we also measured the same quantity with some more ac-
curate measuring instrument – so that we have a good record of past values
of measurement errors. For example, we may record the temperature outside
by a reasonably cheap not-very-accurate thermometer, and we can find the
measurement errors by comparing these measurement results with accurate
measurements performed at a nearby meteorological station.

Based on such a record, we can estimate the probability of different values
of the measurement error. Thus, it is reasonable to assume that for each i, we

know the distribution of the measurement error ∆xi
def
= x̃i − xi.

In some cases, we have eliminated all major sources of measurement error.
As a result, the remaining measurement error is a joint effect of a large number
of small difficult-to-eliminate effects. Due to the Central Limit Theorem (see,
e.g., [6]), in this case, the probability distribution of the measurement error is
close to Gaussian.

However, such an elimination is a very time-consuming and expensive pro-
cess, it is usually only performed on expensive super-accurate measuring in-
struments. In practice, the distribution is often different from Gaussian.

Measurement errors corresponding to different variables are usually inde-
pendent.

We thus arrive at the following problem.

Data processing under probabilistic uncertainty: formulation of the
main problem. We know:

– the dependence y = f(x1, . . . , xn),
– the measurement results x̃1, . . . , x̃n, and
– the probability distribution of each of the variables ∆xi.

Based on this information, we can compute the values ci =
∂f

∂xi |xj=x̃j

.

We need to find the probability distribution of the quantity

∆y =

n∑
i=1

ci ·∆xi.
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How to simplify the corresponding computational problem. Usually,
when we know the probability distribution of a quantity ∆xi, then, for each
real value ci, it is easy to find the probability distribution for the quantity

ti
def
= ci · ∆xi. In terms of these products ti, the desired measurement error

has a simpler form ∆y =
n∑
i=1

ti. Thus, if we take this easiness into account, we

arrive at the following problem:

– we know the probability distributions of each of n independent random
variables t1, . . . , tn, and

– we are interested in the probability distribution of their sum t =
n∑
i=1

ti.

The simplest case of this problem is when n = 2. In this case:

– we know the probability distributions of each of two independent random
variables t1 and t2, and

– we are interested in the probability distribution of their sum t = t1 + t2.

Once we know how to solve this simplest case n = 2 of the general problem,
we can then easily solve the original more general problem as well:

– first, we apply the n = 2 algorithm to find the probability distribution of

the sum s2
def
= t1 + t2;

– then, we again apply the n = 2 algorithm, this time to the random variables
s2 and t3, to find the probability distribution of their sum

s3
def
= s2 + t3 = (t1 + t2) + t3 =

3∑
i=1

ti;

– after that, we apply the n = 2 algorithm to the random variables s3 and
t4, to find the probability distribution of their sum

s4
def
= s3 + t4 =

3∑
i=1

ti + t4 =

4∑
i=1

ti,

etc.

At the end, we get the desired probability distribution for the sum

∆y =

n∑
i=1

ti =

n∑
i=1

ci ·∆xi.

So, to solve our original problem of data processing under probabilistic
uncertainty, it is sufficient to solve the following computational problem:

Basic computational problem.

– We know the probability distributions of each of two independent random
variables t1 and t2.

– We are interested in the probability distribution of their sum t = t1 + t2.
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Straightforward (naive) approach to solving the basic computational
problem. The usual way to represent a probability distribution is by its
probability density function (pdf) ρ(z). It is therefore reasonable to repre-
sent this information in the computer by values ρ(zi) of this function on a grid
zi = z0 + i · h for some step h, where i = 0, 1, . . . , N for some N .

The pdf of the sum t = t1 + t2 of two independent random variables with
pdfs ρ1(t1) and ρ2(t2) is equal to [6]

ρ(t) =

∫
ρ1(t1) · ρ2(t− t1) dt1.

If we know:

– the values ρ1(t1i) corresponding to t1i = t10 + i · h and
– the values ρ2(t2i) corresponding to t2i = t20 + i · h,

then, to find the values of the desired function ρ(t), we can approximate the
above integral by the integral sum. Specifically, or each value vk = v0 + k · h,
where v0 = t10 + t20, we have

ρ(vk) =

k∑
i=0

ρ1(t1i) · ρ2(t2,k−i) · h. (2)

Thus, we arrive at the following straightforward algorithm:

– we start with the values ρi(tij) describing the original probability distri-
butions, and

– we compute the desired values ρ(vk) by using the formula (2).

How much computation time do we need to perform all these computa-
tions? According to the above algorithm, to compute each value ρ(vk), we
need to perform 2k elementary computational steps:

– we need k multiplications,
– we need k − 1 additions, and
– we need one multiplication by h.

Thus, overall, to compute all 2N values of ρ(vk), we need to perform

2 + 4 + 6 + . . .+ 2 · (2N) = 2 · (1 + 2 + . . .+N) = 2 · N · (N + 1)

2
=

N · (N + 1) = O(N2)

computational steps.
If we want to have an accurate representation of the corresponding proba-

bility distribution on a given interval [t, t], i.e., if we want a reasonable small
step h, then we need to use a reasonably large number N = (t− t)/h.

For large N , performing N2 steps is feasible but rather slow; see, e.g., [1].
It is therefore desirable to be able to solve the basic computational problem
faster.
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What is known: a faster algorithm for solving the basic computa-
tional problem – and thus, for data processing under probabilistic
uncertainty. In practice, users apply a faster algorithm which is based on the
possibility of describing each probability distribution not by its probability
density function ρ(x), but by a characteristic function

χ(ω)
def
= E[exp(i · ω · x)] =

∫
exp(i · ω · x) · ρ(x) dx,

where E denotes the expected value.
The possibility of faster computation comes from the fact that, for t =

t1 + t2, we have

exp(i · ω · t) = exp(i · ω · t1) · exp(i · ω · t2).

Since t1 and t2 are independent, that we have

E[exp(i · ω · t)] = E[exp(i · ω · t1)] · E[exp(i · ω · t2)],

i.e., χ(ω) = χ1(ω) · χ2(ω), where we denoted χ(ω)
def
= E[exp(i · ω · t)] and

χi(ω)
def
= E[exp(i · ω · ti)].

So, if we represent each characteristic function by its values of a grid ωk =
ω0 + k · h, we conclude that

χ(ωk) = χ1(ωk) · χ2(ωk). (3)

Hence, we arrive at the following algorithm:

– we start with 2N values χi(ωk) describing the probability distributions for
t1 and t2;

– then, we apply the formula (3) to compute the values χ(ωk).

This algorithm requires one multiplication for each of N values χ(ωk). So,
overall, this algorithm requires N computational steps – which is, for large N ,
much faster than the N2 steps needed for the straightforward algorithm.

Comment. Of course:

– if the original information about the probability distributions comes in
terms of the corresponding probability density functions,

– then we still need to compute the corresponding characteristic functions.

And:

– if we want the probability density function for t,
– then we have to recover it from the t’s characteristic function.

For both transformation – from the probability density function to character-
istic function and back – we can use the Fast Fourier Transform algorithm
(see, e.g., [1]) that takes only N · ln(N) steps.

For large N , this computation time is much smaller than N2. Thus:
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– even if the original information is given in terms of a probability density
function, and

– as a result, we want a probability density function,

the above characteristic-function algorithm is much faster than the straight-
forward approach.

Remaining problem: can we do it even faster? For large N , the time N
needed for point-wise multiplication is still rather huge.

It is therefore reasonable to look for the ways to make these computations
faster. This is what we do in this paper.

2 Main Idea: Using Granularity

Processing can be faster if both distributions are normal. If both ti are
normally distributed, then we do not need to perform N computational steps.
Indeed, we know that the sum of two normal distributions with mean µi and
variances Vi is also normal, with mean µ = µ1 +µ2 and variance V = V1 +V2.

In this case, if we describe each distribution ti by its mean and its variance,
then to find a similar representation for the sum t = t1 + t2, we need only two
computational steps – instead of N steps needed in the general case.

Other cases when we can speed up data processing. Same holds for
any infinitely divisible distribution, with characteristic function

χ(ω) = exp(i · µ · ω −A · |ω|α −B · sign(ω) · |ω|α).

For example:

– For α = 2 and B = 0, we get normal distribution.
– For α = 1 and B = 0, we get Cauchy distribution, with the probability

density function

ρ(x) =
1

π ·∆
· 1

1 +
(x− µ)2

∆2

for an appropriate ∆ > 0.

Indeed, in this case, once we know the distributions for t1 and t2, then,
based on the corresponding characteristic functions

χ1(ω) = exp(i · µ1 · ω −A1 · |ω|α −B1 · sign(ω) · |ω|α)

and
χ2(ω) = exp(i · µ2 · ω −A2 · |ω|α −B2 · sign(ω) · |ω|α),

we can conclude that the characteristic function χ(ω) for the sum t1 + t2 has
the form

χ(ω) = χ1(ω) · χ2(ω) = exp(i · µ · ω −A · |ω|α −B · sign(ω) · |ω|α),

where µ = µ1 + µ2, A = A1 +A2, and B = B1 +B2.
So, in this case too:
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– if we describe each probability distribution ti by the two corresponding
parameters µi, Ai, and Bi,

– then, to compute the corresponding parameters µ, A, and B for the sum
t = t1 + t2, we need three computational steps instead of N :
– one step to add the means µi, and
– two more steps to add the values Ai and Bi.

Granularity-based idea. Our idea is to artificially decompose the original
probability distributions into several appropriate granules, i.e., specifically:

– to select several values α1, . . . , αk – e.g., α1 = 1 and α2 = 2, and
– to approximate each random variable ti by a sum

ta,i = ri1 + . . .+ tij + . . .+ rik

of infinitely divisible random variables rij corresponding to the selected
values of αj .

The characteristic function χij(ω) for each variable rij has the form

χij(ω) = exp(i · µij · ω −Aij · |ω|αj −Bij · sign(ω) · |ω|αj ).

Thus, the characteristic function χa,i(ω) of the sum ta,i =
k∑
j=1

rik is equal to

the product

χa,i(ω) =

k∏
j=1

χij(ω) =

exp

i · µi · ω −
k∑
j=1

Aij · |ω|αj −
k∑
j=1

Bij · sign(ω) · |ω|αj

 ,

where µi
def
=

k∑
j=1

µij .

From χ1(ω) ≈ χa,1(ω) and χ2(ω) ≈ χa,2(ω), we conclude that the charac-
teristic function χ(ω) = χ1(ω) ·χ2(ω) for the sum t = t1 + t2 is approximately
equal to the product of the approximating characteristic functions:

χ(ω) ≈ χa(ω)
def
= χa,2(ω) · χa,2(ω) =

exp

i · µ · ω −
k∑
j=1

Aj · |ω|αj −
k∑
j=1

Bj · sign(ω) · |ω|αj

 ,

where µ = µ1 + µ2, Aj = A1j +A2j , and Bj = Bj1 +Bj2.
In this case, if we represent each of the random variables ti by 2k+1 values

µi, Ai1, . . . , Aik, Bi1, . . . , Bik, hen to find the a similar representation for the
sum t, we need to perform 2k + 1 arithmetic operations instead of N :

– one addition to compute µ
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– and 2k additions to compute 2k values A1, . . . , Ak, B1, . . . , Bk.

In other words, we arrive at the following algorithm:

Resulting algorithm for solving the basic computational problem.
We are given:

– the values µ1, A11, . . . , A1k, B11, . . . , B1k that represent the random
variable t1, and

– the values µ2, A21, . . . , A2k, B21, . . . , B2k that represent the random
variable t2.

To find the values µ, A1, . . . , Ak, B1, . . . , Bk corresponding to the sum
t = t1 + t2, we perform the following operation:

– first, we compute µ = µ1 + µ2;
– then, for each value j from 1 to k, we compute Aj = Aj1 + Aj2 and
Bj = Bj1 +Bj2.

This algorithm requires 2k+ 1 computational steps. So, for large N , this algo-
rithm is much faster than the currently used algorithm based on characteristic
functions.

From the basic computational problem to the original problem of
data processing under probabilistic uncertainty. If we know the char-
acteristic function χ′i(ω) = E[exp(i · ω ·∆xi)] for ∆xi, then the characteristic
function for ti = ci ·∆xi is equal to

χi(ω) = E[exp(i · ω · ci ·∆xi)] = E[i · (ω · ci) ·∆xi] = χ′i(ci · ω).

Thus, if

χ′i(ω) ≈ exp

i · µ′i · ω −
k∑
j=1

A′ij · |ω|αj −
k∑
j=1

Bj · sign(ω) · |ω|αj

 ,

we get
χi(ω) = χ′i(ci · ω) ≈

exp

i · ci · µ′i · ω −
k∑
j=1

A′ij · |ci|αj · |ω|αj−

k∑
j=1

Bk · sign(ci) · |ci|αj · sign(ω) · |ω|αj

 .

So, we get a representation with µi = ci · µ′i, Aij = A′ij · |ci|αj , and Bij =
B′ij · sign(ci) · |ci|αj .

Since for the sum of independent random variables, the corresponding co-
efficients simply add, we arrive at the following algorithm.

Resulting algorithm for solving the original problem – of data pro-
cessing under probabilistic uncertainty. We are given:
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– the values µ′i, A
′
i1, . . . , A′ik, B′i1, . . . , B′ik that represent the random vari-

ables ∆xi (i = 1, . . . , n); and
– the values c1, . . . , cn.

To find the value µ, A1, . . . , Ak, B1, . . . , Bk corresponding to ∆y =
n∑
i=1

ci ·∆xi,

we perform the following operations:

– first, we compute µ =
n∑
i=1

ci · µ′i;

– then, for each value j from 1 to k, we compute

Aj =

n∑
i=1

|ci|αj ·A′ji and Bj =

n∑
i=1

sign(ci) · |ci|αj ·B′ij .

This algorithm requires O(k ·n) computational steps. So, for large N , this algo-
rithm is much faster than the currently used algorithm based on characteristic
functions.

Comment. It is worth mentioning that a similar idea can be applied to the
case of fuzzy uncertainty; see [7] for details.

How to go from probability density function to this representation
and back. Natural questions are:

– What if the probability distributions for ti are given not in the above form,
but in the more traditional form of probability density functions?

– What if what we want is not the parameters µ, Aj , and Bj , but rather a
probability density function for the sum t?

Thus, we have two auxiliary problems:

– first, we need to be able to approximate a given distribution ρi(∆xi) for
∆i by the above expression – i.e., to find the corresponding values µ′i, A

′
ij ,

and B′ij ;
– second, we need to be able, given the values µ, Aj , and Bj , to find the

probability density function corresponding to the sum t.

The second auxiliary problem is reasonably straightforward:

– we form a characteristic function for ∆y, i.e., we compute the values

χ(ωk) = exp

i · ωk −
k∑
j=1

Aj · |ωk|aj −
k∑
j=1

Bj · sign(ωk) · |ωk|αj


for values ωk = ω0 + k · h on a grid, and then

– we apply Inverse Fast Fourier Transform to reconstruct the probability
density function ρ(∆y) for ∆y based on these values.

The first auxiliary problem is somewhat more complicated. Let us analyze how
we can solve it.
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3 Analysis of the First Auxiliary Problem

Natural idea: use Least Squares. We want to approximate the actual
distribution ρi(∆xi) for each of the variables ∆xi by an approximate approx-
imate distribution ρa,i(∆xi). A reasonable idea is to use the Least Squares
approximation, i.e., to find a distribution ρa,i(∆xi) for which the value∫

(ρi(∆xi)− ρa,i(∆xi))2 d(∆xi) is the smallest possible.

Let us reformulate this idea in terms of the characteristic functions.
The problem with the above idea is that while for α = 1 and α = 2, we
have explicit expressions for the corresponding probability density function
ρa(t), we do not have such an expression for any other α. Instead, we have an
explicit expression for the characteristic function χ(ω). It is therefore desirable
to reformulate the above idea in terms of characteristic functions.

We want to approximate the characteristic function χi(ω) by an expression

χa,i(ω) of the type exp

(
−
∑
j

cj · fj(ω)

)
for some fixed functions fj(ω); in our

case, these functions are −i · ω, |ω|αj , and sign(ω) · |ω|αj .
This can be done, since, due to Parceval theorem, the least squares (L2)

difference
∫

(ρi(∆xi) − ρa,i(∆xi))
2 d(∆xi) between the corresponding pdfs

ρi(∆xi) and ρa,i(∆xi) is proportional to the least squares difference between
the characteristic functions:∫

(ρi(∆xi)− ρa,i(∆xi))2 d(∆xi) =
1

2π
·
∫

(χi(ω)− χa,i(ω))2 dω.

So, minimizing the value
∫

(ρi(∆xi)− ρa,i(∆xi))2 d(∆xi) is equivalent to min-
imizing the integral

I
def
=

∫
(χi(ω)− χa,i(ω))2 dω.

How to approximate: computational challenge and its solution. The
problem with the above formulation is that the Least Squares method is very
efficient is we are looking for the coefficients of a linear dependence. However,
in our case, the dependence of the expression χa,i(ω) on the parameters µi
and Aij is non-linear, which makes computations complicated.

How can we simplify computations? We can borrow the idea from the case
of normal distributions: in this case,

– we start with the maximum likelihood methods, in which we maximize the
probability, and then

– we take negative logarithms of the pdfs – which results in the known Least
Squares method [6].

In our more general case too, if we take the negative logarithm of the charac-
teristic function, we get a linear function of the unknowns:

− ln(χa,i(ω)) = −i · µi · ω +

k∑
j=1

Aij · |ω|αj +

k∑
j=1

Bj · sign(ω) · |ω|αj .
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To use this idea, let us reformulate the objective function∫
(χi(ω)− χa,i(ω))2 dω

in terms of the difference between the negative logarithms. We are interested
in situations in which the approximation is good, i.e., in which the difference

εi(ω)
def
= χa,i(ω)− χi(ω) is small. Then, χa,i(ω) = χi(ω) + εi(ω), hence

− ln(χa,i(ω)) = − ln(χi(ω) + εi(ω)) = − ln

(
χi(ω) ·

(
1 +

εi(ω)

χi(ω)

))
=

− ln(χi(ω))− ln

(
1 +

εi(ω)

χi(ω)

)
.

Since εi(ω) is small, we can ignore terms which are quadratic and higher order
in εi(ω) and get

ln

(
1 +

εi(ω)

χi(ω)

)
≈ εi(ω)

χi(ω)
.

Thus, in this approximation,

(− ln(χi(ω)))− (− ln(χa,i(ω))) =
εi(ω)

χi(ω)
,

hence

εi(ω) = χa,i(ω)− χi(ω) = χi(ω) · ((− ln(χa,i(ω)))− (− ln(χi(ω))),

so the minimized integral takes the form

I =

∫
(χi(ω)− χa,i(ω))2 dω =

∫
χ2
i (ω) · ((− ln(χi(ω)))− (− ln(χa,i(ω)))2 dω,

or, equivalently, the form

I =

∫
(fi(ω)− fa,i(ω))2 dω,

where we denoted
fi(ω)

def
= −χi(ω) · ln(χi(ω))

and
fa,i(ω)

def
= −χi(ω) · ln(χa,i(ω)).

In our case

fa,i(ω) = −i ·µ′i ·ω ·χi(ω)+

k∑
j=1

A′ij ·χi(ω) · |ω|αj +

k∑
j=1

B′ij ·χi(ω) ·sign(ω) · |ω|αj .

In other words, we need to find the coefficients µ′i, A
′
ij , and B′ij by applying

the Least Squares method to the approximate equality

− ln(χi(ω)) · χi(ω) ≈

−i · µ′i · ω · χi(ω) +

k∑
j=1

A′ij · χi(ω) · |ω|αj +

k∑
j=1

B′ij · χi(ω) · sign(ω) · |ω|αj .

Thus, we arrive at the following algorithm.
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4 A New Granular-Based Algorithm for Data Processing under
Probabilistic Algorithm

Problem: reminder. We know:

– the probability distributions for ∆x1, . . . , ∆xn, and
– the coefficients c1, . . . , cn.

We want to find the probability distribution for

∆y =

n∑
i=1

ci ·∆xi.

Preliminary step. We select the values α1 < . . . < αk. For example, we
can have these values uniformly distributed on the interval [1, 2], by taking

αj = 1 +
j − 1

k − 1
. For example:

– for k = 2, we get α1 = 1 and α2 = 2,
– for k = 3, we get α1 = 1, α2 = 1.5, and α3 = 2.

We then represent the probability distribution of each random variable z by
parameters µ, A1, . . . , Ak, and B1, . . . , Bk for which

E[exp(i · ω · z)] ≈ exp

i · µ · ω −
k∑
j=1

Aj · |ω|αj −
k∑
j=1

Bj · sign(ω) · |ω|αj

 .

Comment. A (slightly) better selection of the values αj is described in the
Appendix.

Main algorithm. Suppose that for each i from 1 to n, we know the values
µ′i, A

′
ij , and B′ij that describe the probability distribution for ∆xi. Then, we

compute the parameters µ, Aj , and Bj that correspond to ∆y as follows:

µ =

n∑
i=1

ci · µ′i;

Aj =

n∑
i=1

|ci|αj ·A′ij ;

Bj =

n∑
i=1

sign(ci) · |ci|αj ·B′ij .

First auxiliary algorithm. Suppose that we know the probability density
function ρi(∆xi), and we want to find the corresponding parameters µ′i, A

′
ij ,

and B′ij . This can be done as follows.
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– first, we apply the Fast Fourier Transform to compute the values of the
characteristic function χ′i(ωk), k = 1, . . . , N ;

– then, we use the Least Squares method to solve the following system of
approximate equations:

− ln(χi(ωk)) · χi(ωk) ≈

−i ·µ′i ·ωk ·χi(ωk) +

k∑
j=1

A′ij ·χi(ωk) · |ωk|αj +

k∑
j=1

B′ij ·χi(ω) · sign(ω) · |ω|αj .

Second auxiliary algorithm. Suppose that we know the values µ, Aj , and
Bj corresponding to ∆y, and we want to find the probability density function
ρ(∆y). For this, we do the following:

– first, for all the values ωk on a grid, we compute the values

χ(ωk) = exp

i · µ · ωk −
k∑
j=1

Aj · |ωk|αj −
k∑
j=1

Bj · sign(ωk) · |ωk|αj

 ;

– then, we apply Fast Inverse Fourier Transform to these values, and get the
desired probability density function ρ(∆y).

5 Numerical Examples

We have tested our method on several examples, let us provide two such ex-
amples. In both examples, we used k = 3, α1 = 1, α2 = 1.5, and α3 = 2.

Example 1: formulation of the problem. Let us assume that:

– the first measurement errors ∆x1 is normally distributed with 0 mean and
standard deviation 1,

– the second measurement error ∆x2 has Laplace distribution, with proba-

bility density ρ2(∆x2) =
1

2
· exp(−|∆x2|),

– and c1 = c2 = 1.

We want to find the probability distribution for

∆y = c1 ·∆x1 + c2 ·∆x2 = ∆x1 +∆x2.

Example 1: applying the first auxiliary algorithm. First, we apply the
first auxiliary algorithm to describe each of these distributions in terms of
the values µ′i, A

′
ij , and B′ij . According to the first auxiliary algorithm, first,
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we applied the Fourier transform to compute the computed the characteristic
functions. As a result, we get

χ1(ω) = exp

(
−1

2
· ω2

)
and χ2(ω) =

1

1 + ω2
.

Then, we apply the Least Squares method on the interval [−5, 5]. As a result,
we get the following values:

µ′1 = 0, A′11 = A12 = 0, A′13 =
1

2
, B′1j = 0;

µ′2 = 0, A′21 = −0.162, A′22 = 1.237, A′23 = −0.398, B′2j = 0.

Example 1: applying the main algorithm. Then, we applied the main
algorithm and computed

µ = 0, A1 = −0.162, A2 = 1.237, A3 = 0.102, Bj = 0.

Example 1: applying the second auxiliary algorithm. To test the quality
of our results, we applied the second auxiliary algorithm and got the (approx-
imate) probability density function ρa(∆y) for the sum.

To gauge the quality of this approximation, we also applied the current
exact (N · ln(N)-time) algorithm, and found the exact value ρ(∆y). The com-
parison between the actual probability distribution ρ(∆y) and the approxi-
mate pdf ρa(∆y) is given on Fig. 1. The corresponding mean square error√∫

(ρ(∆y)− ρa(∆y))2 d(∆y) is equal to 0.01.

Example 2: formulation of the problem. Let us assume that:

– both ∆x1 and ∆x2 have Laplace distributions, with ρ1(∆x2) =

exp(−2|∆x2|) and ρ1(∆x2) =
3

2
· exp(−3|∆x2|),

– and c1 = c2 = 1.

We want to find the probability distribution for

∆y = c1 ·∆x1 + c2 ·∆x2 = ∆x1 +∆x2.

Example 2: applying the first auxiliary algorithm. First, we apply the
first auxiliary algorithm to describe each of these distributions in terms of
the values µ′i, A

′
ij , and B′ij . According to the first auxiliary algorithm, first,

we applied the Fourier transform to compute the computed the characteristic
functions. As a result, we get

χ1(ω) =
4

4 + ω2
and χ2(ω) =

9

9 + ω2
.
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Fig. 1 How good is the proposed approximation: Example 1

Then, we apply the Least Squares method on the interval [−5, 5]. As a result,
we get the following values:

µ′1 = 0, A′11 = 0.283, A′12 = −0.685, A′13 = 0.171, B′1j = 0;

µ′2 = 0, A′21 = 0.156, A′22 = −0.327, A′23 = 0.061, B′2j = 0.

Example 2: applying the main algorithm. Then, we applied the main
algorithm and got

µ = 0, A1 = 0.439, A2 = −1.013, A3 = 0.232, Bj = 0.

Example 2: applying the second auxiliary algorithm. To test the quality
of our results, we applied the second auxiliary algorithm and got the (approx-
imate) probability density function ρa(∆y) for the sum.

To gauge the quality of this approximation, we also applied the current ex-
act algorithm, and found the exact value ρ(∆y). The comparison between the
actual probability distribution ρ(∆y) and the approximate pdf ρa(∆y) is given

on Fig. 1. The corresponding mean square error
√∫

(ρ(∆y)− ρa(∆y))2 d(∆y)

is approximately equal to 0.008 – i.e., smaller than 0.01.
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6 Conclusions

In general, data processing means that:

– we know the values of the inputs x1, . . . , xn, and
– we apply an algorithm f(x1, . . . , xn) to these inputs to get the desired

value y.

Often, the inputs come from measurements, and measurements are never
absolutely accurate: with certain probabilities, we can have different values

of the difference ∆xi
def
= x̃i − xi between the measurement result x̃i and

the actual (unknown) value of the corresponding quantity. Thus, the result
ỹ = f(x̃1, . . . , x̃n) of applying the data processing algorithm to the measure-
ment results is, in general, different from the desired value y = f(x1, . . . , xn).

So, when processing data under such probabilistic uncertainty, it is desir-
able to get not only the result ỹ = f(x̃1, . . . , x̃n), but also the probability

distribution of the accuracy ∆y
def
= ỹ − y of this data processing result. There

exist several techniques for solving this problem; however, often, these tech-
niques take too much computation time. In such situations, it is desirable
to come up with a faster algorithm for data processing under probabilistic
uncertainty.

In this paper, we show that it is possible to design such an algorithm if we
apply granularity ideas. Specifically, we propose to do the following:

– decompose each given distribution into granules of appropriate types,
– process the resulting granular data type-by-type, and then
– combine the results of type-by-type data processing into the desired prob-

ability distribution.

As a result, we indeed get a faster algorithm for data processing under prob-
abilistic uncertainty.

Acknowledgements The authors are thankful to Witold Pedrycz and Shyi-Ming Chen
for their encouragement, and to the anonymous referees for valuable suggestions.
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A Appendix: Non-Uniform Distribution of αj is Better

Idea. If we select two values αj too close to each other, there will be too much correlation
between them, so adding the function corresponding to the second value does not add much
information to what we know from a function corresponding to the first value.

We are approximating a general function (logarithm of a characteristic function) as a
linear combination of functions |t|αj . If two values αj and αj+1 are close, then the function
|t|αj+1 can be well approximated by a term linear in |t|αj , thus, the term proportional to
|t|αj+1 is not needed.

It therefore makes sense to select the values αj in such as way that for each j, the part
of |t|αj+1 that cannot be approximated by terms proportional to |t|αj should be the largest
possible.

Let us reformulate this idea in precise terms. For every two functions f(t) and g(t),
the part of g(t) which cannot be represented by terms a · f(t) (proportional to f(t)) can be
described as follows. It is reasonable to describe the difference between the two functions
f(t) and g(t) by the least squares (L2) metric

∫
(f(t)− g(t))2 dt. In these terms, the value

of a function itself itself can be described as its distance from 0, i.e., as
∫

(f(t))2 dt.

When we approximate a function g(t) by a term a ·f(t), then the remainder g(t)−a ·f(t)

has the value
∫

(g(t) − a · f(t))2 dt. The best approximation occurs when this value is the

smallest, i.e., when it is equal to min
a

∫
(g(t)−a·f(t))2 dt. Out of the original value

∫
(g(t))2 dt,

we have unrepresented the part equal to min
a

∫
(g(t)− a · f(t))2 dt. Thus, the relative size of

what cannot be represented by terms a · f(t) can be defined as a ratio

R(f(t), g(t)) =

min
a

∫
(g(t)− a · f(t))2 dt∫

(g(t))2 dt
.

Let us simplify the resulting expression. This expression can be simplified if we find
the explicit expression for a for which the value

∫
(g(t)−a ·f(t))2 dt is the smallest possible.

Differentiating the minimized expression with respect to a and equating the derivative to 0,
we conclude that

−
∫

(g(t)− a · f(t)) · f(t) dt = 0,

i.e., that

a ·
∫

(f(t))2 dt =

∫
f(t) · g(t) dt,

and

a =

∫
f(t) · g(t) dt∫
(f(t))2 dt

.

For this a, the value
∫

(g(t)− a · f(t))2 dt takes the form∫
(g(t)− a · f(t))2 dt =

∫
(g(t))2 dt− 2a ·

∫
f(t) · g(t) dt+ a2 ·

∫
(f(t)) dt.
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Substituting the above expression for a into this formula, we conclude that∫
(g(t)− a · f(t))2 dt =

∫
(g(t))2 dt−

2(
∫
f(t) · g(t) dt)2∫
(f(t))2 dt

+
(
∫
f(t) · g(t) dt)2∫

(f(t))2 dt
,

i.e., that ∫
(g(t)− a · f(t))2 dt =

∫
(g(t))2 dt−

(
∫
f(t) · g(t) dt)2∫

(f(t))2 dt
.

Thus, the desired ratio takes the form

R(f(t), g(t))
def
=

min
a

∫
(g(t)− a · f(t))2 dt∫

(g(t))2 dt
= 1−

(
∫
f(t) · g(t) dt)2

(
∫

(f(t))2 dt) · (
∫

(g(t))2 dt)
.

Thus, we arrive at the following optimization problem.

Resulting optimization problem. To make sure that the above remainders are as large
as possible, it makes sense to find the values αopt

1 < . . . < αopt
k

that maximize the smallest
of the remainders between the functions f(t) = |t|αj and g(t) = |t|αj+1 :

min
j
R

(
|t|α

opt
j , |t|α

opt
j+1

)
= max
α1<...<αk

min
j
R(|t|αj , |t|αj+1 ).

Solving the optimization problem. Let us consider an interval [−T, T ] for some T . Since
the function is symmetric, it is sufficient to consider the values from [0, T ].

For f(t) = tα and g(t) = tβ , the integral in the numerator of the ratio is equal to∫ T

0

f(t) · g(t) dt =

∫ T

0

tα · tβ dt =

∫ T

0

tα+β dt =
Tα+β+1

α+ β + 1
.

Similarly, the integrals in the denominator take the form∫ T

0

f2(t) dt =

∫ T

0

t2α dt =
T 2α+1

2α+ 1

and ∫ T

0

g2(t) dt =

∫ T

0

t2β dt =
T 2β+1

2β + 1
,

so

R = 1−

T 2(α+β+1)

(α+ β + 1)2

T 2α+1

2α+ 1
·
T 2β+1

2β + 1

.

One can see that the powers of T cancel each other, and we get

R = 1−
(2α+ 1) · (2β + 1)

(α+ β + 1)2
,

or, equivalently, if we denote r
def
=

β + 0.5

α+ 0.5
, we get

R = R(r)
def
= 1− 4 ·

r

(1 + r)2
.
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The derivative of the function R(r) is equal to

dR

dr
= −4 ·

(1 + r)2 − 2 · (1 + r)

(1 + r)4
= −4 ·

(1 + r) · (1 + r − 2)

(1 + r)4
=

4 ·
(1 + r) · (r − 1)

(1 + r)4
= 4 ·

r − 1

(1 + r)3
.

So this derivative is positive for all r > 1. Thus, the function R(r) is monotonically in-

creasing, and looking for the values αopt
j for which min

j
R(|t|αj , |t|αj+1 ) is the largest is

equivalent to looking for the values αopt
j for which the smallest min

j

αj+1 + 0.5

αj + 0.5
of the ratios

r =
αj+1 + 0.5

αj + 0.5
attains the largest possible value:

min
j

αopt
j+1 + 0.5

αopt
j + 0.5

= max
α1<...<αk

min
j

αj+1 + 0.5

αj + 0.5
.

One can check that this happens when αj + 0.5 = 1.5 ·
(

5

3

)(j−1)/(k−1)

. Indeed, in this

case, min
j

αj+1 + 0.5

αj + 0.5
=

(
5

3

)1/(k−1)

. We cannot have it larger: if we had min
j

αj+1 + 0.5

αj + 0.5
>(

5

3

)k−1

, then we would have
αj+1 + 0.5

αj + 0.5
>

(
5

3

)k−1

for all j. Here,

αk + 0.5 = (α1 + 0.5) ·
α2 + 0.5

α1 + 0.5
·
α3 + 0.5

α2 + 0.5
· . . . ·

αk + 0.5

αk−1 + 0.5
.

The first factor α1 + 0.5 is ≥ 1.5, each of the other k− 1 terms is greater than

(
5

3

)1/(k−1)

,

so for their product, we get

αk + 0.5 > 1.5 ·
((

5

3

)1/(k−1)
)k−1

= 1.5 ·
5

3
= 2.5,

while we assumed that all the values αj are from the interval [1, 2], and so, we should have
αk + 0.5 ≤ 2.5.

Resulting optimal values of αj . Thus, the optimal way is to not to take the values
uniformly distributed on the interval [1, 2], but rather take the values

αopt
j = 1.5 ·

(
5

3

)(j−1)/(k−1)

− 0.5

for which the logarithms ln(αopt
j +0.5) =

j − 1

k − 1
· ln
(

5

3

)
= ln(1.5) are uniformly distributed.

Comment. It is worth mentioning that there is intriguing connection between these values
αj and music: for example, the twelve notes on a usual Western octave correspond to the
following frequencies:

– the first note corresponds to the frequency f1,
– the second note corresponds to the frequency f2 = f1 · 21/12,
– the third note correspond to the frequency f3 = f1 · 22/12,
– . . . ,
– the last note corresponds to the frequency f12 = f1 · 211/12, and
– the first note of the next octave corresponds to the frequency f13 = f1 · 2.

For these frequencies, the logarithms ln(fj) are uniformly distributed.
Similar formulas exist for five-note and other octaves typical for some Oriental musical

traditions.


