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Abstract. At first glance, it seems to make sense to conclude that when
a 1 dollar reward tomorrow is equivalent to a D < 1 dollar reward today,
the day-after-tomorrow’s 1 dollar reward would be equivalent to D ·D =
D2 dollars today, and, in general, a reward after time t is equivalent to
D(t) = Dt dollars today. This exponential discounting function D(t) was
indeed proposed by the economists, but it does not reflect the actual
human behavior. Indeed, according to this formula, the effect of distant
future events is negligible, and thus, it would be reasonable for a person
to take on huge loans or get engaged in unhealthy behavior even when the
long-term consequences will be disastrous. In real life, few people behave
like that, since the actual empirical discounting function is different: it
is hyperbolic D(t) = 1/(1 + k · t). In this paper, we use symmetry and
fuzzy ideas to explain this empirical phenomenon.

1 Discounting: Theoretical Foundations, Empirical Data,
and Related Challenge

What is discounting. Future awards are less valuable than the same size
awards given now. This phenomenon is known as discounting; see, e.g., [2, 4, 6,
7, 9–11, 15] for details.

Procrastination is an inevitable consequence of discounting. Suppose
that we have a task which is due by a certain deadline. This can be a task of
submitting a grant proposal, or of submitting a paper to a conference.

In this case, the rewards is the same no matter when we finish this task –
as long as we finish it before the deadline. Similarly, the overall negative effect
caused by the need to do some boring stuff is the same no matter when we do
it. But, due to discounting, if we perform this task later, today’s negative effect
is smaller than if we perform this task today. The further in the future is this
negative effect, the smaller is its influence on our today’s happiness. Thus, a
natural way to maximize today’s happiness is to postpone this task as much as
possible – which is exactly what people do; see, e.g., [3, 9].
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A simple theoretical model of discounting. How can we describe discount-
ing in numerical terms? At first glance, providing numerical description for dis-
counting is a straightforward idea.

Indeed, let us assume that 1 dollar tomorrow is equivalent to D < 1 dollars
today. This is true for every day: 1 dollar at the day t + 1 is equivalent to D
dollars in day t.

This means, in particular, that 1 dollar in day t0+2 is equivalent to D dollars
at time t0+1. Since 1 dollar on day t0+1 is equivalent to D dollars at the initial
moment of time t0, D dollars on day t0 + 1 are equivalent to D · D dollars on
day t0. Thus, we can conclude that 1 dollar at day t0 + 2 is equivalent to D2

dollars at moment t0.
Similarly, 1 dollar at moment t0 + 3 is equivalent to D dollars at moment

t0 + 2 and thus, to D ·D2 = D3 dollars at moment t0. In general, by induction

over t, we can show that 1 dollar at moment t0 + t is equivalent to D(t)
def
= Dt

dollars at the current moment t0.
We can rewrite the above expression D(t) = Dt as

D(t) = exp(−a · t), (1)

where a
def
= − ln(D). Because of this form, this discounting is known as exponen-

tial.

Practical problem with exponential discounting. At first glance, exponen-
tial discounting is a very reasonable idea. However, it has a problem: exponential
functions decrease very fast, and for large t, the value exp(−a · t) becomes indis-
tinguishable from 0.

In practical terms, this means that a person looks for an immediate reward
even if there is a significant negative downside in the distant future.

Such behavior indeed happens: a young man takes many loans without taking
into account that in the future, he will have to pay; a young person ruins his
health by using drugs, not taking into account that in the future, this may lead to
a premature death. A person commits a crime without taking into consideration
that eventually, he will be caught and punished.

Such behavior does happen, but such behavior is abnormal. Most people do
not take an unrealistic amount of loans, most people do not ruin their health
during their youth, most people do not commit crimes. This means that for most
people, discounting decreases much slower than the exponential function.

So how to we describe discounting: empirical data. Empirical data shows
that discounting indeed decrease much slower than predicted by the exponential
function: namely, 1 dollar at moment t0 + t is equivalent to

D(t) =
1

1 + k · t
(2)

dollars at moment t0 + t. This formula is known as hyperbolic discounting; see,
e.g., [2, 4, 6, 7, 9–11, 15].
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Problem: how can we explain the empirical data. In principle, there exist
many functions that decrease slower than the exponential function exp(−a · t).
So why, out of all these functions, we observe the hyperbolic one?

What we do in this paper. In this paper, we use symmetries to provide a
theoretical explanation for the empirical discounting formula. To be more precise,
our theoretical explanation leads to a family of functions of which hyperbolic
discounting is one of the possibilities. Then, we use fuzzy ideas to select the
hyperbolic discounting from all other possible expressions.

2 Analysis of the Problem

The idea of a re-scaling. Let D(t) denote the discounting of a reward which
is t moments into the future, i.e., the amount of money such that getting D(t)
dollars now is equivalent to getting 1 dollar after time t.

By definition, D(0) means getting 1 dollar with no delay, so D(0) = 0. It is
also reasonable to require that as the time period time t increases, the value of
the reward goes to 0, so that lim

t→+∞
D(t) = 0.

It is also reasonable to require that a small change in t should lead to small
changes in D(t), i.e., that the function D(t) be differentiable (smooth).

The further into the future we get the reward, the less valuable this reward is
now, so the function D(t) is increasing as the time t increases. Thus, if we further
delay all the rewards by some time s, then each value D(t) will be replaced by a
smaller value D(t+s). We can describe this replacement as D(t+s) = Fs(D(t)),
where the function Fs(x) re-scales the original discount value D(t) into the new
discount value D(t+ s).

For the exponential discounting (1), the re-scaling Fs(x) is linear: D(t+s) =

C ·D(t), where C
def
= exp(−a · s), so we have Fs(x) = C · x. For the hyperbolic

discounting (2), the corresponding re-scaling Fs(x) is not linear.
Which re-scaling should we select?

Which re-scalings are reasonable: formulating this question in precise
mathematical terms. We want to select some reasonable re-scalings. What
does “reasonable” mean? Of course, linear re-scalings should be reasonable.

Also, intuitively, if a re-scaling is reasonable, then its inverse should also
be reasonable. Similarly, if two re-scalings are reasonable, then applying them
one after another should also lead to a reasonable re-scaling. In other words, a
composition of two re-scalings should also be reasonable. In mathematical terms,
we can conclude that the class of all reasonable re-scalings should be closed under
inverse transformation and composition of two mappings. This means that with
respect to the composition operation, such re-scalings must form a group.

We want to be able to determine the transformation from this group based
on finitely many experiments. In each experiment, we gain a finite number of
values, so after a finite number of experiments, we can only determine a finite
number of parameters. Thus, we should be able to select an elements of the
desired transformation group based on the values of finitely many parameters.
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In mathematical terms, this means that the corresponding transformation group
should be finite-dimensional.

Summarizing: we want all the transformations Fs(x) to belong to a finite-
dimensional transformation group of functions of one variable that contains all
linear transformations.

Which re-scalings are reasonable: answer to the question. It is known
(see, e.g., [5, 13, 16]) that the only finite-dimensional transformation groups of
functions of one variable that contain all linear transformations are the group of
all linear transformations and the group of all fractional-linear transformations

a+ b · x
1 + c · x

.

Thus, our informal requirement that each re-scaling is reasonable implies that
each re-scaling should be fractionally linear:

Fs(x) =
a(s) + b(s) · x
1 + c(s) · x

.

So, we arrive at the following requirement.

Definition 1.We say that a smooth decreasing function D(t) for which D(0) = 1
and lim

t→∞
D(t) = 0 is a reasonable discounting function if for every s, there exist

values a(s), b(s), and c(s) for which

D(t+ s) =
a(s) + b(s) ·D(t)

1 + c(s) ·D(t)
. (3)

3 First Result

Proposition 1. A function D(t) is a reasonable discounting function if and

only if it has one of the following forms: D(t) = exp(−a · t), D(t) =
1

1 + k · t
,

D(t) =
1 + a

1 + a · exp(k · t)
, or D(t) =

a

(a+ 1) · exp(k · t)− 1
, for some a > 0 and

k > 0.

Comment. The first discounting function corresponds to exponential discounting,
the second to the hyperbolic discounting, the other two functions correspond to
the more general case.

Both exponential and hyperbolic discounting can be viewed as the limit case
of the general formula. Indeed, in the limit a → ∞, both general expressions tend
to the formula D(t) = exp(−k · t) corresponding to the exponential discounting.

On the other hand, if we tend k to 0, we get exp(k · t) ≈ 1 + k · t, so for
a(k) = α · k, the second general formula takes the form

D(t) =
α · k

(1 + α · k) · (1 + k · t)− 1
.



Empirical Non-Exponential Discounting Explained 5

The denominator of this expression has the form

1 + α · k + k · t+ α · k2 · t− 1 = α · k + (k + α · k2) · t,

so

D(t) =
α · k

α · k + (k + α · k2) · t
.

Dividing both numerator and denominator of this formula by α · k, we get the

hyperbolic discounting D(t) =
1

1 + k′ · t
, with k′ = k+

1

α
, i.e., in the limit k → 0,

with k′ =
1

α
.

Proof.

1◦. Let us first simplify the requirement (3).

This simplification is possible since in the limit when t → ∞, we have
D(t) → 0 and D(t + s) → 0. Tending both sides of the equality (3) to the
limit, we conclude that a(s) = 0. Thus, the formula (3) can be reformulated in
an equivalent simplified form:

D(t+ s) =
b(s) ·D(t)

1 + c(s) ·D(t)
. (4)

2◦. It is difficult to solve functional equations like equation (4). However, we often
know how to solve differential equations. We would therefore like to transform
(4) into a differential equation. For that, we need to first check that all the terms
in this equality are differentiable.

We already know that the function D(t) is differentiable. Let us now prove
that the functions b(s) and c(s) are differentiable.

Indeed, if we multiply both sides of the formula (4) by the denominator of
the right-hand side, we get:

D(t+ s) + c(s) ·D(t) ·D(t+ s) = b(s) ·D(t).

If we now move all the terms containing b(s) and D(s) to the left-hand side and
all the other terms to the right-hand side, we conclude that

b(s) · (−D(t)) + c(s) · (D(t) ·D(t+ s)) = −D(t+ s).

Thus, for each s, if we take two different values t = t1 and t = t2, we will get a
system of two linear equations from which we can determine the two unknowns
b(s) and c(s):

b(s) · (−D(t1)) + c(s) · (D(t1) ·D(t1 + s)) = −D(t1 + s);

b(s) · (−D(t2)) + c(s) · (D(t2) ·D(t2 + s)) = −D(t2 + s).
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The solution of a system of linear equation can be explicitly described by
the Cramer’s rule. According to this rule, we have a differentiable formula that
describes the solution to a system in terms of the coefficients at the unknowns
and of the right-hand sides. In our case, both coefficients and right-hand sides are
differentiable functions of s – since the discounting functionD(t) is differentiable.
Thus, we conclude that the functions b(s) and c(s) are also differentiable.

3◦. Now that we know that all the functionsD(t), b(s), and c(s) are differentiable,
we can differentiate both sides of the formula (4) with respect to s and take s = 0.
After differentiation, we get the following differential equation:

D′(t+ s) =
b′(s) ·D(t)

1 + c(s) ·D(t)
− b(s) ·D(t) · c′(s) ·D(t)

(1 + c(s) ·D(t))2
,

where b′, c′, and d′ denote the derivatives of the corresponding functions. Let us
now take s = 0. In this case, D(t+ s) = D(t), so we have b(0) = 1 and c(0) = 1.
So, we get:

D′(t) = b′(0) ·D(t)− c′(0) · (D(t))2,

i.e.,
dD

dt
= B ·D − C ·D2, (5)

where we denoted B
def
= b′(0) and C

def
= c′(0).

4◦. The equation (5) has two parameters B and C. They cannot be both equal
to 0, since then (5) would imply that D(t) is a constant, not depending on time t
at all – but we know that the function D(t) is decreasing. Thus, one of these two
coefficients has to be different from 0. We therefore have three possible cases:

– the case when B ̸= 0 and C = 0,
– the case when B = 0 and C ̸= 0, and
– the case when B ̸= 0 and C ̸= 0.

Let us consider these three cases one by one.

5◦. Let us first consider the case when B ̸= 0 and C = 0. In this case, the equation

(5) has the form
dD

dt
= B ·D. Moving all the terms containing D to the left-hand

side and all the other terms to the right-hand side, we conclude that
dD

D
= B ·dt.

Integrating both sides, we get ln(D) = B · t+C0 for some constant C0. Thus, for
D(t) = exp(ln(D(t))), we get the formula D(t) = exp(C0) · exp(B · t). From the
condition D(0) = 1, we conclude that exp(C0) = 1 and thus, D(t) = exp(B · t).
From the requirement that the function D(t) be decreasing, we conclude that
B < 0, i.e., that B = −a for some a > 0, and D(t) = exp(−a · t).

6◦. Let us now consider the case when B = 0 and C ̸= 0. In this case, the

equation (5) has the form
dD

dt
= −C · D2. Moving all the terms containing D

to the left-hand side and all the other terms to the right-hand side, we conclude
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that
dD

D2
= −C · dt. Integrating both sides, we get − 1

D
= −C · t + C0 for

some constant C0. Thus, D(t) =
1

−C0 + C · t
. From the condition D(0) = 1, we

conclude that C0 = −1 and thus, D(t) =
1

1 + C · t
. From the requirement that

the function D(t) be decreasing, we conclude that C > 0. This is the hyperbolic
expression for k = C.

7◦. Let us now consider the generic case when B ̸= 0 and C ̸= 0. In this case,

the equation (5) has the form
dD

dt
= B · D − C · D2, i.e., equivalently, that

dD

dt
= −C · (D2 − r · D), where we denoted r

def
=

B

C
. Moving all the terms

containing D to the left-hand side and all the other terms to the right-hand
side, we conclude that

dD

D2 − r ·D
= −C · dt. (6)

Here, D2 − r · D = D · (D − r). We can therefore represent the fraction
1

D2 − r ·D
as a linear combination of the fractions

1

D
and

1

D − r
:

1

D2 − r ·D
=

C1

D
+

C2

D − r
. (7)

Multiplying both sides of the equality (7) by the denominator of the left-hand
side, we conclude that 1 = C1 ·(D−r)+C2 ·D, i.e., that 1 = −C1 ·r+(C1+C2)·D.

This equality must hold for all D, so for D = 0, we get 1 = −C1 ·r and C1 = −1

r

and for D = 1, we get C2 = −C1 and thus, C2 =
1

r
. Thus, the formula (6) takes

the form
1

r
·
(

dD

D − r
− dD

D

)
= −C · dt.

Multiplying both sides by r =
B

C
and taking into account that r ·C =

B

C
·C = B,

we conclude that
dD

D − r
− dD

D
= −B · dt.

Integrating both sides, we get

ln(D − r)− ln(D) = −B · t+ C0 (8)

for some constant C0. Here,

ln(D − r)− ln(D) = ln

(
D − r

D

)
= ln

(
1− r

D

)
.

Thus, the formula (8) takes the form

ln
(
1− r

D

)
= −B · t+ C0.
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Applying exp(x) to both sides, we conclude that

1− r

D
= C ′ · exp(−B · t),

where C ′ def
= exp(C0). Thus,

r

D
= 1− C ′ · exp(−B · t),

and
D(t) =

r

1− C ′ · exp(−B · t)
.

For t = 0, we get 1 = D(0) =
r

1− C ′ , hence r = 1− C ′, and we have

D(t) =
1− C ′

1− C ′ · exp(−B · t)
. (9)

Let us now analyze what happens in the limit when t → ∞, The corre-
sponding asymptotics depends on where B > 0 or B < 0. If B > 0, we get
exp(−B · t) → 0, hence the expression (9) tends to 1 − C ′. The fact that this
limit is 0 implies that 1− C ′ = 0, but in this case, D(t) would be identically 0,
and this is not the case (e.g., D(0) = 1 ̸= 0). Thus, B < 0, i.e., B = −k for some
k > 0, and hence,

D(t) =
1− C ′

1− C ′ · exp(k · t)
.

Here, we cannot have 0 < C ′ < 1, because otherwise, we will have the value

t =
1

k
· ln

(
1

C ′

)
for which the denominator is 0 and for which, therefore, D(t)

is not defined. We cannot have C ′ = 0 – then D(t) would not depend on time t
at all; similarly, we cannot have C ′ = 1. So, must have either C ′ < 0 or C ′ > 1.
When C ′ < 0, i.e., when C ′ = −a for some a > 0, we get the expression

D(t) =
1 + a

1 + a · exp(k · t)
.

When C ′ > 1, i.e., C ′ = 1 + a for some a > 0, we get

D(t) =
a

(a+ 1) · exp(k · t)− 1
.

The proposition is proven.

4 Fuzzy Ideas Help to Select the Appropriate Discounting
Function

What we have shown so far: a brief reminder. Up to now, we have used the
symmetry-based ideas to come up with a family of possible discounting functions.



Empirical Non-Exponential Discounting Explained 9

The resulting family includes the historically first exponential discounting model,
the empirically confirmed hyperbolic discounting model, and also a more general
family that includes both exponential and hyperbolic models as particular cases.

Remaining question. The remaining question is: how can we explain the fact
that, out of several possible models, the hyperbolic discounting function has been
empirically confirmed?

We cannot extract any more information from the symmetry ideas, so let
us use common sense to select the appropriate discounting function from all
discounting functions which are consistent with the symmetry ideas.

First idea and why it does not work. At first glance, it may seem that we
can use the same argument as we used against the exponential function: when t
is large, exp(−k · t) is small, and thus, the effect of discounting is negligible.

However, since the hyperbolic model is a particular (limit) case of the general
model, this argument does not work: for small value of the parameters k and
a = α · k, the results of the general model are practically indistinguishable from
the results of hyperbolic discounting. Thus, we need a different idea.

Second idea: let us use fuzzy logic. Since we cannot directly use common
sense ideas, let us try to use them indirectly, via a formalization of informal
common sense ideas as provided by fuzzy logic; see, e.g., [1, 8, 12, 14, 17].

According to common sense, if we consider a large interval of time t, the
discounting D(t) is small. If we know change the time period, the resulting

change in D(t) – i.e., the rate of change

∣∣∣∣dD(t)

dt

∣∣∣∣ – should very small.

In fuzzy logic, the simplest way to describe “very” is to square the corre-
sponding value. For example, if u is small, then u2 is “very small”. Thus, a
natural fuzzy-logic-based interpretation of the above common sense idea is that

we the derivative
dD(t)

dt
should be proportional to (D(t))2.

As we have discussed in the proof of our proposition, the resulting differ-
ential equation leads to the hyperbolic discounting. Thus, by combining fuzzy
ideas with symmetry-based ideas, we can indeed explain the empirically observed
ubiquity of the hyperbolic discounting.
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