
Why Rectified Linear Neurons Are Efficient:
Symmetry-Based, Complexity-Based, and

Fuzzy-Based Explanations

L. Olac Fuentes1, Justin Parra1, Elizabeth Anthony2, and
Vladik Kreinovich1

Departments of 1Computer Science and 2Geological Sciences
University of Texas at El Paso
El Paso, Texas 79968, USA

ofuentes@utep.edu, jrparra2@miners.utep.edu, eanthony@utep.edu,

vladik@utep.edu

Abstract. Traditionally, neural networks used a sigmoid activation
function. Recently, it turned out that piecewise linear activation func-
tions are much more efficient – especially in deep learning applications.
However, so far, there have been no convincing theoretical explanation
for this empirical efficiency. In this paper, we show that, by using differ-
ent uncertainty techniques, we can come up with several explanations for
the efficiency of piecewise linear neural networks. The existence of sev-
eral different explanations makes us even more confident in our results –
and thus, in the efficiency of piecewise linear activation functions.

1 Rectified Linear Neurons: Formulation of the Problem

Why neural networks: a brief reminder. One of the main objectives of
designing computers is that they would solve intelligent tasks, tasks that we
normally solve by using our brains. It is therefore reasonable, when designing
computational devices, to emulate how our brain works.

In the brain, signals come from the special sensor cells in the eyes, ears, etc.,
and are processed by other cells called neurons. The signals from the sensors
come as series of electric spikes. The intensity of the corresponding signal is
reflected by the frequency of the spikes.

Signal processing cells – neurons – usually:

– take inputs from several cells (sensor cells or other data processing neurons),
– process the summary input signal, and
– send the resulting signal to other neurons – or to the cells that perform some

activities (e.g., move a finger, close an eye, slow down the heart rate, etc.).

To be more precise, when a neuron gets signals x1, . . . , xn from different inputs:

– these signals are first aggregated into a linear combination

x = w1 · x1 + . . .+ wn · xn + w0,

and then

2 L. O. Fuentes, J. Parra, E. Anthony, and V. Kreinovich

– an appropriate transformation y = s0(x) is applied to the aggregated sig-
nal x.

As a result, we get the output

y = s0(w1 · x1 + . . .+ wn · xn + w0). (1)

The corresponding function s0(x) is known as the activation function; see,
e.g., [2].

This is exactly how the standard artificial neural networks – that emulate
biological neural networks – work:

– we feed the inputs xi into one or more neurons, then
– we feed these neuron’s outputs into other neurons, etc.

We can have simple networks, in which inputs go into the intermediate layer,
and the outputs of the intermediate layer are collected by neurons from the final
layer. We can have neural networks with more layers. Interestingly, it turns out
that deep learning neural networks – i.e., networks with a large number of layers
– are the most efficient ones; see, e.g., [3].

Which activation functions are most effective. In the past, most neural

networks used the sigmoid activation functions s0(x) =
1

1 + exp(−k · x)
, the

activation function which provides the most adequate description of data pro-
cessing in biological neurons.

However, recently, it was shows that we can make neural networks more
efficient if instead, we use rectified linear neurons, with piecewise linear activation
function s0(x) = max(x, 0), i.e.:

• s0(x) = x when x ≥ 0, and
• s0(x) = 0 for x < 0.

Such neurons are especially efficient in deep learning [3].
In particular, we successfully used rectified linear neurons to predict volcanic

eruptions based on preceding seismic activity; see, e.g., [9, 10].

Comment. It is easy to prove that 3-layer neural networks with rectified lin-
ear neurons are universal approximators for continuous functions on a bounded
domain. Indeed:

– each function can be represented as a difference of two convex functions (see,
e.g., [13]), and

– each convex function is a maximum of all tangent linear functions – and thus,
can be well approximate if we take finitely many tangent linear functions [13].

Why are rectified linear neurons efficient: an open question. While
empirical evidence shows that rectified linear neurons work best, there seems
to be no convincing theoretical explanation for this empirical success. Without
such an explanation, it is not clear whether these neurons are indeed the best

Why Rectified Linear Neurons Are Efficient 3

– or maybe some other activation function would lead to even more efficient
computations?

What we do in this paper. In this paper, we show that several different
uncertainty-related techniques can lead to a theoretical explanation of why rec-
tified linear activation functions are empirically successful.

The fact that we get several different theoretical explanations makes us very
confident that the empirical success of rectified linear neurons is not an accident
– it is a well-justified phenomenon.

2 First Symmetry-Based Explanation

Numerical values depend on the measuring unit. When we measure a
physical signal, the resulting numerical value depends on what measuring unit
we use in this measurement. For example, when we measure the height in meters,
the person’s height is 1.7. However, if we measure the same height in centimeters,
we get a different numerical value: 170.

In general, if instead of the original measuring unit, we use a different unit
which us λ times smaller than the previous one, then all the numerical values get
multiplied by λ; e.g., if we replace meters by centimeters, all numerical values
get multiplied by λ = 100.

When is an activation function independent of the measuring unit?
The choice of a measuring unit is rather arbitrary, it does not change the physical
situation. It is reasonable to require that the results of applying the correspond-
ing non-linear activation function not change is we simply change the measuring
unit.

In precise terms, this means that if we have y = s0(x), then for any λ > 0,
we should have y′ = s0(x

′), where we denoted x′ = λ · x and y′ = λ · y. Let us
see what we can derive based on this requirement.

Definition 1. We say that a function s0(x) is a scale-invariant if, for every x,
y, and λ > 0, y = s0(x) implies that λ · y = s0(λ · x).

Proposition 1. A function s0(x) is scale-invariant if and only if it has the
following form:

• s0(x) = c+ · x for x ≥ 0 and
• s0(x) = c− · x for x < 0,

for some constants c+ and c−.

Comment. One can easily check that each such function has the form

s0(x) = c− · x+ (c+ − c−) ·max(x, 0).

Thus, if c+ ̸= c−, i.e., if the corresponding activation function is not linear, then
the class of functions represented by s0-neural networks coincides with the class
of functions represented by rectified linear neural networks.

4 L. O. Fuentes, J. Parra, E. Anthony, and V. Kreinovich

Proof of Proposition 1.

1◦. Every input x is either equal to 0, or positive, or negative. Let us consider
these three cases one by one.

2◦. Let us first consider the case of x = 0.
For x = 0 and λ = 2, scale invariance means that if y = s0(0), then 2y =

s0(0). Thus, 2y = y, hence y = s0(0) = 0.

3◦. Let us now consider the case of positive values x.

Let us denote c+
def
= s0(1). Then, by using scale-invariant with:

• x instead of λ,
• 1 instead of x, and
• c+ instead of y,

we conclude that for all x > 0, c+ = s0(1) implies that c+ · x = s0(x).
For positive values x, the desired equality is proven.

4◦. To complete the proof of this result, we need to prove it for negative inputs x.

Let us denote c−
def
= −s0(−1). In this case, s0(−1) = −c. Thus, for every

x < 0, by using scale-invariance with:

• λ = |x|,
• x = −1, and
• y = s0(−1) = −c−,

we conclude that

s0(x) = s0(|x| · (−1)) = |x| · s0(−1) = |x| · (−c−) = c− · x.

The proposition is proven.

3 Second Symmetry-Based Explanation

Idea. We are interested in optimal activation functions, i.e., functions which are
the best according to some optimality criterion. When we say “an optimality
criterion”,

– we do not necessarily need to have numerical values attached to each acti-
vation function, but

– we do not need to able to compare different activation functions.

Thus, we need to have an order (at least a partial order) ≼ on the set of all
possible activation functions.

A function s0(x) is optimal if is better (or of the same quality) than all
other possible activation functions, i.e., if s ≼ s0 for all possible activation func-
tions s(x).

Why Rectified Linear Neurons Are Efficient 5

We want an optimality criterion to be useful, i.e., we want to use it to select
an activation function. Thus, there should be at least one activation function
which is optimal according to this criterion.

What if several different functions are optimal according to the given crite-
rion? In this case, we can use this non-uniqueness to optimize something else.
For example, if on a given class of benchmarks, neurons that use several different
activation functions have the same average approximation error, we can select,
among the, the function with the smallest computational complexity. This way,
instead of the original optimality criterion, we, in effect, use a new criterion
according to which s0 is better than s0 if:

– either it has the smaller average approximation error
– or it has the same average approximation error and smaller computational

complexity.

If, based on this modified criterion, we still have several different activation
functions which are equally good, we can use this non-uniqueness to optimize
something else: e.g., worse-case approximation accuracy, etc.

Thus, every time the optimality criterion selects several equally good ac-
tivation functions, we, in effect, replace it with a modified criterion, and keep
modifying it until finally we get a criterion for which only one activation function
is optimal. So, we arrive at the following definition.

Definition 2.

– By an optimality criterion, we mean a partial order ≼ on the set of all
continuous functions of one variable.

– We say that a function s0 is optimal with respect to the optimality criterion
≼ if s ≼ s0 for all functions s.

– We say that an optimality criterion is final if there exists exactly one function
which is optimal with respect to this optimality criterion.

Scale-invariance. It is reasonable to require that the quality of an activation
function does not depend on the choice of the measuring unit. Let us describe
this requirement in precise terms.

Suppose that in some selected units, the activation function has the form
s(x). If we replace the original measuring unit by a new unit which is λ times
larger that the original one, then the value x in the new units is equivalent to
λ ·x in the old units. If we apply the old-unit activation function to this amount,
we get the output of s(λ · x) of old units – which is equivalent to λ−1 · s(λ · x)
new units.

Thus, after the change in units, the transformation described, in the original
units, by an activation function s(x) is described, in the new units, by a modified
activation function λ−1 · s(λ · x). So, the above requirement takes the following
form:

Definition 3. We say that an optimality criterion ≼ is scale-invariant if for
every two functions s and s′ and for every λ > 0, the relation s ≼ s′ is equivalent

to Tλ(s) ≼ Tλ(s
′), where we denoted (Tλ(s))(x)

def
= λ−1 · s(x).

6 L. O. Fuentes, J. Parra, E. Anthony, and V. Kreinovich

Now, we are ready to formulate our result.

Proposition 2. A function s0(x) is optimal with respect to some final scale-
invariant optimality criterion if and only if it has the following form:

• s0(x) = c+ · x for x ≥ 0 and
• s0(x) = c− · x for x < 0.

Comment. Thus, we have yet another justification for the success of rectified
linear activation functions.

Proof of Proposition 2.

1◦. For every function s0(x) of the above type, we can easily find a final scale-
invariant optimality criterion for which this function is optimal: namely, we can
take the order ≼ in which s ≼ s0 for all continuous functions s(x).

One can easily check:

– that this relation is final and scale-invariant, and
– that the given function s0(x) is the only function which is optimal with

respect to this criterion.

2◦. Vice versa, let us assume that a function s0(x) is optimal with respect to
some final scale-invariant optimality criterion. Under this assumption, we need
to prove that the function s0(x) has the desired form. To prove this, let us prove
that this function is scale-invariant in the sense of Definition 1; if we prove this
scale-invariance, then the desired result will follow from Proposition 1.

In terms of the transformation Tλ, scale-invariance means that s0 = Tλ(s0)
for all s. To prove that Tλ(s0) = s0, let us prove that the function Tλ(s0) is
optimal. Then, the desired equality will follow from the fact that the optimality
criterion is final – and thus, there is only one optimal function.

To prove that the function Tλ(s0) is optimal, we need to prove that s ≼ Tλ(s0)
for all s. Due to scale-invariance of the optimality criterion, this condition is
equivalent to Tλ−1(s) ≼ s0 – which is, of course, always true, since s0 is optimal.
Thus, Tλ(s0) is also optimal, hence Tλ(s0) = s0, and by Proposition 1, the
function s0(x) has the desired form.

The proposition is proven.

4 Complexity-Based Explanation

Idea. To speed up computations, we need to make sure that the activation
function is as fast to compute as possible.

This idea. Inside the computer, every numerical operation is implemented as
a composition of the basic hardware-supported operations. These operations
include the basic arithmetic operations:

– addition a+ b,

Why Rectified Linear Neurons Are Efficient 7

– subtraction a− b,
– multiplication a · b,
– division a/b,

and the operations min(a, b) and max(a, b).
Of these operations:

– the functions min and max are the fastest,
– addition + and subtraction − are next fastest,
– followed by multiplication (which involves several additions) and
– division (which involves several multiplications);

see, e.g., [11].
The fastest-to-compute activation function is the one that uses only one

hardware supported basic operation.
We are interested in non-linear activation functions (since linear transforma-

tion are already taken care in the aggregation procedure, before we invoke the
activation function). Out of the above operations, the corresponding functions
s0(a) = a+ a0, s0(a) = a− a0, s0(a) = a0 − a, s0(a) = a · a0, and s0(a) = a/a0
are linear. The only non-linear operations are max(a, a0), min(a, a0), and a0/a.
Of these three operations, the fastest are piecewise linear operations min and
max.

Thus, the computational complexity-based analysis indeed leads to yet an-
other justification for the use of piecewise linear activation functions.

Comment. A similar justification can be made if we are thinking about a hard-
ware implementation of artificial neural networks. Indeed, in this case, a linear
combination is straightforward: just place several currents together.

The simplest nonlinear element of an electric circuit is a diode that transmits
current only in one direction. For the diode, the output is equal to x if x ≥ 0 and
to 0 otherwise, i.e., it is exactly the rectified linear activation function – which
is thus the easiest to implement in hardware.

5 Fuzzy-Based Justification

Need to use fuzzy techniques. When we use neural network technique to
learn a phenomenon, we generate a neural network that provides a good ap-
proximation to this phenomenon. In particular, when we use the neural network
technique to provide a solution to a problem – e.g., to provide an appropriate
control – we thus produce a neural network that generates the corresponding
solution.

In human reasoning, we try our best not only to provide good solutions to
real-life problems, but also to provide a clear justification for these solutions.

It is therefore reasonable to look for activation functions for which the cor-
responding solution makes direct sense, i.e., for which this solution can be inter-
pretable in human-understandable natural-language terms.

8 L. O. Fuentes, J. Parra, E. Anthony, and V. Kreinovich

The need for translating imprecise (“fuzzy”) expert knowledge into precise
(and thus, computer-understandable) form has been well recognized since the
early 1960s. Techniques that provide such a translation are known as fuzzy tech-
niques; see, e.g., [1, 4, 6, 7, 14].

In terms of these techniques, the above idea can be reformulated as follows:
we want to select an activation function for which all the functions representing
the corresponding neural networks are directly interpretable in fuzzy terms.

Which functions can be interpretable in fuzzy terms. It is known that if
we use 1−a as negation, min(a+b, 1) as an “or”-operation and max(a+b−1, 0)
as an “and”-operation, then functions that can be represented as compositions
of logical operations are exactly piece-wise linear functions with integer coeffi-
cients [5, 8, 12].

To these operations, we can add more subtle operations. For example, it is
natural to interpret “somewhat A” as A∨A – which, in the above logic, leads to
2a (or, to be more precise, to min(2a, 1)). It is therefore reasonable to define an
inverse hedge “very A” as the statement B for which “somewhat B” is equivalent
to A. In the above logic, this would mean defining our degree of confidence in
“very A” as a/2, where A is our degree of confidence in the original statement A.

We can iterate this “very” hedge, thus getting values a/4, a/8, etc. By com-
bining these hedges and logical operations, we can get any piecewise linear func-
tions with binary-rational coefficients.

This leads to a new justification for piecewise linear activation func-
tions. We want a neural network to be interpretable. For the neural network to
be interpretable, we need to make sure that all the data processing algorithms
performed by a neural network can be described in fuzzy terms. Since implies
that all such algorithms must be piecewise-linear.

This conclusion means, in particular, that the activation function should be
piecewise linear. Thus, we indeed get one more justification for using piecewise
linear activation functions in neural networks.

Acknowledgments

This work was supported in part by the US National Science Foundation grant
HRD-1242122.

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A His-
torical Perspective, Oxford University Press, New York, 2017.

2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York,
2006.

3. I. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, MIT Press, Cambridge,
Massachusetts, 2016.

4. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle
River, New Jersey, 1995.

Why Rectified Linear Neurons Are Efficient 9

5. R. McNaughton, “A theorem about infinite-valued sentential logic”, Journal of
Symbolic Logic, 1951, Vol. 16, pp. 1–13.

6. J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Direc-
tions, Springer, Cham, Switzerland, 2017.

7. H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman and
Hall/CRC, Boca Raton, Florida, 2006.

8. V. Novák, I. Perfilieva, and J.. Močkoř, Mathematical Principles of Fuzzy Logic,
Kluwer, Boston, Dordrecht, 1999.

9. J. Parra, O. Fuentes, E. Anthony, and V. Kreinovich, “Prediction of volcanic erup-
tions: case study of rare events in chaotic systems with delay”, Proceedings of the
IEEE Conference on Systems, Man, and Cybernetics SMC’2017, Banff, Canada,
October 5–8, 2017, to appear.

10. J. Parra, O. Fuentes, E. Anthony, and V. Kreinovich, “Use of machine learning to
analyze and – hopefully – predict volcano activity”, Acta Politechnica Hungarica,
to appear.

11. D. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative Approach,
Morgan Kaufman, Waltham, Massachusetts, 2012.

12. I. Perfilieva and A. Tonis, “Functional system in fuzzy logic formal theory”, BUSE-
FAL, 1995, Vol. 64, pp. 42–50.

13. R. T. Rockafeller, Convex Analysis, Princeton University Press, Princeton, New
Jersey, 1970.

14. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–353.

