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Abstract: In modern mathematics, many concepts and ideas are described in terms of category theory.1

From this viewpoint, it is desirable to analyze what can be determined if, instead of the basic category2

of sets, we consider a similar category of fuzzy sets. In this paper, we describe a natural fuzzy analog3

of the category of sets and functions, and we show that, in this category, fuzzy relations (a natural4

fuzzy analogue of functions) can be determined in category terms – of course, modulo 1-1 mapping5

of the corresponding universe of discourse and 1-1 re-scaling of fuzzy degrees.6
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1. Introduction8

What are categories: a brief reminder. While set theory remains the foundations for mathematics, in9

modern mathematics, many concepts and ideas are described in terms of category theory.10

A category is a tuple (Ob, Mor, :, id, ◦), where:11

• Ob is the set whose elements are called objects,12

• Mor is a set whose elements are called morphisms,13

• : Mor → Ob × Ob is a mapping that assigns, to each morphism f ∈ Mor a pair of objects14

(a, b) ∈ Ob×Ob; this is denoted by f : a→ b; the object a is called f ’s domain, and b is called f ’s15

range;16

• id is a mapping that assigns, to each object a ∈ Ob, a morphism ida : a→ a; and17

• ◦ is a mapping that assigns, to each pair of morphisms f : a → b and g : b → c for which the18

range of f is equal to the domain of g, a new morphism g ◦ f : a→ c so that for every f : a→ b,19

we have idb ◦ f = f ◦ ida = f .20

For example:21

• We can have a category Set in which objects are sets and morphisms are functions.22

• We can have a category Top in which objects are topological spaces and morphisms are continuous23

mappings.24

• We can have a category Lin, in which objects are linear spaces, and morphisms are linear25

mappings, etc.26

Many mathematical concepts can be reformulated in terms of an appropriate category.27
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What happens in the fuzzy case? If we allow fuzzy sets (see, e.g., see, e.g., [2–6]), what is a natural28

analog of the category Set? In the category Set, morphisms from a to b are functions. In the crisp case,29

for each function f : a→ b and for each element x ∈ a, we have a unique value of y = f (x) ∈ b.30

Fuzzy means that for each x ∈ a, instead of a single value y = f (x) ∈ b, we may have different31

possible values y ∈ b, with different degrees of confidence. In general, we can have all possible values32

y ∈ b. For each x ∈ a and for each y ∈ b, we have a degree R f (x, y) to which y is a possible value of33

f (x). Thus, a natural fuzzy analog of a function is a fuzzy relation.34

Composition g ◦ f of fuzzy relations f : a → b and g : b → c can be defined in the usual way.
Namely, we want to know, for each pair of elements x ∈ a and c ∈ z, to what extent there exists a y ∈ b
for which f brings us from a to b and g brings us from y to z. If we interpret “and” as min and there
exists (an infinite “or”) as max, then the above description translates into the following formula:

Rg◦ f (x, z) = max
y

min(R f (x, y), Rg(y, z)). (1)

Since we have fuzzy relations, there is no need to explicitly describe the domain of each morphism:35

if for some x 6∈ a, the value f (x) is not defined, this simply means that for this x, we have R f (x, y) = 036

for all y ∈ b. Similarly, there is no need to describe the range,37

Thus, without losing generality, we can assume that the relation R f (x, y) is defined for all x ∈ U38

and y ∈ U.39

Thus, without losing generality, we can assume that we have only one object – the universal set U.40

Morphisms are then fuzzy relations, with the usual composition relation (1).41

Need for an ordered category. In the crisp case, every property is either true or false.42

As we gain more information, we may get more confident in our knowledge. For example, we43

may start with the situation in which, for a given x, several different values f (x) are possible, but after44

acquiring new information, we are becoming more and confident that there is only one possible value45

y0 of f (x). This means that for the remaining value y0, the degree of possibility R f (x, y0) remains the46

same, but for all y 6= y0, the corresponding degree Ff (x, y) decreases. To capture this phenomenon, it47

is reasonable to supplement the category structure with the corresponding component-wise ordering48

between fuzzy relations (morphisms): f ≤ f ′ if and only if R f (x, y) ≤ R f ′(x, y) for all x and y.49

Formulation of the problem. What can be defined based on this category-theory formulation? Can50

we uniquely determine the elements of the Universe of discourse U and the corresponding relations51

based on the categorical information?52

2. Results53

Towards a precise formulation of the problem. It is easy to see that if we have a 1-1 mapping54

π : U → U of the Universe of discourse U onto itself (i.e., a bijection), then the corresponding55

mapping, then the corresponding transformation R(x, y)→ R(π(x), π(y)) is an automorphism of the56

corresponding category in the sense that it preserves the identity, composition, and order.57

Similarly, if we have a 1-1 monotonic mapping H : [0, 1] → [0, 1], then the transformation58

R(x, y) → H(R(x, y)) is also such an automorphism. Indeed, since we only only consider order59

between degrees, monotonic transformation of degrees should not change anything.60

It turns out that modulo this simple equivalence, we can uniquely determine all the elements x ∈61

U and all the relations R(x, y) from the ordered category, i.e., in precise terms, that every automorphism62

is a composition of the automorphisms of the above two types. The proof of this result will be based63

on an explicit description of elements of U and relations R f (x, y) in category terms.64

Let us describe the problem in precise terms.65

Definition 1. By an ordered category, we mean a category in which for every two objects a and b, there is a66

partial order ≤ on the set Mor(a, b) of all morphisms from a to b.67
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Definition 2. Let U be a set; we will call it the Universe of discourse. By a U-fuzzy ordered category, we68

mean an ordered category in which:69

• the only object is the set U,70

• morphisms are fuzzy relations, i.e., mappings R : U ×U → [0, 1],71

• the morphism id is defined as the mapping for which id(x, x) = 1 and id(x, y) = 0 for x 6= y,72

• the composition of morphisms is defined by the formula

(g ◦ f )(x, z) = max
y

min( f (x, y), g(y, z)),

and73

• the order between the morphisms is the componentwise order: f ≤ g means that f (x, y) ≤ g(x, y) for all74

x and y.75

The U-fuzzy ordered category will be denoted by FU .76

Comment. One can easily see that this is indeed a category, i.e., that the composition of morphisms77

is associative, and the composition of any morphism f with the identity morphism id is equal to f :78

f ◦ id = id ◦ f = f .79

Definition 3. An automorphism of an ordered category is a pair consisting of bijections F : Ob→ Ob and80

G : Mor→ Mor for which:81

• for all f , a, and b, we have f : a→ b if and only if G( f ) : F(a)→ F(b);82

• for all f and g, we have G( f ◦ g) = G( f ) ◦ G(g),83

• for all a, we have G(ida) = idF(a), and84

• for all f and g, we have f ≤ g if and only if G( f ) ≤ G(g).85

Proposition. Let π : U → U be a bijection of U, and let H : [0, 1] → [0, 1] be an increasing bijection of the86

interval [0, 1]. Then, the mapping Gπ,H that maps each morphism f (x, y) into a morphism (Gπ,H( f ))(x, y) =87

H(π(x), π(y)) is an automorphism of the category FU .88

Our main result is that these are the only automorphisms of the category FU .89

Theorem. For every set U, every automorphism of the ordered category FU has the form Gπ,H for90

some bijection π : U → U and for some monotonic bijection H : [0, 1]→ [0, 1].91

Comment. This may not be very clear from the formulation of the result, but the proof will show that92

we can determine elements of the set U and values of the mappings f (x, y) in category terms, i.e., we93

can indeed define fuzzy relations – a natural fuzzy analogue of functions – in category terms.94

3. Proofs95

3.1. Proof of the Proposition96

This proposition is easy to prove: a permutation π does not change anything, and the increasing97

bijection does not change the order.98

3.2. Proof of the Theorem99

1◦. First, we can describe the morphism f0 for which f0(x, y) = 0 for all x and y in ordered-category100

terms, as the only morphism f for which f ≤ g for all morphisms g.101

Indeed, clearly f0 ≤ g for all g. Vice versa, if f ≤ g for all g, then, in particular, f ≤ f0, i.e.,102

f (x, y) ≤ f0(x, y) = 0 for all x and y, and since f (x, y) ∈ [0, 1], this means that indeed f (x, y) = 0 for103

all x and y.104
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2◦. Let us first characterize all the morphisms f 6= f0 for which the set {g : g ≤ f } is linearly ordered.105

Since an automorphism preserves order, every automorphism maps such morphisms into morphisms106

with the same property.107

Specifically, we will prove that a morphism has this property if and only if we have f (x, y) > 0108

only for one pair (x, y), and we have f (x′, y′) = 0 for all other pairs (x′, y′).109

Indeed, one can easily check that for such morphisms f , the only morphisms g ≤ f are the110

morphisms which also have g(x′, y′) = 0 for all pairs (x′, y′) 6= (x, y). Such morphisms g are uniquely111

described by the corresponding value g(x, y). For every two such morphisms g and g′, depending on112

whether g(x, y) ≤ g′(x, y) or g′(x, y) ≤ g(x, y), we have g ≤ g′ or g′ ≤ g, i.e., the set {g : g ≤ f } is113

indeed linearly ordered.114

Vice versa, let us prove that if a morphism has this property, then it has f (x, y) > 0 only for one115

pairs (x, y). Indeed, if we have f (x, y) > 0 and f (x′, y′) > 0 for two different pairs (x, y) 6= (x′, y′),116

then we would be able to construct two different morphisms g ≤ f and g′ ≤ f for which g 6≤ g′ and117

g′ 6≤ g. Namely, we take:118

• g(x, y) = f (x, y) > 0 and g(x′′, y′′) = 0 for all pairs (x′′, y′′) 6= (x, y), and119

• g′(x, y) = f (x′, y′) > 0 and g(x′′, y′′) = 0 for all pairs (x′′, y′′) 6= (x′, y′).120

This contradicts our assumption that the set {g : g ≤ f } is linearly ordered.121

3◦. Let us now describe, in ordered-category terms, morphisms f for which f (x, x) > 0 for some a ∈ U122

and f (x′, y′) for all other pairs (x′, y′) 6= (x, x).123

Indeed, out of all morphisms described in Part 2 of this proof, such morphisms can be determined124

by the additional condition that f ◦ f = f . This condition is clearly satisfied for such morphisms,125

while for morphisms for which f (x, y) > 0 for some b 6= a, the composition f ◦ f is, as one can see,126

identically 0 and thus, different from f .127

4◦. One can see that two morphisms f and f ′ of the type described in Part 3 are connected by the128

relation ≤ (i.e., f ≤ f ′ or f ′ ≤ f ) if and only if they correspond to the same element a ∈ U.129

Thus, we can describe elements of the set U in ordered-category terms: as equivalent classes of130

morphisms of the type described in Part 3 with respect to the relation ( f ≤ f ′) ∨ ( f ′ ≤ f ).131

Hence, if we have an automorphism, elements are mapped into elements in a 1-1 way, i.e., indeed132

we have a bijection of the Universe of discourse.133

5◦. Let us now show that the degrees from the interval [0, 1] can also be described – modulo increasing134

bijections of this interval – in ordered-category terms.135

5.1◦. Indeed, for each element a ∈ U, different degrees v ∈ [0, 1] can be associated with different136

morphisms f described in Part 3 of this proof, i.e., morphisms for which:137

• f (x, x) > 0 for this element a and138

• f (x′, y′) for all pairs (x′, y′) 6= (x, x).139

Different degrees are then simply associated with different values v = f (x, x).140

This construction provides us with degrees at each element a ∈ U. To get a general description of141

degrees, we need to relate the values corresponding to different elements x, x′ ∈ U.142

5.2◦. Let us denote, by fx,v, the morphism for which:143

• fx,v(x, x) = v and144

• fv(x′, y′) = 0 for all pairs (x′, y′) 6= (x, x).145

We want, for every a 6= b, to connect the values v and w corresponding to functions fx,v and fy,w. This
connection comes from the following auxiliary result:

w ≤ v⇔ ∃ fx→y ∃ fy→x ( fx→y ◦ fx,v · fy→x = fy,w).
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Indeed, by definition of a composition, the values of the composition g ◦ f cannot exceed the largest146

value of each of the composed relations g and f . Thus, if fx→y ◦ fx,v · fy→x = fy,w, then the value147

fy,w(b, b) = w cannot exceed the maximum value v of the function fx,v; thus, w ≤ v.148

Vice versa, if w ≤ v, then we can take the following morphisms fx→y and fy→x:149

• fx→y(x, y) = w and fx→y(x′, y′) = 0 for all other pairs (x′, y′) 6= (x, y), and, similarly,150

• fy→x(y, x) = w and fy→x(x′, y′) = 0 for all other pairs (x′, y′) 6= (y, x).151

In this case, as one can easily check, we have fx→y ◦ fx,v · fy→x = fy,w.152

5.3◦. Now that we know how to describe the relation w ≤ v for functions fx,v and fy,w in
ordered-category form, we can describe equality v = w between the degrees v and w corresponding to
morphisms fx,v and fy,w as (v ≤ w)& (w ≤ v), i.e., in view of Part 5.2, as:

(∃ fx→y ∃ fy→x ( fx→y ◦ fx,v · fy→x = fy,w))& (∃gy→x ∃gx→y (gy→x ◦ fy,w · gx→y = fx,v)).

This enables us to identify degrees v ∈ [0, 1] in ordered-category terms – by identifying them153

with the functions fx,v and taking into account the above possibility to compare degrees at different154

elements a.155

Hence, if we have an automorphism, degrees are mapped into degrees in a 1-1 and156

order-preserving way, i.e., indeed we have a monotonic bijection H : [0, 1]→ [0, 1].157

6◦. To complete the proof, we need to show how, for each morphism f and for every two elements a158

and b, we can describe the value f (x, y) in ordered-category terms. This will complete the proof that159

the given automorphism has the form Gπ,H for the mappings π and H as identified in Sections 4 and 5160

of this proof.161

6.1◦. Let us first prove the following auxiliary result:

∃ fy→x ( fy→x ◦ fy,1 ◦ f ◦ fx,1 = fx,v)⇔ v ≤ f (x, y).

Indeed, by definition of a composition, the composition c def
= f ◦ fx,1 has the following form:162

• c(x, y′) = f (x, y′) for all y′ and163

• c(x′, y′) = 0 for all y′ and for all x′ 6= a.164

Similarly, the composition c′ def
= fy,1 ◦ f ◦ fx,1 = fy,1 ◦ c has the following form:165

• c′(x, y) = f (x, y), and166

• c′(x′, y′) = 0 for all other pairs (x′, y′) 6= (x, y).167

As we have argued in Part 5 of this proof, the value of a composition function cannot exceed the168

maximum value of each of the composed morphisms. Thus, for the composition fy→x ◦ fy,1 ◦ f ◦ fx,1 =169

fy→x ◦ c′, the maximum value cannot exceed the maximum value f (x, y) of the morphism c′. Thus, if170

fy→x ◦ c′ = fx,v, the maximum value v of the morphism fx,v cannot exceed f (x, y): v ≤ f (x, y).171

Vice versa, for every v ≤ f (x, y), we can construct a morphism fy→x for which fy→x ◦ c′ = fx,v:172

namely, we can take:173

• fy→x(y, x) = v, and174

• fy→x(x′, y′) = 0 for all pairs (x′, y′) 6= (y, x).175

One can easily check that in this case indeed fy→x ◦ c′ = fx,v.176

6.2◦. For each morphism f and for every two elements a and b, we can identify the degree f (x, y) as177

the largest degree v for which the inequality v ≤ f (x, y) holds.178

Since, according to Part 6.1 of this proof, the inequality v ≤ f (x, y) can be described in179

ordered-category terms, we can thus conclude that the degree f (x, y) can also be described in180

ordered-category terms.181

The proposition is proven.182
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4. Conclusions183

Many concepts of modern mathematics, starting from the basic notions of sets and functions,184

are described in terms of category theory. It is therefore reasonable to ask whether similar fuzzy185

notions can also be described in category terms. In this paper, we show that fuzzy relations – i.e., fuzzy186

analogues of functions – can indeed be described in category terms.187
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