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Abstract: In modern mathematics, many concepts and ideas are described in terms of category theory.1

From this viewpoint, it is desirable to analyze what can be determined if, instead of the basic category2

of sets, we consider a similar category of fuzzy sets. In this paper, we describe a natural fuzzy analog3

of the category of sets and functions, and we show that, in this category, fuzzy relations (a natural4

fuzzy analogue of functions) can be determined in category terms – of course, modulo 1-1 mapping5

of the corresponding universe of discourse and 1-1 re-scaling of fuzzy degrees.6
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1. Introduction8

How to describe possible changes: the notion of categories. The world and all its objects change with9

time, they change both by themselves and when we perform some actions. To be able to describe each10

specific change, it is desirable to have a general framework for describing all possible transformations11

that lead to such changes.12

In addition to applying a single transformation, we can also apply first a transformation f , and13

then a transformation g. As a result, we get a composition g ◦ f of two transformations f and g. If we14

apply first a transformation f , then a transformation g, and after that a transformation h, then the same15

resulting change can be described in two different ways: as h ◦ (g ◦ f ) and as (h ◦ g) ◦ f . Thus, for the16

corresponding composition operation ◦, we always have associativity h ◦ (g ◦ f ) = (h ◦ g) ◦ f .17

In addition to transformations that actually change the object a, we can always consider a18

“transformation” that keeps the object intact. Such a transformation is usually denoted by ida. If we19

add this “transformation” as one of the composition steps, it will not change the result, i.e., we have20

f ◦ ida = ida ◦ f .21

In addition to transformation that simply change the object, we can also consider the22

transformations that transform the original object into something else. For example, boiling transforms23

water into steam, cooking transforms eggs into an omelette, etc. If we take the possibility of several24

objects into account, then the above scheme becomes what is a known as a category; see, e.g., [1]. In the25

category theory, transformations are known as morphisms.26

In precise terms, a category is a tuple (Ob, Mor, :, id, ◦), where:27

• Ob is the set whose elements are called objects,28

• Mor is a set whose elements are called morphisms,29
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• : Mor → Ob × Ob is a mapping that assigns, to each morphism f ∈ Mor a pair of objects30

(a, b) ∈ Ob×Ob; this is denoted by f : a→ b; the object a is called f ’s domain, and b is called f ’s31

range;32

• id is a mapping that assigns, to each object a ∈ Ob, a morphism ida : a→ a; and33

• ◦ is a mapping that assigns, to each pair of morphisms f : a → b and g : b → c for which the34

range of f is equal to the domain of g, a new morphism g ◦ f : a→ c so that for every f : a→ b,35

we have idb ◦ f = f ◦ ida = f .36

Category theory is one of the main tools of modern mathematics. Because of its universal character,37

category theory plays an important role in modern mathematics [1]. Many new mathematical concepts38

are defined in category terms, and many original concepts are re-formulated in category terms – such a39

reformulation in very general terms often enables mathematicians to generalize their ideas and results40

to a more general context.41

Different areas of mathematics can be described in terms of different categories:42

• Set theory is naturally described in terms of a category Set in which objects are sets and43

morphisms are functions.44

• Topology is described in terms of a category Top in which objects are topological spaces and45

morphisms are continuous mappings.46

• Linear algebra is naturally described in terms of a category Lin, in which objects are linear spaces,47

and morphisms are linear mappings, etc.48

Many mathematical concepts can be reformulated in terms of an appropriate category; see, e.g.,49

[3–5,8–14] and references therein.50

What happens in the fuzzy case? If we allow fuzzy sets (see, e.g., see, e.g., [2,7,16,17,19]), what is51

a natural analog of the category Set? In the category Set, morphisms from a to b are functions. In52

the crisp case, for each function f : a → b and for each element x ∈ a, we have a unique value of53

y = f (x) ∈ b.54

Fuzzy means that for each x ∈ a, instead of a single value y = f (x) ∈ b, we may have different55

possible values y ∈ b, with different degrees of confidence. In general, we can have all possible values56

y ∈ b. For each x ∈ a and for each y ∈ b, we have a degree R f (x, y) ∈ [0, 1] to which y is a possible57

value of f (x). Thus, a natural fuzzy analog of a function is a fuzzy relation.58

Composition g ◦ f of fuzzy relations f : a → b and g : b → c can be defined in the usual way.
Namely, we want to know, for each pair of elements x ∈ a and c ∈ z, to what extent there exists a y ∈ b
for which f brings us from a to b and g brings us from y to z. If we interpret “and” as min and there
exists (an infinite “or”) as max, then the above description translates into the following formula:

Rg◦ f (x, z) = max
y

min(R f (x, y), Rg(y, z)). (1)

Since we have fuzzy relations, there is no need to explicitly describe the domain of each morphism:59

if for some x 6∈ a, the value f (x) is not defined, this simply means that for this x, we have R f (x, y) = 060

for all y ∈ b. Similarly, there is no need to describe the range,61

Thus, without losing generality, we can assume that we have only one object – the universal set U,62

and that the relation R f (x, y) is defined for all x ∈ U and y ∈ U. Morphisms are then fuzzy relations,63

with the usual composition relation (1).64

Need for an ordered category. In the crisp case, every property is either true or false.65

As we gain more information, we may get more confident in our knowledge. For example, we66

may start with the situation in which, for a given x, several different values f (x) are possible, but after67

acquiring new information, we are becoming more and more confident that there is only one possible68

value y0 of f (x). This means that for the remaining value y0, the degree of possibility R f (x, y0) remains69

the same, but for all y 6= y0, the corresponding degree R f (x, y) decreases. To capture this phenomenon,70



Version December 19, 2017 submitted to Axioms 3 of 7

it is reasonable to supplement the category structure with the corresponding component-wise ordering71

between fuzzy relations (morphisms): f ≤ f ′ if and only if R f (x, y) ≤ R f ′(x, y) for all x and y.72

Formulation of the problem. What can be defined based on this category-theory formulation? Can73

we uniquely determine the elements of the Universe of discourse U and the corresponding relations74

based on the categorical information?75

What we do in this paper. In this paper, as an answer to the above questions, we present an axiomatic76

description of fuzzy sets in the language of categories, with a proof of the soundness of this description.77

2. Results78

Towards a precise formulation of the problem. It is easy to see that if we have a 1-1 mapping79

π : U → U of the Universe of discourse U onto itself (i.e., a bijection), then the corresponding80

transformation R(x, y)→ R(π(x), π(y)) is an automorphism of the corresponding category in the sense81

that it preserves the identity, composition, and order.82

Similarly, if we have a 1-1 monotonically increasing mapping H : [0, 1] → [0, 1], then the83

transformation R(x, y)→ H(R(x, y)) is also such an automorphism. Indeed, since we only consider84

order between degrees, monotonic transformation of degrees should not change anything.85

It turns out that modulo this simple equivalence, we can uniquely determine all the elements x ∈86

U and all the relations R(x, y) from the ordered category, i.e., in precise terms, that every automorphism87

is a composition of the automorphisms of the above two types. The proof of this result will be based88

on an explicit description of elements of U and relations R f (x, y) in category terms.89

Let us describe the problem in precise terms.90

Definition 1. By an ordered category, we mean a category in which for every two objects a and b, there is a91

partial order ≤ on the set Mor(a, b) of all morphisms from a to b.92

Definition 2. Let U be a set; we will call it the Universe of discourse. By a U-fuzzy ordered category, we93

mean an ordered category in which:94

• the only object is the set U,95

• morphisms are fuzzy relations, i.e., mappings R : U ×U → [0, 1],96

• the morphism id is defined as the mapping for which id(x, x) = 1 and id(x, y) = 0 for x 6= y,97

• the composition of morphisms is defined by the formula

(g ◦ f )(x, z) = max
y

min( f (x, y), g(y, z)),

and98

• the order between the morphisms is the component-wise order: f ≤ g means that f (x, y) ≤ g(x, y) for all99

x and y.100

The U-fuzzy ordered category will be denoted by FU .101

Comment. One can easily see that this is indeed a category, i.e., that the composition of morphisms102

is associative, and the composition of any morphism f with the identity morphism id is equal to f :103

f ◦ id = id ◦ f = f .104

Definition 3. An automorphism of an ordered category is a pair consisting of bijections F : Ob→ Ob and105

G : Mor→ Mor for which:106

• for all f , a, and b, we have f : a→ b if and only if G( f ) : F(a)→ F(b);107

• for all f and g, we have G( f ◦ g) = G( f ) ◦ G(g),108

• for all a, we have G(ida) = idF(a), and109

• for all f and g, we have f ≤ g if and only if G( f ) ≤ G(g).110
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Comment. This definition is a natural generalization of the standard definition of automorphism of111

categories (see, e.g., [6,15,18]) to ordered categories.112

Proposition. Let π : U → U be a bijection of U, and let H : [0, 1] → [0, 1] be an increasing bijection of the113

interval [0, 1]. Then, the mapping Gπ,H that maps each morphism f (x, y) into a morphism (Gπ,H( f ))(x, y) =114

H( f (π(x), π(y))) is an automorphism of the category FU .115

Our main result is that these are the only automorphisms of the category FU .116

Theorem. For every set U, every automorphism of the ordered category FU has the form Gπ,H for117

some bijection π : U → U and for some monotonic bijection H : [0, 1]→ [0, 1].118

Comment. This may not be very clear from the formulation of the result, but the proof will show that119

we can determine elements of the set U and values of the mappings f (x, y) in category terms, i.e., we120

can indeed define fuzzy relations – a natural fuzzy analogue of functions – in category terms.121

3. Proofs122

3.1. Proof of the Proposition123

This proposition is easy to prove: a permutation π does not change anything, and the increasing124

bijection does not change the order.125

3.2. Proof of the Theorem126

1◦. First, we can describe the morphism f0 for which f0(x, y) = 0 for all x and y in ordered-category127

terms, as the only morphism f for which f ≤ g for all morphisms g.128

Indeed, clearly f0 ≤ g for all g. Vice versa, if f ≤ g for all g, then, in particular, f ≤ f0, i.e.,129

f (x, y) ≤ f0(x, y) = 0 for all x and y, and since f (x, y) ∈ [0, 1], this means that indeed f (x, y) = 0 for130

all x and y.131

2◦. Let us first characterize all the morphisms f 6= f0 for which the set {g : g ≤ f } is linearly ordered.132

Since an automorphism preserves order, every automorphism maps such morphisms into morphisms133

with the same property.134

Specifically, we will prove that a morphism has this property if and only if we have f (x, y) > 0135

only for one pair (x, y), and we have f (x′, y′) = 0 for all other pairs (x′, y′).136

Indeed, one can easily check that for such morphisms f , the only morphisms g ≤ f are the137

morphisms which also have g(x′, y′) = 0 for all pairs (x′, y′) 6= (x, y). Such morphisms g are uniquely138

described by the corresponding value g(x, y). For every two such morphisms g and g′, depending on139

whether g(x, y) ≤ g′(x, y) or g′(x, y) ≤ g(x, y), we have g ≤ g′ or g′ ≤ g, i.e., the set {g : g ≤ f } is140

indeed linearly ordered.141

Vice versa, let us prove that if a morphism has this property, then it has f (x, y) > 0 only for one142

pairs (x, y). Indeed, if we have f (x, y) > 0 and f (x′, y′) > 0 for two different pairs (x, y) 6= (x′, y′),143

then we would be able to construct two different morphisms g ≤ f and g′ ≤ f for which g 6≤ g′ and144

g′ 6≤ g. Namely, we take:145

• g(x, y) = f (x, y) > 0 and g(x′′, y′′) = 0 for all pairs (x′′, y′′) 6= (x, y), and146

• g′(x, y) = f (x′, y′) > 0 and g(x′′, y′′) = 0 for all pairs (x′′, y′′) 6= (x′, y′).147

This contradicts our assumption that the set {g : g ≤ f } is linearly ordered.148

3◦. Let us now describe, in ordered-category terms, morphisms f for which f (x, x) > 0 for some a ∈ U149

and f (x′, y′) for all other pairs (x′, y′) 6= (x, x).150

Indeed, out of all morphisms described in Part 2 of this proof, such morphisms can be determined151

by the additional condition that f ◦ f = f . This condition is clearly satisfied for such morphisms,152

while for morphisms for which f (x, y) > 0 for some b 6= a, the composition f ◦ f is, as one can see,153

identically 0 and thus, different from f .154
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4◦. One can see that two morphisms f and f ′ of the type described in Part 3 are connected by the155

relation ≤ (i.e., f ≤ f ′ or f ′ ≤ f ) if and only if they correspond to the same element a ∈ U.156

Thus, we can describe elements of the set U in ordered-category terms: as equivalent classes of157

morphisms of the type described in Part 3 with respect to the relation ( f ≤ f ′) ∨ ( f ′ ≤ f ).158

Hence, if we have an automorphism, elements are mapped into elements in a 1-1 way, i.e., indeed159

we have a bijection of the Universe of discourse.160

5◦. Let us now show that the degrees from the interval [0, 1] can also be described – modulo increasing161

bijections of this interval – in ordered-category terms.162

5.1◦. Indeed, for each element a ∈ U, different degrees v ∈ [0, 1] can be associated with different163

morphisms f described in Part 3 of this proof, i.e., morphisms for which:164

• f (x, x) > 0 for this element a and165

• f (x′, y′) for all pairs (x′, y′) 6= (x, x).166

Different degrees are then simply associated with different values v = f (x, x).167

This construction provides us with degrees at each element a ∈ U. To get a general description of168

degrees, we need to relate the values corresponding to different elements x, x′ ∈ U.169

5.2◦. Let us denote, by fx,v, the morphism for which:170

• fx,v(x, x) = v and171

• fv(x′, y′) = 0 for all pairs (x′, y′) 6= (x, x).172

We want, for every a 6= b, to connect the values v and w corresponding to functions fx,v and fy,w. This
connection comes from the following auxiliary result:

w ≤ v⇔ ∃ fx→y ∃ fy→x ( fx→y ◦ fx,v · fy→x = fy,w).

Indeed, by definition of a composition, the values of the composition g ◦ f cannot exceed the largest173

value of each of the composed relations g and f . Thus, if fx→y ◦ fx,v · fy→x = fy,w, then the value174

fy,w(b, b) = w cannot exceed the maximum value v of the function fx,v; thus, w ≤ v.175

Vice versa, if w ≤ v, then we can take the following morphisms fx→y and fy→x:176

• fx→y(x, y) = w and fx→y(x′, y′) = 0 for all other pairs (x′, y′) 6= (x, y), and, similarly,177

• fy→x(y, x) = w and fy→x(x′, y′) = 0 for all other pairs (x′, y′) 6= (y, x).178

In this case, as one can easily check, we have fx→y ◦ fx,v · fy→x = fy,w.179

5.3◦. Now that we know how to describe the relation w ≤ v for functions fx,v and fy,w in
ordered-category form, we can describe equality v = w between the degrees v and w corresponding to
morphisms fx,v and fy,w as (v ≤ w)& (w ≤ v), i.e., in view of Part 5.2, as:

(∃ fx→y ∃ fy→x ( fx→y ◦ fx,v · fy→x = fy,w))& (∃gy→x ∃gx→y (gy→x ◦ fy,w · gx→y = fx,v)).

This enables us to identify degrees v ∈ [0, 1] in ordered-category terms – by identifying them180

with the functions fx,v and taking into account the above possibility to compare degrees at different181

elements a.182

Hence, if we have an automorphism, degrees are mapped into degrees in a 1-1 and183

order-preserving way, i.e., indeed we have a monotonic bijection H : [0, 1]→ [0, 1].184

6◦. To complete the proof, we need to show how, for each morphism f and for every two elements a185

and b, we can describe the value f (x, y) in ordered-category terms. This will complete the proof that186

the given automorphism has the form Gπ,H for the mappings π and H as identified in Sections 4 and 5187

of this proof.188
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6.1◦. Let us first prove the following auxiliary result:

∃ fy→x ( fy→x ◦ fy,1 ◦ f ◦ fx,1 = fx,v)⇔ v ≤ f (x, y).

Indeed, by definition of a composition, the composition c def
= f ◦ fx,1 has the following form:189

• c(x, y′) = f (x, y′) for all y′ and190

• c(x′, y′) = 0 for all y′ and for all x′ 6= a.191

Similarly, the composition c′ def
= fy,1 ◦ f ◦ fx,1 = fy,1 ◦ c has the following form:192

• c′(x, y) = f (x, y), and193

• c′(x′, y′) = 0 for all other pairs (x′, y′) 6= (x, y).194

As we have argued in Part 5 of this proof, the value of a composition function cannot exceed the195

maximum value of each of the composed morphisms. Thus, for the composition fy→x ◦ fy,1 ◦ f ◦ fx,1 =196

fy→x ◦ c′, the maximum value cannot exceed the maximum value f (x, y) of the morphism c′. Thus, if197

fy→x ◦ c′ = fx,v, the maximum value v of the morphism fx,v cannot exceed f (x, y): v ≤ f (x, y).198

Vice versa, for every v ≤ f (x, y), we can construct a morphism fy→x for which fy→x ◦ c′ = fx,v:199

namely, we can take:200

• fy→x(y, x) = v, and201

• fy→x(x′, y′) = 0 for all pairs (x′, y′) 6= (y, x).202

One can easily check that in this case indeed fy→x ◦ c′ = fx,v.203

6.2◦. For each morphism f and for every two elements a and b, we can identify the degree f (x, y) as204

the largest degree v for which the inequality v ≤ f (x, y) holds.205

Since, according to Part 6.1 of this proof, the inequality v ≤ f (x, y) can be described in206

ordered-category terms, we can thus conclude that the degree f (x, y) can also be described in207

ordered-category terms.208

The proposition is proven.209

4. Conclusions210

Many concepts of modern mathematics, starting from the basic notions of sets and functions,211

are described in terms of category theory. many other mathematical concepts can be reformulated212

in category terms. Due to the general nature of category theory, such a reformulation often helps to213

extend notions and results from one area to different areas of mathematics.214

Because of this potential advantage, it is reasonable to ask whether similar fuzzy notions can also215

be described in category terms. In this paper, we show that fuzzy relations – i.e., fuzzy analogues of216

functions – can indeed be described in category terms. Specifically, we show that, in the corresponding217

fuzzy category, we can describe both:218

• elements of the original universe of discourse (modulo a 1-1 permutation), and219

• fuzzy degrees (modulo a 1-1 monotonic mapping from the interval [0, 1] onto itself).220

This result shows the soundness of our axiomatic description of fuzzy sets in the language of categories.221

At this moment, what we have is a very theoretical paper. However, we hope that, similarly to222

how the reformulation of crisp notions in category terms can help generalize the corresponding results,223

our reformulation will help extend fuzzy results to more general situations – and thus, will facilitate224

future applications.225
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