Z-Numbers:

How They Describe Student Confidence
and How They Can Explain (and Improve)
Laplacian and Schroedinger Eigenmap
Dimension Reduction in Data Analysis

Vladik Kreinovich, Olga Kosheleva, and Michael Zakharevich

Abstract Experts have different degrees of confidence in their statements. To de-
scribe these different degrees of confidence, Lotfi A. Zadeh proposed the notion of
a Z-number: a fuzzy set (or other type of uncertainty) supplemented by a degree
of confidence in the statement corresponding to fuzzy sets. In this chapter, we show
that Z-numbers provide a natural formalization of the competence-vs-confidence di-
chotomy, which is especially important for educating low-income students. We also
show that Z-numbers provide a natural theoretical explanation for several empiri-
cally heuristic techniques of dimension reduction in data analysis, such as Lapla-
cian and Schroedinger eigenmaps, and, moreover, show how these methods can be
further improved.

1 Need to Take Into Account Accuracy and Reliability When
Processing Data

Need for data processing. In many practical situations, we are interested in the val-
ues of the quantities xp,...,x, which are difficult (or even impossible) to measure
directly. For example, in GPS-based localization, we want to find where different
objects (and we) are, i.e., we want to find the coordinates of different objects. How-
ever, it is not possible to directly measure coordinates.

What we can measure in such situations is some auxiliary quantities yi,..., YV,
that depend on the desired quantities x; in a known way, i.e., for which y; =
fj(x1,...,x,) for known algorithms f;. For example, to find the location of an ob-
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ject, we can measure distances between objects and/or angles between directions
towards different objects.

Once we know the results y; of measuring the quantities y;, we need to recon-
struct the desired quantities x; from the corresponding system of equations:

S]\/l%fl(-xla"wxﬂ)v AR S}Vm%fm(xl’---y-xn); (1)

we write approximately equal, because measurements are never absolutely accurate,

there is usually a difference Ay; def y;j —; (known as measurement error) between
the measurement result y; and the actual value y; of the measured quantity.

The process of reconstructing x; from y; is an important case of data processing.

In some applications — e.g., in many medical situations — it is difficult to find
related easier-to-measure quantities y;, but we can find related quantities that can
be well estimated by an expert: e.g., by the patient’s appearance or reaction to dif-
ferent tests. In such situations, to reconstruct the desired quantities x;, instead of the
measurement results, we can use the expert estimates y ;.

How to take accuracy into account when processing data: probabilistic case.
In many practical situations, based on the previous experience of using the corre-
sponding measuring instruments, we know the probabilities of different values of
measurement errors. In precise terms, we know the corresponding probability den-
sity functions pj(Ay;) = p;(y; — fi(x1,...,xn)).

Measurement errors corresponding to different measurements are usually inde-
pendent. As a result, the overall probability of given observations is equal to the
product of the corresponding probabilities:

ﬁlpj(ij—fj(x“--,xn)). (1)

For different values of x;, this probability is different. It is therefore reasonable to
select the most probable combination (xi,...,x,), i.e., the combination for which
the product (1) attains the largest possible value. This quantity (1) is known as
likelihood, and the above idea is known as the Maximum Likelihood method; see,
e.g., [17].

The probabilities p;(Ay;) can be reasonably small, and the number of measure-
ments is often large. The product of a large number of small values is often too
small, sometimes smaller than the smallest positive real number in a usual computer
representation. To avoid this problem, practitioners use the fact that maximizing a
function is equivalent to minimizing its negative logarithm

ngE
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where we denoted y/;(z) & In(p;(z)).
Often, the measurement error is the result of a joint effect of a large number of
independent factors. In such situations, due to the Central Limit Theorem (see, e.g.,
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[17]), the distributions are close to Gaussian — and, be re-calibrating the measuring
instruments, we can usually safely assume that the mean of the measurement error is
. Ay;)? . -
0. In this case, p j(A y j) ~ exp (— ( ;}é) ) , where o is the standard deviation of the
J
Jj-th distribution. Thus, minimizing the expression (2) is equivalent to minimizing
the sum

> 2
o (0 = filxn, - xm) 3
) p : (3)
j=1 J
This is known as the Least Squares method.
In particular, if we do not have any reason to believe that different measurements
have different accuracy, it makes sense to assume that they all have the same accu-

racy o1 = 0> = ... In this case, (3) becomes equivalent to minimizing the sum

m

Z(f/j—fj(xl,...,xn))z. (3&)

Jj=1

How to take accuracy into account when processing data: fuzzy case. Often, in-
stead of the probabilities of different values of the approximation error, we only have
expert opinions about the possibility of different values. Describing these opinions
in computer-understandable terms was one of the main motivations for fuzzy logic;
see, e.g., [6, 10, 12, 14, 18]. It is therefore reasonable to describe these opinions in
terms of the membership functions p;(Ay;) = u;(y; — fi(x1,...,%)).

In line with the general ideas of fuzzy logic, to describe the expert’s degree of
confidence that:

o the first approximation error is Ay, and
e the second approximation error is Ay,
e efc.,

we can apply the corresponding “and”-operation (t-norm) fg (a,b), and get the value

f&(:ul ()71 _fl (xlﬂ"'7xn))7”' 7”m()~’m _fm(xla"~7xn))>‘ (4)

It is thus reasonable to select the values x; for which the degree (4) is the largest
possible.

Itis known (see, e.g., [13]) that for every € > 0, each t-norm can be approximated
by an Archimedean one, i.e., by a t-norm of the type fg (a,b) = g~ '(g(a)- g(b)) for
some increasing function g(a). Thus, without losing generality, we can assume that
our t-norm has this form. For such t-norms, the expression (4) takes the form

g (g — filxt, - sxn) o g(Mm (T — fin (X1, ,%)).

So, maximizing the expression (4) is equivalent to maximizing the product of type

(1), where we denoted p;(z) &ef g(uj(z)), and is, hence, equivalent to minimizing
the corresponding sum (2).
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Need to take reliability into account. In the above text, we implicitly assumed that
every measuring instrument functions absolutely reliably and thus, every number y;
that we get comes from the actual measurement. In practice, measuring instruments
are imperfect, sometimes they malfunction, and thus, once in a while, we get a value
that has nothing to do with the measured quantity —i.e., an outlier.

Some outliers are easy to detect and filter out: e.g., if we measure body tem-
perature and get O degrees, clearly the device is not working. In many other cases,
however, it is not so easy to detect outliers. Similarly, some expert estimates can be
way off.

In such cases, when processing data, we need to take into account that the values
y; are un-reliable: some of these values may be un-related to measurements.

2 What Do We Know About Reliability: Enter Z-Numbers

What do we know about the possible outliers: analysis of the problem. Infor-
mation about accuracy of measurements (or expert estimates) comes from our past
experience:

e we know how frequent were different deviations between the measured and ac-
tual values, and
e we can thus estimate the probabilities of different deviations Ay;.

Similarly, based on our past experience:

e we can determine how frequently the values produced by the measuring instru-
ment (or by an expert) turned out to be outliers, and
e thus, estimate the probability p; that a given value y; is an outlier.

In both cases, we arrive at the following description.

What do we know about the possible outliers: probabilistic case. In the proba-
bilistic case, for each j:

e we know the probability distribution function p;(Ay;), and
e we know the corresponding probability p;.

What do we know about the possible outliers: fuzzy case. In the fuzzy case, for
each j:

e we know the corresponding membership function ;(Ay;) — or, equivalently, the
corresponding function p;(Ay;) — and
e we also know the corresponding probability p;.

General case. L. Zadeh called such a pair (pj, p;) or (i, p;) — that describes both
the accuracy and the reliability — a Z-number; see, e.g., [1, 19].
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3 Z-Numbers and Teaching

Up to know, we considered the case when Z-numbers describe measurements or
expert estimates, but there is another important area where Z-numbers are useful:
teaching.

Namely, usually, the success of teaching is gauged by how accurate are the stu-
dents’ answers. However, it is important to also take into account how confident the
students are in their answers:

e if a student gives the right answer, but he or she is not confident, this means there
is still room for improvement,

e on the other hand, if a student gives the wrong answer, but he or she is not sure,
the situation is not so bad: it means that in a similar future real-life case, the stu-
dent will probably doublecheck or consult someone else and thus, avoid making
a wrong decision.

In [11], we showed how to take both accuracy and reliability into account when
gauging the result of teaching.

The need to take both accuracy and confidence into account is especially impor-
tant for female students, low-income students, and students from under-represented
minority groups, since these students typically show decreased confidence — even
when their accurate answers show that they have reached a high level of compe-
tence; see, e.g., [8].

4 How to Take Into Account Accuracy and Reliability When
Processing Data: Idea and Resulting Algorithm

Problem. How can we extend the formulas from [11] — designed specifically for the
teaching case — to the general data processing situation?

If we knew which values y; are outliers, we could simply ignore these values and
process all others. In practice, however, we do not know which measurement results
are outliers, we only know the probabilities of each of them being an outlier. In
principle, we could consider all possible outlier subsets — but since there are expo-
nentially many such possible subsets, this would require an un-feasible exponential
time. So what can we do?

Idea. We do not know which values y; are outliers, but knowing the probability p;
means that we know that if we repeat the measurements N times, than in approxi-
mately p; - N cases we will have accurate estimates — and in the remaining N — p;-N
cases, we will have outliers.

To utilize this information, let us consider an imaginary situation in which each
value y; is repeated N times.

Good news is that if all values y; were absolutely reliable, and simply repeat
each value y; the same number of times N, the result of data processing will not
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change. Indeed, e.g., in the minimization formulation (2), repeating each value N
times simply increases the minimized expression by a factor of N — and, of course,
both the original expression (2) and the same expression multiplied by N attains
their minimum on the exact same tuple x;.

So, it makes sense to consider repetitions. But once we have many (N) repe-
titions, we kind of know which values are outliers — namely, we know that only
N - p; of copies of ¥ are accurate estimates, etc. So, in processing data, we take into
account:

e only N - p; copies of the value y,
e only N - p, copies of the values y»,
e ctc.

When we apply the expression (2) to these values, we end up with selecting the tuple
(x1,...,X,) that minimizes the sum

X425 Sy

Strictly speaking, this expression depends on the unknown number of repetitions
N, but good news is that if we divide the above expression by N, we get a new
expression that no longer depends on N — but which attains its minimum at exactly
the same tuple (xp,...,x,). Thus, we arrive at the following recommendation.

Resulting algorithm. When we know the reliability p; of each value y;, then we
should select the tuple (xj,...,x,) that minimizes the expression

Zp/ ll’j f](xlv Py )) (5)

In particular, in the case of normal distribution, applying the same idea to formula
(3) leads to the need to minimize the expression

i f] XI? -y X 2 _ i (yj_fj(X1/7...,xn>)2 (6)

,def Gj
VPij
How good is this algorithm? To check whether this algorithm is good, we will

show, on the case study of dimension reduction, that the ideas behind this algorithm
provide a natural explanation for an empirically successful heuristic approach.

where we denoted o;
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5 Case Study: Dimension Reduction

Dimension reduction: formulation of the problem. In many practical situations,
we analyze a large number of objects of a certain type. For example, in medical
research, we study all the patients that suffer from a given disease.

In many such situations, we do not know which quantities will turn out to be
relevant. Thus, not to miss any relevant quantity, we measure as many quantities
as possible. As a result, for each object, we have a large number of measurement
results and/or expert estimates. In other words, each object is represented by a point
in a very high-dimensional space.

Processing such high-dimensional data is often very time-consuming. It is there-
fore desirable to reduce the amount of data. Good news — coming from our experi-
ence —is that in most practical situations, most of the collected data is irrelevant, that
there are usually a few important combinations of the original parameters that are
relevant for our specific problem. In other words, with respect to the corresponding
problem, we can as well use a low-dimensional representation of the data.

To use this possibility, we need to be able to reduce the data dimension.

Reformulating the dimension reduction problem in terms of Z-numbers. We
want to assign, to each point s; in the multi-D space, a point ¢; in the lower-
dimensional space. The main criterion that we want to satisfy is that if s; and s;
are close, then the corresponding points g; and ¢; should also be close.

If we had a clear (crisp) idea of which pairs (s;,s;) are close and which pairs are
not close, we would simply require that the values ¢; and g; corresponding to these
pairs are close, i.e., that

qi = qj

for all such pairs. By applying the Least Squares approach to this situation, we
would then arrive at the problem of minimizing the sum ¥ ||¢; — ¢,||>, where the sum
is taken over all such pairs. Of course, to avoid the trivial and useless solution g; =
g2 = ..., we need to “normalize” these solutions: e.g. by requiring that ¥ ||¢;||> = 1.

In practice, we usually do not have an absolutely clear idea of WhiCil points are
close to each other and which are not. A reasonable idea is to describe closeness
in probabilistic terms. Since there can be many different reasons why objects are
somewhat different, it makes sense to apply the same Central Limit theorem ar-
gument that we used before and conclude that closeness corresponds to a normal
distribution.

Since we do not have a priori knowledge of which components of the original
vectors s; are more relevant and which are less relevant, it is therefore reasonable
to assume that the corresponding Gaussian distribution is invariant with respect to
all permutations of these components (and changing their signs), and thus, that the

2
normal distribution has the form const - exp (_||512—632]> for some ¢ > 0. Thus,
we arrive at the following Z-number-type problem:
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2
gi =~ q; with probability p;; = const-exp <_”S126s21|> . (7)

Applying our algorithm to the resulting Z-number problem leads to a known
successful heuristic. If we apply the above algorithm to this problem, we arrive at
the need to minimize the expression

Y pij-llai — ;1% (8)
i

where the values p;; are defined by the formula (7). (Of course, some normalization
like ¥ ||¢i||> = 1 is needed.) This is equivalent to minimizing the sum
i

2
Y wij-llai—ajl, (8a)
i

e
Wij = exp (—Sls/”) : (7a)

20?2

where we denoted

This is indeed one of the most successful heuristic methods for dimension reduc-

tion — it is known as the Laplacian eigenmap, since its solution can be described in
2

d
terms of eigenvectors of the corresponding Laplacian operator V2@ = ¥ aT; S
i=1 0°X;
e.g..[2,3,4,5,9, 15, 16].
So, Z-numbers provide a theoretical explanation for the empirical success of
Laplace eigenmaps — a heuristic approach to dimension reduction.

ee,

Taking into account that some objects may be not relevant as well. In the above
analysis, we assumed that for each object, we are 100% sure that this object belongs
to the desired class. In practice, we are often not fully confident about this. For
example, when we study a certain disease, we are not always sure that a patient
suffers from this very disease — and not from some similar one.

In general, the further away the object from the “typical” (average) situation —
which, by shifting, we can always assume to be 0 — the less probable it is that this
object actually belongs to the desired class. In making this conclusion, we should
not take into account irrelevant components of the points s;. Thus, this conclusion
should be based only on the values g; - which contain only relevant combinations.

Similar to the above argument, we can safely assume that the corresponding dis-

lall?
o )’

tribution is Gaussian, with probability P, proportional to exp Here, dif-

ferent values o; correspond to different degrees of confidence that this object be-
longs to the class:

e when o; = 0, this means that the probability does not depend on g; at all: in other
words, we are so confident, that no matter how big the deviation from the typical
object, our degree of confidence does not change;
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e on the other hand, if o; is large, then even a small deviation from the typical value
will make us conclude that this object does not belong to the desired class.

In this case, to get a more adequate description of the situation, to the product (1),
we need to add the factors corresponding to different objects. After taking negative
logarithm, these terms are equivalent to adding terms proportional to V; - ||;||? to the

def __
sum (2), where we denoted V; = o; 2,

In particular, for the dimension reduction problem, this means that instead of
minimizing the expression (8a), we minimize a more complex expression

Y wij- i —a;l* + e Y Vi llail . ©)
i i

This expression has indeed been proposed and successfully applied — on a heuristic
basis — in [7]. This approach is known as Schroedinger eigenmap, since it corre-
sponds to using eigenvectors of the operator V¢ +const - V - ¢ from Schroedinger’s
equations in quantum physics.

Thus, Z-numbers provide a theoretical explanation for the empirical success of
this a heuristic approach as well.

Can we go beyond justification of existing approaches? A theoretical justification
of known heuristic approaches is nice, but can we learn something new from this
approach? Yes, we can.

While, as we have shown, the Schroedinger approach is well-justified for the case
when we are not sure whether objects belongs to the class, this approach is also used
in a completely different situation: when:

e we have an additional discrete value V; characterizing each object, and
e we want to require ¢; =~ g; only for objects that have close values of V; and V.

For this situation, the Schroedinger approach is not perfect: indeed, even in the
simplest case when V; takes two possible values — which we can describe as 0 and 1
— the result of minimizing the expression (9) depends on which of the two possible
value we associate with 0 and which with 1.

In view of our analysis, it is more adequate to add the similarity between the
value V; and V; to the description of closeness, i.e., to use an expression

llsi —s,II> (Vi_Vj)2>
wij = exp <— - 3 )
202 204

for some op > 0. The resulting probabilities does not change if we swap 0 and 1
value of V; — thus, the resulting minimized expression (8) will not change after this
swap, and hence, the produced optimizing arrangement g; will not change — which
is exactly what we wanted.

(10)
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