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Abstract. Fuzzy techniques describe expert opinions. At first glance,
we would therefore expect that the more accurately the corresponding
membership functions describe the expert’s opinions, the better the cor-
responding results. In practice, however, contrary to these expectations,
the simplest – and not very accurate – triangular membership functions
often work the best. In this paper, on the example of the use of mem-
bership functions in F-transform techniques, we provide a possible theo-
retical explanation for this surprising empirical phenomenon.

1 Formulation of the Problem

Practical problem: need to find trends in observations. In many practical
situations, we analyze how a certain quantity x changes with time t. For example,
we may want to analyze how an economic characteristic changes with time:

– we want to analyze the trends,
– we want to know what caused these trends, and
– we want to make predictions and recommendations based on this analysis.

To perform this analysis, we observe the values x(t) of the desired quantity
at different moments of time t. Often, however, the observed values themselves
do not provide a good picture of the corresponding trends, since the observed
values contain some random (noise-type) factors that prevent us from clearly
seeing the trends.

For economic characteristics such as the stock market value, on top of the
trend – in which we are interested – there are always day-by-day and even hour-
by-hour fluctuations. For physical measurements, a similar effect can be caused
by measurement uncertainty, as a result of which the measured values x(t) differ
from the clear trend by a random measurement error – error that differs from
one measurement to another.

How can we detect the desired trend in the presence of such random noise?
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F-transform approach to solving this problem: a brief reminder. One of
the successful approach for solving the above trend-finding problem comes from
the F-transform idea; see, e.g., [13, 14, 16–19].

One of the ideas behind F-transform comes from the fact that what we really
want is not just a quantitative mathematical model, we want a good qualitative
understanding of the corresponding trend – and of how this trend changes with
time. For example, we want to be able to say that the stock market first somewhat
decreases, then rapidly increases, etc. In other words, we want these trends to
be described in terms of time-localized natural-language properties.

Once we selected these properties, we can use fuzzy logic techniques (see,
e.g., [1, 9, 6, 12, 15, 22]) to describe these properties in computer-understandable
terms, as time-localized membership functions x1(t), . . . , xn(t). Time-localized
means that when we analyze the process x(t) on a wide time interval [T , T ]:

– the first membership function x1(t) is different from 0 only on a narrow
interval [T 1, T 1], where T 1 = T ;

– the second membership function x2(t) is different from 0 only on a narrow
interval [T 2, T 2], where T 2 ≤ T 1;

– etc.

so that the whole range [T , T ] is covered by the corresponding ranges [T i, T i].

Once we have these functions xi(t), then, as a good representation of the
original signal’s trend, it is reasonable to consider, e.g., linear combinations

xa(t) =

n∑
i=1

ci · xi(t) (1)

of these functions as the desired reconstruction for the no-noise signal.

This approach has indeed led to many successful applications.

In many practical applications, triangular membership functions work
well. Which membership functions should we use in this approach? At first
glance, since the objective of a membership function is to capture the expert
reasoning, we may expect that the more adequately these functions capture the
expert reasoning, the more adequate will be our result. From this viewpoint, we
expect complex membership functions to work the best.

Somewhat surprisingly, however, in many practical applications, the simplest
possible triangular membership functions work the best, i.e., functions of the
type

xi(t) = max

(
1− |x− c|

w
, 0

)
that:

– linearly rise from 0 to 1 on the interval [c− w, c], and then

– linearly decrease from 1 to 0 on the interval [c, c+ w].
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Why? The above empirical fact needs explanation: why triangular membership
functions work so well?

What we do in this paper. In this paper, we provide a possible explanation
for this empirical phenomenon.

2 Analysis of the Problem and the Main Ideas Behind
Our Explanation

What is a trend: discussion. As we have mentioned earlier, we are interested
not so much in predicting the moment-by-moment values of the corresponding
quantity x(t) – these values contains random fluctuations. What we are inter-
ested in is the trend. So, to analyze this problem in precise terms, we need to
understand what we mean by a trend.

A trend may mean increasing or decreasing, decreasing fast vs. decreasing
slow, etc. In the ideal situation, in which we do not have any random fluctuations,

all these properties can be easily described in terms of the time derivative x′(t)
def
=

dx

dt
of the corresponding process.

From this viewpoint, understanding the trend means reconstructing the
derivative x′(t) of the observed process based on its random-fluctuation-
corrupted observed values.

What is F-transform from this viewpoint. We are interested in the trend,
so once we have applied the F-transform technique and obtained the desired
no-boise expression (1), what we really want is to use its derivative

x′
a(t) =

n∑
i=1

ci · x′
i(t). (2)

If we denote the derivatives x′
i(t) of the membership functions by ei(t), the

formula (2) then means that we approximate the derivative e(t)
def
= x′(t) of the

original signal by a linear combination of the functions ei(t):

e(t) ≈ ea(t) =

n∑
i=1

ci · ei(t). (3)

In these terms, we approximate the original derivative by a function from a
linear space spanned by the functions ei(t). In this sense, selecting the functions
xi(t) means selecting the proper linear space – i.e., the proper functions ei(t).

For computational convenience, it makes sense to select an orthonor-
mal basis. What is important is the linear space.

Each linear space can have many possible bases. From the computational
viewpoint, it is often convenient to use orthonormal bases, i.e., bases for which:

– we have
∫
e2i (t) dt = 1 for all i, and
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– we have
∫
ei(t) · ej(t) dt = 0 for all i ̸= j.

Thus, without losing generality, we can assume that the basis ei(t) is orthonor-
mal.

Comment. For the typically used equally spaced triangular functions on intervals
[T i, T i] = [T + (i − 1) · h, T + (i + 1) · h], for some h > 0, the corresponding
derivatives ei(t) are indeed orthogonal, i.e., we indeed have

∫
ei(t) · ej(t) dt = 0

for all i ̸= j, but, in general, we have∫
e2i (t) dt = 2h ·

(
1

h

)2

=
1

2h
̸= 1.

However, it is easy to transform this basis into an orthonormal one without
changing the corresponding linear space: namely, it is sufficient to consider the
new functions e∗i (t) =

√
2h · ei(t).

Mathematical analysis of the problem. Once we know the original function
ea(t) and we have selected the basis ei(t), what are the parameters ci that provide
the best approximation?

We start with a tuple e
def
= (e(t1), e(t2), . . .) that contains all observations

– to be more precise, numerical derivatives e(tk) =
x(tk+1)− x(tk)

tk+1 − tk
based on

these observations. Once we have an approximating function ea(t), we can form

a similar tuple based on the approximating values: ea
def
= (ea(t1), ea(t2), . . .) It

is reasonable to select the coefficients ci for which the new tuple is the closest
to the original one, i.e., for which the distance√

(ea(t1)− e(t1))2 + (ea(t2)− e(t2))2 + . . .

between the tuples ea and e is the smallest possible. Since the square z → z2

is a monotonic function, minimizing the distance is equivalent to minimize the
square of the distance, i.e., the quantity

(ea(t1)− e(t1))
2 + (ea(t2)− e(t2))

2 + . . .

In most practical situations, measurements are performed at regular intervals,
so this sum is proportional to the corresponding integral∫

(ea(t)− e(t))2 dt.

So, we want to find the values ci for which this integral attains its smallest
possible value. Since we assumed that the basis is orthonormal, the optimal
coefficients ci can be simply obtained as

ci =

∫
e(s) · ei(s) ds. (4)
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Thus, the representation (3) takes the form

e(t) ≈ ea(t) =

n∑
i=1

ei(t) ·
(∫

e(s) · ei(s) ds
)
. (5)

We want to select the functions ei(t) for which the noise has the least
effect on the result. The whole purpose of this analysis is to eliminate the
noise – or at least to decrease its effect. From this viewpoint, it is reasonable to
select the functions ei(t) for which the effect of the noise on the reconstructed
signal ea(t) is as small as possible.

According to the formula (5), the function ea(t) is the sum of n values

vi(t)
def
= ei(t) ·

(∫
e(s) · ei(s)

)
ds. (6)

Thus, it is desirable to make sure that the effect of noise on each of these values
vi is as small as possible.

Noise n(t) means that instead of the original function e(t), we have a noise-
infected function e(t)+n(t). If we use this noisy function instead of the original
function e(t), then, instead of the original value vi(t), we get a new value

vnewi (t) = ei(t) ·
(∫

(e(s) + n(s)) · ei(s) ds
)
. (7)

The difference ∆vi(t) = vnewi (t)− vi(t) between the new and the original values
is thus equal to

∆vi(t) = ei(t) ·
(∫

n(s) · ei(s) ds
)
. (8)

This difference depends on time t and on the noise n(t). To make sure that
we reconstruct the trend correctly, it makes sense to require that for all possible
moments of time t and for all possible noises n(t), this difference does not exceed
a certain value – and this value should be as small as possible. In other words,
we would like to minimize the worst-case value of this difference:

J
def
= max

t,n(t)

∣∣∣∣ei(t) · (∫ n(s) · ei(s) ds
)∣∣∣∣ . (9)

What noises n(t) should we consider? In principle, in different situations, we
can have different types of noise, with different statistical characteristics. What
they all have in common is that usually, there is an upper bound ∆ on the
value of the noise: |n(t)| ≤ ∆; see, e.g., [5, 8, 11, 20]. (In this case, e(t) + n(t) ∈
[e(t)−∆, e(t) +∆], i.e., we have an interval uncertainty.)

So, we arrive at the following mathematical problem.
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3 Selecting the Best Functions: Precise Formulation of
the Problem and Its Solution

Definition 1. Let us assume that we are given:

– the value ∆ > 0, and
– an interval [T i, T i].

We consider functions ei(t) defined on the given interval for which
∫
e2i (t) = 1.

For each such function ei(t), we define its degree of noise-dependence as the
value

J(ei) = max
t,n(t)

∣∣∣∣ei(t) · (∫ n(s) · ei(s) ds
)∣∣∣∣ , (10)

where the maximum is taken:

– over all moments of time t ∈ [T i, T i], and
– over all functions n(t) for which |n(t)| ≤ ∆ for all t.

We say that the function ei(t) is optimal if its degree of noise-dependence is the
smallest possible.

Proposition 1. A function ei(t) is optimal if and only if |ei(t)| = const for
all t.

Discussion. We usually consider membership functions xi(t) which:

– first increase, and
– then decrease.

For such functions xi(t), the derivative ei(t) = x′
i(t) is:

– first positive, and
– then negative.

Thus, for the optimal function, we:

– first have ei(t) equal to a positive constant c, and
– then equal to minus this same constant.

By integrating this piece-wise constant function, we conclude that the function
xi(t):

– first linearly increases,
– then linearly decreases with the same slope,

i.e., that xi(t) is a triangular membership function.
Thus, we have indeed explained why triangular membership functions are

often efficient in F-transform applications.

Comment. The piece-wise constant functions described above are well-known:
they are known as Haar wavelets; see, e.g., [3, 7, 10, 21]. These functions indeed
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form a basis, and often, by using this basis to approximate signals and images,
practitioners get very good results.

From this viewpoint, the use of triangular membership functions in F-
transform techniques is equivalent to using Haar wavelets to approximate the
corresponding trend. Since Haar wavelets are known to be practically efficient,
it is not surprising that F-transform techniques using triangular membership
functions are practically efficient as well.

Proof of Proposition 1. The desired objective function J is the largest value
of the quantity

q(t, n(t))
def
=

∣∣∣∣ei(t) · (∫ n(s) · ei(s) ds
)∣∣∣∣ = |ei(t)| ·

∣∣∣∣∫ n(s) · ei(s) ds
∣∣∣∣ (12)

over all possible values of t and n(t):

J = max
t,n(y))

q(t, n(t)). (13)

This double maximum can be equivalently described as

J = max
n(t)

Q(n(t)), (14)

where we denoted

Q(n(t))
def
= max

t
q(t, n(t)). (15)

Once the noise function n(t) is fixed, the value

q(t, n(t)) (16)

is proportional to |ei(t)|. Thus, the maximum of q(t, n(t)) over t is attained when
|ei(t)| is the largest:

Q(n(t)) = max
t

q(t, n(t)) =
(
max

t
|ei(t)|

)
·
∣∣∣∣∫ n(s) · ei(s) ds

∣∣∣∣ , (17)

i.e.,

Q(n(t)) =
(
max

t
|ei(t)|

)
· F (n(t)), (18)

where we denoted

F (n(t))
def
=

∣∣∣∣∫ n(s) · ei(s) ds
∣∣∣∣ . (19)

The first factor in the formula (18) is a positive constant not depending on the
noise n(t). So, to find the largest value of Q(n(t)), we need to find the largest
possible value of F (n(t)):

J = max
n(t)

Q(n(t)) =
(
max

t
|ei(t)|

)
·max

n(t)
F (n(t)). (20)
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The absolute value of the sum does not exceed the sum of absolute values, so

F (n(t)) =

∣∣∣∣∫ n(s) · ei(s) ds
∣∣∣∣ ≤ ∫

|n(s) · ei(s)| ds =
∫

|n(s)| · |ei(s)| ds. (21)

For each s, we have |n(s)| ≤ ∆, hence

F (n(t)) ≤ ∆ ·
∫

|ei(s)| ds. (22)

On the other hand, for n(s) = ∆ · sign(ei(s)), we have

n(s) · ei(s) = ∆ · sign(ei(s)) · ei(s) = ∆ · |ei(s)|. (23)

Hence, for this particular noise, we have

F (n(t)) =

∣∣∣∣∫ ∆ · |ei(s)| ds
∣∣∣∣ = ∆ ·

∫
|ei(s)| ds. (24)

So, the upper bound in the inequality (22) is always attained, hence

max
n(t)

F (n(t)) = ∆ ·
∫

|ei(s)| ds. (25)

Substituting the expression (25) into the formula (20), we conclude that

J =
(
max

t
|ei(t)|

)
·∆ ·

∫
|ei(s)| ds. (26)

We want to find a function ei(t) for which this expression is the smallest
possible. To find this ei(t), it is convenient to take into account that both ei-
dependent factors in the formula (26) correspond to known norms of the function
ei(t) (see, e.g., [4]):

– the expression max
t

|ei(t)| is the L∞-norm ∥ei∥L∞ , and

– the expression
∫
|ei(s)| ds is the L1-norm ∥ei∥L1 .

Thus, we have
J = ∆ · ∥ei∥L∞ · ∥ei∥L1 . (27)

We consider the functions ei(t) for which
∫
e2i (t) dt = 1. This property can

also be described in terms of a standard norm: namely, it can be described as
∥ei∥L2 = 1, where

∥ei(t)∥L2
def
=

√∫
e2i (t) dt. (28)

There is a known inequality connecting these three norms: Hölder’s inequality
(see, e.g., [4]):

∥f∥2L2 ≤ ∥f∥L1 · ∥f∥L∞ , (29)
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for which it is known that the equality is attained if and only if |f(t)| is constant
– wherever it is different from 0.

In our case, this inequality implies that

J = ∆ · ∥ei∥L∞ · ∥ei∥L1 ≥ ∆ · ∥ei∥2L2 = ∆ · 1 = ∆, (30)

and that the smallest possible value ∆ is attained when |ei(x)| is constant. This
is exactly what we wanted to prove.

Comment. It should be mentioned that the ideas of this proof are similar to the
ideas from our paper [2].
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