How to Best Apply Neural Networks in
Geosciences: Towards Optimal
“Averaging” in Dropout Training

Afshin GHOLAMY, Justin PARRA, Vladik KREINOVICH,
Olac FUENTES, & Elizabeth ANTHONY

Abstract The main objectives of geosciences is to find the current state of
the Earth — i.e., solve the corresponding inverse problems — and to use this
knowledge for predicting the future events, such as earthquakes and volcanic
eruptions. In both inverse and prediction problems, often, machine learning
techniques are very efficient, and at present, the most efficient machine learn-
ing technique is deep neural training. To speed up this training, the current
learning algorithms use dropout techniques: they train several sub-networks
on different portions of data, and then “average” the results. A natural idea
is to use arithmetic mean for this “averaging”, but empirically, geometric
mean works much better. In this paper, we provide a theoretical explanation
for the empirical efficiency of selecting geometric mean as the “averaging” in
dropout training.

Key words: geosciences, deep learning, dropout training, averaging, geo-
metric mean, optimization

1 Formulation of the Problem

Main objectives of science. The main objectives of science are:

® to determine the state of the world, and
® based on this knowledge, to predict the future state of the world.

Afshin Gholamy and Elizabeth Anthony
Department of Geological Sciences, University of Texas at El Paso, El Paso, Texas 79968,
USA, e-mail: afshingholamy@gmail.com, eanthony@utep.edu

Justin Parra, Vladik Kreinovich, Olac Fuentes
Department of Computer Science, University of Texas at El Paso, El Paso, Texas 79968,
USA, e-mail: jrparra@miners.utep.edu, vladik@utep.edu, ofuentes@Qutep.edu

2 A. Gholamy et al.

For example, in geosciences:

® we want to determine the density at different depths and at different lo-
cations based on the observed data — seismic, gravitational, etc. (this is
known as the inverse problem) and

® based on this knowledge, we would like to be able to predict catastrophic
events such as earthquake and volcanic eruptions (this is known as the
prediction problem).

Machine learning is often needed. In some situations, we know the equa-
tions describing the physical phenomena, and we can use these equations to
make necessarily determinations and predictions. This is how, e.g., weather
is predicted.

In many other situations, however, we either do not know the exact equa-
tions — or these equations are too difficult to solve. In such situations, instead
of using specific equations, we can use general machine learning tools. In both
problems:

® we start with a tuple of measurement results x, and
® we would like to estimate the tuple y of the desired quantities — e.g., the
density values or the values describing the future volcanic activity.

To make this prediction, we need to have a database of patterns, i.e., pairs
(x(k),y(k)) corresponding to past situations in which we know both = and y.

For example, if we are interested in predicting volcanic activity at least
a week in advance, we need to use patterns in which y(*) is the observed
volcanic activity and z(*) are measurement results performed at least a week
before the corresponding activity.

Which machine learning techniques should we use. Learning is what
living creatures have to do in order to survive. To learn, living creatures
use signals processed a network of special cells — neurons. It is reasonable
to assume that as a result of billions of years of improving winner-takes-all
evolution, nature has come up with an optimal — or near-optimal — way of
learning. And indeed, artificial neural networks — that are based on simulating
networks of biological neurons — are, at present, the most efficient machine
learning technique; see, e.g., [5].

Specifically, the most efficient technique involves deep learning, where we
have a large number of layers with reasonably few neurons in each layer; the
advantages of such an arrangement are presented in [2, 5].

Deep neural networks has indeed been efficient in geosciences, both in
inverse problem (see, e.g., [4]) and in prediction problem (see, e.g., [3, 6, 7, 8]).

Need to speed up. To get a good description of the corresponding phe-
nomenon, it is desirable to have a large number of patterns. As a result,
training on all these patterns takes time. It is thus desirable to speed up
computations.

Neural Networks in Geosciences 3

When a person has a task that takes too long to do it by him/herself,
a natural idea of speeding it up is to ask for help and to have several peo-
ple performing this task in parallel. Similarly, a natural way to speed up
computations is to perform them in parallel, on several processors.

Need to speed up naturally leads to dropout. For traditional neural
networks, when we had a large number of neurons in each layer, parallelization
was reasonably natural: we just divide the neurons into several groups, and
have each processor simulate neurons from the corresponding group.

However, for deep neural networks, there is a relatively small number of
neurons in each layer, so we cannot apply the above natural parallelization.
A natural alternative idea is:

® to use different parts of the data for training (in parallel) on different
sub-networks of the network, and
® then to “average” the results.

Since for each of these trainings, we drop some of the patterns and some of
the neurons, this idea is known as a dropout; see, e.g., [5, 9, 10].

Which “averaging” works better? What is the best way to “average”
the values v1,...,v,, obtained from different parallel trainings? The original
idea was to use an arithmetic average, i.e., to use the value v for which

® adding m identical copies of the value v leads to exactly the same result
as
® adding m training results v1,...,Um:

M+...+vVm =0+...+v.
In this scheme, we get
vV1+...+Um
v= ———.
m

However, it turned out that better results are attained if, instead of addi-
tion, we use different combination rules ab. In this case, s the result of such
“averaging”, we take the value v for which

V] *... kU = V... %0,

In particular, it turned out the empirically, the best results are attained if,
as a combination a*b, we use product instead of the sum [5, 11]. In this case,
the result of “averaging” is the geometric mean:

v= YV1-... Um.

Comment. Usually, the values are re-scaled, so that they fit into an interval,
e.g., [0,1]. So, without losing generality, we can assume that all the averaged
values v; are non-negative.

4 A. Gholamy et al.

How can we explain this empirical success? The paper [11] has some
qualitative explanations of why geometric mean works better than arithmetic
one. However, it does not provide a quantitative explanation of why namely
the “averaging” based on multiplication works best.

What we do in this paper. In this paper, we provide such an explana-
tion. To be more precise, we list all “averaging” operations corresponding
to optimal combination functions — under all possible reasonable optimality
criteria. As a result, we get a 1-D family of possible “averaging” operations
— and it turns out that this list contains arithmetic and geometric means as
particular cases.

In this case, we provide a quantitative explanation of the empirical success
of geometric mean.

Comment. Cannot we do better and explain why only the geometric mean
is the best? Probably this is possible if we explicitly select one optimality
criterion. However, in our general formulation, when we allow all possible
optimality criteria, the appearance of the arithmetic average is inevitable: it
corresponds, for example, to using the Least Squares optimality criterion

2 What Is an Combination Operation? What Is a
Reasonable Optimality Criterion? Towards Precise
Definitions

What is a combination operation? A combination operation ax*b is a
function that maps two non-negative numbers a and b into a non-negative
number a *b.

What are the reasonable properties of this combination function?

First reasonable property: commutativity. We have several results v;
that were obtained by using the same methodology — the only difference is
that we randomly selected a different set patterns and we randomly selected
a different sub-network. From this viewpoint, there is no reason to believe
that some of these results are more valuable than others. Thus, it makes sense
to require that the result of combining two values should not depend on the
order in which they are presented, i.e., that a*b=bxa for all a and b.

In other words, it is reasonable to require that the combination operation
be commutative.

Second reasonable requirement: associativity. If we have three values
a, b, and ¢, then we can:

® first combine a and b and get a*b, and

Neural Networks in Geosciences 5

® add, combine the result a*b with ¢, resulting in (a*b)*c.
Alternatively, we can:

® first combine b nd ¢ into a single value b* ¢, and
® then combine a with the result b+ c of combining b and ¢, thus getting

ax(bxc).

It is reasonable to require that the result of combining the three values should
not depend on the order in which we combine them, i.e., that we should have

(axb)xc=ax(bxc).

In other words, it is reasonable to require that the combination operation
be associative.

Third reasonable requirement: monotonicity. It is reasonable to require
that if one of the combined values increases, then the result of the combination
should also increase (or at least not decrease). In other words, it is reasonable
to require that a*b is a (non-strictly) increasing function of each of the
variables:

®if o <a, then axb<a’'*b, and
®if b<¥V,theaxb<axb.

Final reasonable requirement: continuity. In practice, all the values are
estimated only approximately. It is therefore reasonable to require that a
small difference between the ideal value v; and the corresponding approx-
imate computational result should not drastically affect the result of the
combination.

In precise terms, this means that the operation a*b should be continuous.

Towards the resulting definition. So, we define a combination operation
as a commutative, associative, monotonic continuous function a b of two real
non-negative variables.

What is optimality criterion: discussion. Out of all possible combination
operations *, we should select the one which is, in some reasonable sense,
optimal. How can we describe the corresponding optimality criterion?

In many practical problems, when we talk about optimization, we have an
objective function whose value we want to maximize or minimize. However,
this is not the most general case of optimization.

For example, if we select an algorithm a for solving a certain problem, and
we are interested in achieving the fastest possible average computation time
A(a), we may end up with several different algorithms a, o/, ..., that have
the exact same average computation time A(a) = A(a’) = ... In this case,
it makes sense to use this non-uniqueness to optimize something else: e.g.,

6 A. Gholamy et al.

the worst-case computation time W(a), or the robustness R(a) relative to
uncertainty of the inputs. Then, the actual optimality criterion that we use
to select the optimal algorithm can no longer be reduced to a single numerical
objective function, this criterion is more complex. Namely, in the resulting
criterion, a is better than or of the same quality as a’ (we will denote it by
a>ad) if:

® cither A(a) < A(d’),
®or A(a) = A(a’) and W(a) < W(d').

If there are several algorithms which are optimal with respect to this new op-
timality criterion, then we can use the remaining non-uniqueness to optimize
something else, and thus, get an even more complex optimality criterion.

This can continue until we finally get a criterion for which there is exactly
one optimal alternative.

From this viewpoint, to define an optimality criterion, we should not re-
strict ourselves to numerical objective functions, we should have the most
general definition.

No matter how complex the criterion, what we need is to be able to com-
pare two different alternatives:

® cither a is better than b (a > b),
® or b is better than a (b > a),
® or these two alternatives are of the same quality (a =b).

Of course, this selection must be consistent: if a is better than b and b is
better than ¢, then we should be able to conclude that a is better than c. In
other words, the preference relation should be transitive.

From this viewpoint, it is reasonable to define an optimality criterion as
a pre-ordering relation, i.e., a relation a > b which is transitive and reflezive
(i.e., a > a for all a).

Which optimality criteria are reasonable?

First reasonable requirement: the optimality criterion should be
final. As we have mentioned earlier, if the criterion selects several different
alternatives as equally good, this means that this criterion is not final: we still
need to come up with an additional criterion for selecting one of these “op-
timal” alternatives. Selecting this additional criterion means that we modify
the original optimality criterion >. At the end, we should end up with a final
criterion, for which there is only one optimal alternative.

Comment. It goes without saying that there should be at least one optimal
alternative — otherwise, if no alternative is optimal, what should we choose?

Second reasonable requirement: scale-invariance. As we have men-
tioned earlier, the values v; are usually obtained from re-scaling. Usually, we
re-scale to the interval [0,1] by dividing all the values by the largest possible
value of the corresponding quantity.

Neural Networks in Geosciences 7

The resulting re-scaling is not unique: e.g., if we add one more quantity
which is somewhat larger than what we have seen so far, then the maximum
increases, and we need to re-scale the original values some more, i.e., replace
the original values v; with res-scaled values \-v;.

In some cases, the values v; are not values of the physical quantity but
probabilities. In this case, the value are already in the interval [0, 1]. However,
re-scaling is possible in this case as well. Namely, most probabilities that we
deal with are conditional probabilities, and if we slightly change the condition,
this leads to a re-scaling of the corresponding probabilities. Indeed, in general,

P(A|B) = P(]f(&;)B) So, if B C B’, then for each event A C B, we have
P(A) P(A)) -
P(A|B) = P(B) and P(A|B') = P’ Thus, if we replace the original

condition B with the new condition B’, then all (cox)lditional probabilities are
. 1 — def P(B
re-scaled: P(A|B’)=\-P(A|B), where A = P

If instead of the original values a and b, we consider re-scaled values a’ =
A-a and b’ = X-b, then, instead of the combined value a*b, we get a new
combined value (A-a)* (A-b). We can re-scale it back into the old units, and
get a new operation

axab=A"1-((\-a)x(\-D)).
This re-scaling should not affect the relative quality of different combina-
tion operations:

® if a combination operation * was better than a combination operation ',
i.e., if we had * > #/,
® then after re-scaling, we should get the same preference: #y >).

In this sense, the optimality criterion should be scale-invariant.

This, we arrive at the following definitions.

3 Definitions and the Main Result

Definition 1. By a combination function, we mean a commutative, associa-
tive, continuous operation a*b that transforms two non-negative real num-
bers a and b into a non-negative real number axb and which is (non-strictly)
monotonic in each of the variables, i.e.:

®ifa<a, then axb<a'*b, and
®ifb<b, then axb<ax*b.

8 A. Gholamy et al.

Definition 2. By a reasonable optimality criterion, we mean a pre-ordering
(i.e., transitive and reflexive) relation > on the set of all combination func-
tions which is:

®final, in the sense that for this criterion, there exist only one optimal com-
bination function *opy for which ¥ * (sopt > *); and
®scale-invariant: for every A >0, if « > «', then %\ > %), where
a*)\bcﬁf)_l-((/\-a)*()*b)).

Proposition. For every reasonable optimality criterion, the optimal combi-
nation function has one of the following forms: a*b =0, a*b= min(a,b),
axb=max(a,b), and axb= (a®+b*)Y/* for some .

Discussion. What are the “averaging” operations corresponding to these
combination operations?

® For axb =0, the property vy *...%v,, =v*...*v is satisfied for any possible
v, so this combination operation does not lead to any “averaging” at all.
® For a+b=min(a,b), the condition vy *...*v,, =v*...*xv leads to

v=min(vi,...,vm).
® For a*b = max(a,b), the condition vy *...%v,, =v*...*xv leads to
v =max(v1,...,Vm).

This “averaging” operation is actually sometimes used in deep learning —
but not in dropout training [5].

® Finally, for the combination operation a*b= (a® +b0‘)1/ @ the condition
V] ¥ ...k Uy, = vk... %0 leads to v = max(vy,...,vy,) leads to

o <vf‘+...+v2‘1>l/a

m

For a =1, we get arithmetic average, and for o — 0, we get the geometric
mean.

Indeed, in this case, the condition vy *...%v,, = v*...xv takes the form
(O + ...+)Y = (v o)

which is equivalent to

of F. o Fon, =mev®.

For every real value a, we have

a® = (exp(In(a))® = exp(a-1In(a)).

Neural Networks in Geosciences 9

For small z, exp(z) = 14z, so a® ~ 1+ «-In(a). Thus, the above condition
leads to

(I+a-In(v))+...+ (1+a-In(vy)) =m- (1+a-1n(v)),

i.e., to
m+a-(In(v1)+...+In(vy)) =m+m-a-ln(v),

and thus, to

In(v) = In(vi)+ .T.r.L—Hn(vm) _ In(vq m)

3

hence to v = /vy ... Upp,.

So, we indeed have a 1-D family that contains both the arithmetic average
and the geometric mean.

4 Proof

0°. Let us first prove that the optimal combination operation *qp¢ is scale-
invariant, i.e., (*opt)x = %opt, for all A.

Indeed, let us take any A and consider the combination operation (#opt) -
By definition, *op¢ is the optimal combination operation, so xqpt > * for all
combination operations *. In particular, for every combination operation s,
we have %o, > %y —1. Thus, by scale-invariance, we have (#opt)x > (%y—1)x = *.
S0, (*opt)a is better than or of the same quality than any other combination
operation *. This means that the combination operation (#opt)y is optimal.

However, our optimality criterion is reasonable hence final; thus, it has
only one optimal combination operation. Hence, (sopt)x = *.

By definition of the re-scaling operation *), this means that

AL (@) (A-D) = axb,
i.e., equivalently, that
(A-a)x(A-b)=X-(axb). (1)
Let us use this property to derive the formula for a*b. In this derivation, we

use ideas from our proof of a similar result in [1].

1°. Depending on whether the value 1% 1 is equal to 1 or not, we have two
possible cases: 1x1 =1 and when 1x1 # 1. Let us consider these two cases
one by one.

2°. Let us first consider the case when 11 = 1. In this case, the value 0% 1
can be either equal to 0 or different from 0. Let us consider both subcases.

10 A. Gholamy et al.

2.1°. Let us first consider the first subcase, when 0% 1 =0.
In this case, for every b > 0, scale invariance (1) with A = b implies that

(b-0)%(b-1) = b-0,

i.e., that 0+b=0. By taking b — 0 and using continuity, we also get 00 = 0.
Thus, 0xb =0 for all b.

By commutativity, we have a0 =0 for all a. So, to fully describe the
operation a b, it is sufficient to consider the cases when a > 0 and b > 0.

2.1.1°. Let us prove, by contradiction, that in this subcase, we have 1xa <1
for all a.

Indeed, let us assume that for some a, we have b def xa > 1. Then, due to
associativity and 1x1 =1, we have 1xb=1%(1%a)) = (1x1)*xa=1xa=0».

Due to scale-invariance with A = b, the equality 1%b= b implies that bxb? =
b2. Thus, 1%b% = 1% (bxb?) = (1%b) xb> = bxb? =b>.

Similarly, from 1%b? = b2, we conclude that for b* = (b%)2, we have 1xb* =
b, and, in general, that 1 «b2" =b2" for every n.

Scale invariance with A =b—2" implies that b=2" %1 =1. In the limit n —
00, we get 01 =1, which contradicts to our assumption that 0x1 = 0. This
contradiction shows that indeed, 1xa <1.

2.1.2°. For a > 1, monotonicity implies 1 =1%x1 < 1x%a, so 1xa <1 implies
that 1xa =1. ¥
Now, for any a’ and b’ for which 0 < a’ <V, if we denote r def — >1, then
a
scale-invariance with A = o’ implies that o’ - 1xr=(a’-1) % (a’-r) = a’ x’. Here,
1xr=1,thusa’ b/ =a’-1=d/,i.e., a’ *t/ =min(a’,b’). Due to commutativity,
the same formula also holds when a’ > #'. So, in this case, a*b = min(a,b)
for all a and b.

2.2°. Let us now consider the second subcase of the first case, when 0x1 > 0.

2.2.1°. Let us first show that in this subcase, we have 00 = 0.

Indeed, scale-invariance with A = 2 implies that from 0% 0 = a, we can
conclude that (2-0)%(2-0) =0%0=2-a. Thus a =2-a, hence a =0. The
statement is proven.

2.2.2°. Let us now prove that in this subcase, 0x1 = 1.

Indeed, in this case, for a 4 1, we have, due to 0x0 = 0 and associativity,
that Oxa=0x%(0%1) = (0%0)x1 =0%1=a. Here, a > 0, so by applying scale
invariance with A = a~!, we conclude that 0% 1 = 1.

2.2.3°. Let us now prove that for every a < b, we have axb=1>0. So, due to
commutativity, we have a*b=max(a,b) for all « and b.

Indeed, from 1x1 =1 and 0x1 =1, due to scale invariance with A = b, we
conclude that O0xb=5b and b*xb=1>b. Due to monotonicity, 0 < a < b implies
that b=0xb<axb<bxb=0>, thus axb=0>b. The statement is proven.

Neural Networks in Geosciences 11
3°. Let us now consider the remaining case when 1%1 # 1.

3.1°. Let us denote v(k) s %1 (k times). Then, due to associativity, for
every m and n, the value v(m-n) =1%...%x1 (m-n times) can be represented
as

(Twoook). (Tx...x1),

where we divide the 1s into m groups with n 1s in each. For each group, we
have fl1%...x1=wv(n). Thus, v(m-n)=v(n)*...xv(n) (M times).

We know that 1x...%1 (m times) = v(m). Thus, by using scale-invariance
with A =wv(n), we conclude that v(m-n)=wv(m)-v(n), i.e., that that function
v(n) is multiplicative. In particular, this means that for every number p and
for every positive integer n, we have v(p™) = (v(p))™.

3.2°. If v(2) =1%1 > 1, then by monotonicity, we get v(3) =1%v(2) > 1%1=
v(2), and, in general, v(n+1) > v(n). Thus, in this case, the sequence v(n)
is (non-strictly) increasing.

Similarly, if v(2) =1%1 < 1, then we get v(3) <v(2) and, in general, v(n+
1) <w(n), i.e., in this case, the sequence v(n) is strictly decreasing.

Let us consider these two cases one by one.

3.2.1°. Let us first consider the case when the sequence v(n) is increasing. In
this case, for every three integers m, n, and p, if 2™ < p™, then v(2™) < v(p"),
ie., (0(2)™ < (v(p)".

For all m, n, and p, the inequality 2™ < p™ is equivalent to m-In(2) <

|
n-In(p), i.e., to m < lng;’ Similarly, the inequality (v(2))™ > (v(p))™ is
n n
|
equivalent to m < M Thus, the above conclusion “if 2™ < p™ then
n ~ In(v(2))

(v(2))™ < (v(p))™” takes the following form:

1 1
for every rational number @, it < n(p) mn L(g))
n n

Similarly, for all m/, n’, and p, if p?" < 2™, then v(p"/) < v(2m/), ie.,
(v(p))™ < (v(2))™. The inequality p™ < 2™ is equivalent to n’-In(p) < m’ -
1 / ’ /

lﬂgi < % Also, the inequality (v(p))™ < (v(2))™ is equivalent

1 / / / ! !
© 122285 < % Thus, the conclusion “if p™ <2 then (v(p))" < (v(2))™”

takes the following form:

In(2), i.e., to

/

3

/
1
for every rational number %, if m(2) < % then m s

12 A. Gholamy et al.

Let us denote vy f In(p) and (3 def m

In(2)
m m’ m m
rational numbers — and — for which y—e < — <y < — <~ +-¢. For these
n n n n
/

m m

numbers, the above two properties imply that — < 8 and 8 < —- and thus,
n n

that y—e < 8 <7y+e¢, ie., that |y — 5| <e. This is true for all € > 0, so we

In(v(p))
In(v(2))

thus, v(p) = p? for all integers p.

. For every ¢ > 0, there exist

conclude that 8 =+, i.e., that = . Hence, In(v(p)) = v-In(p) and

3.2.2°. We can reach a similar conclusion v(p) = p? when the sequence v(n)
is decreasing and v(2) < 1, and a conclusion that v(p) =0 if v(2) = 0.

3.3°. By definition of v(n), we have v(m)*v(m') = v(m+m’). Thus, we have
m? % (m’)? = (m+m')7. By using scale-invariance with A=n""7, we get

m) ()

n nY nYy

gl Y
Thus, for a = m—’y and b= (mv) , we get axb = (a®+b*)1/* where a® 1/~.
n n

. m .
Rational numbers r = — are everywhere dense on the real line, hence the

values 7 are also everywhere dense, i.e., every real number can be approxi-
mated, with any given accuracy, by such numbers. Thus, continuity implies
that axb= (a®+b*)Y/ for every two real numbers a and b.

The proposition is proven.

Acknowledgments

This work was supported in part by the US National Science Foundation
grant HRD-1242122 (Cyber-ShARE Center of Excellence).

References

1. K. Autchariyapanitkul, O. Kosheleva, V. Kreinovich, and S. Sriboonchitta, “Quan-
tum econometrics: how to explain its quantitative successes and how the resulting
formulas are related to scale invariance, entropy, and fuzziness", In: V.-N. Huynh,
M. Inuiguchi, D.-H. Tran, and T. Denoeux (eds.), Proceedings of the International
Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making
IUKM’2018, Hanoi, Vietnam, March 13-15, 2018, to appear.

2. C. Baral, O. Fuentes, and V. Kreinovich, “Why Deep Neural Networks: A Possible
Theoretical Explanation", In: M. Ceberio and V. Kreinovich (eds.), Constraint Pro-
gramming and Decision Making: Theory and Applications, Springer Verlag, Berlin,
Heidelberg, 2018, pp. 1-6.

Neural Networks in Geosciences 13

3.

10.

11.

O. Fuentes, J. Parra, E. Anthony, and V. Kreinovich, “Why Rectified Linear Neurons
Are Efficient: A Possible Theoretical Explanations", In: O. Kosheleva, S. Shary,
G. Xiang, and R. Zapatrin (eds.), Beyond Traditional Probabilistic Data Processing
Techniques: Interval, Fuzzy, etc. Methods and Their Applications, Springer, Cham,
Switzerland, 2018, to appear.

A. Gholamy, Backcalculation of Intelligent Compaction Data for the Mechanical
Properties of Soil Geosystems, PhD Dissertation, Univeristy of Texas at El Paso, to
appear.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, MIT Press, Cambridge,
Massachusesst, 2016.

J. Parra, O. Fuentes, E. Anthony, and V. Kreinovich, “Prediction of Volcanic Erup-
tions: Case Study of Rare Events in Chaotic Systems with Delay", Proceedings of
the IEEE Conference on Systems, Man, and Cybernetics SMC’2017, Banff, Canada,
October 5-8, 2017.

J. Parra, O. Fuentes, E. Anthony, and V. Kreinovich, “Use of Machine Learning to
Analyze and — Hopefully — Predict Volcano Activity", Acta Politechnica Hungarica,
to appear.

J. Parra, O. Fuentes, V. Kreinovich, E. Anthony, V. Espejel, and O. Hinojosa,
“Eruption Forecasting from Seismic Activity using Neural Networks", Proceedings
of International Association of Vulcanology and Chemistry of the Earth’s Interior
(IAVSEI) Scientific Assembly IAVCEI'2017 “Fostering Integrative Studies of Vol-
canism", Portland, Oregon, August 14-17, 2017.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhuinov,
“Dropout: a simple way to prevent neural networks from overfitting”, Journal of
Machine Learning Research, 2014, Vol. 15, pp. 1929-1958.

C. Szegedy, W. Liu, Y. Jia, P. Serament, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, Going Deeper with Convolution. arXiv:1409.4842, 2014.
D. Warde-Farley, J. J. Goodfellow, A. Courville, and Y. Bendigo, “An ampiri-
cal analysis of dropout in piecewise linear networks”, Proceedings of the 2nd In-
ternational Conference on Learning Representations ICLR’2014, Banff, Canada,
April 14-16 2014.

