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Abstract

In this paper, we show that symmetry-based ideas can explain the
empirical success of Taylor models and modified Taylor models in repre-
senting uncertainty.

1 Taylor Models and Modified Taylor Models:
A Brief Reminder

General problem: reminder. In many practical situations:

• we know the equations that describe how desired quantities change with
time (and space), and

• we want to use this knowledge to find the values of the desired quantities
at different moments of time, at different locations, and for different values
of the corresponding actions.

For example:

• we want to know how the location of a spaceship at time t depends on t
and on the parameters of the launch: time, coordinates, orientation, etc.;

• another example is particle accelerators, in which particles move in a rea-
sonable narrow tube with speeds close to the speed of light: we want to
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be able to predict the location of a particle beam at different moments of
time for different values of the corresponding parameters.

In all these cases, we want to know the dependence of each desired quantity y
on quantities x1, . . . , xn.

Often, we want guaranteed bounds. There are many numerical compu-
tation techniques for computing the desired dependence. However, numerical
computations usually lead to an approximate description of the actual depen-
dence: yapprox(x1, . . . , xn) ≈ y(x1, . . . , xn).

In many real-life problems, it is important to provide not only an approxi-
mate value of y for given x1, . . . , xn, but guaranteed bounds on this value, i.e.,
values y(x1, . . . , xn) and y(x1, . . . , xn) for which

y(x1, . . . , xn) ≤ y(x1, . . . , xn) ≤ y(x1, . . . , xn).

• This is important in space exploration: we want to make sure that the
spaceship does not collide with anything and reaches its target within
desired accuracy.

• This is important for particle accelerators: we want to make sure that the
particle beam does not self-destruct by hitting the tube walls and instead,
reaches the desired target.

Taylor models. In many real-life problems, the deviations from nominal values
are small, so small that we can safely ignore terms which are quadratic or of
higher order in terms of these deviations. In such situations, we can expand the
desired dependence in Taylor series and keep only linear terms in this expansion.
Since linearization is one of the main tools in practical physics; see, e.g., [5].

To get a more accurate result, one can take into account quadratic terms.
An even more accurate result emerges if we take into account cubic an higher
order terms. In general, we take the sum of the first few terms in Taylor series
and thus get a polynomial P (x1, . . . , xn), i.e., a linear combination of monomials

P (x1, . . . , xn) =
∑

ci1...in · xi1
1 · . . . · xin

n .

A natural way to transform this approximate model into a guaranteed model
is to supplement the approximate polynomial P (x1, . . . , xn) with a guaranteed
upper bound ∆ on the absolute value of the approximation error y(x1, . . . , xn)−
P (x1, . . . , xn):

|y(x1, . . . , yn)− P (x1, . . . , xn)| ≤ ∆.

Once we know this upper bound, we can conclude that for each combination
of values x1, . . . , xn), we have

y(x1, . . . , xn) ∈ P (x1, . . . , xn)+[−∆,∆] =
∑

ci1...in ·x
i1
1 ·. . .·xin

n +[−∆,∆]. (1)

The right-hand side of this inclusion is known as a Taylor model. Taylor models
has indeed been successfully used in many important applications; see, e.g.,
[1, 2, 3, 7, 8, 10].
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Modified Taylor models. In the traditional Taylor model, we use a single
upper bound ∆ to describe the approximation error for all possible combination
of the values xi. In many practical cases, however, the approximation error
depends on the values xi. For example, when we predict a trajectory, usually,

• the predictions are very accurate for small t,

• but become less and less accurate as the time t increases.

To get a better description of the model’s accuracy, it is therefore desirable to
take into account that the approximation error may depend on xi.

One successful way to take this dependence into account was proposed in [4]
under the name of modified Taylor models. In this description, each coefficient
ci1,...,in is an interval:

y(x1, . . . , xn) ∈
∑

[ci1...in , ci1,...,in ] · x
i1
1 · . . . · xin

n . (2)

Comment. The meaning of the formula (2) is that for each combination of the
values x1, . . . , xn there exist values ci1...in ∈ [ci1...in , ci1...in ] for which

y(x1, . . . , xn) =
∑

ci1...in · xi1
i · . . . · xin

n .

Why? There are many ways to approximate a function: we can use Taylor
series, we can use rational functions, we can use Fourier series, we can use
neural networks. Why Taylor series approximation turned out to be among the
most empirically efficient?

Once we have selected the Taylor model, there are many ways to take into
account uncertainty: e.g., we could consider intervals multiplied not by mono-
mials (as in formula (2)), but by more complex polynomials. So why is formula
(2) empirically efficient?

What is known and what we do in this paper. A symmetry-based ex-
planation of why Taylor models are efficient have been proposed in [9]. In this
paper, we:

• first, use techniques from [6] to prove a stronger version of that result –
thus providing a new justification for Taylor models, and

• then, extend this new result to a justification of the modified Taylor mod-
els.

2 Why Taylor Models: A New Justification

Towards formalization of the problem: we need to select a vector
space. We want to select a family of functions F , so that the results of our
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prediction have a form y(x1, . . . , xn) ∈ F (x1, . . . , xn) + [−∆,∆] for some func-
tion F ∈ F .

In the computer, all computations reduce to a sequence of arithmetic oper-
ations. Any function that is obtained by a sequence of arithmetic operations is
analytical, i.e., it can be expanded into Taylor series. Thus, it is reasonable to
restrict ourselves to analytical functions F .

We want to be able to represent functions from the class F inside a computer.
If we use too many parameters, we will spend too much time processing these
parameters — it might have been easier to decrease the excess width by dividing
the original box into multiple subboxes. Therefore, it only makes sense to
consider finite-dimensional families of functions.

It would be useful to select the family F in such a way that an application
of any arithmetic operation ⊙ does not lead to additional approximation error.
In other words, ideally, we would like to select F in such a way that, if two
intermediate results r and s belong exactly to F , then r⊙ s should also belong
to F . However, if we require that, then, since

• we start with variables and

• the family is closed under addition and multiplication,

we will end up with arbitrary polynomials, which contradicts to F being finite-
dimensional. So, we cannot require that the family F be closed under all arith-
metic operations:

• since we cannot require that for all operations,

• we should at least require it for the simplest ones: +, −, and multiplication
by a real number λ.

In other words, we require that if F ∈ F and G ∈ F , then F + G ∈ F and
λ · F ∈ F . So, the family F is a (finite-dimensional) vector space of functions.

We should select the optimal vector space. There are many possible
vector spaces of functions. The question is: which of these vector spaces is the
best (“optimal”) for our purpose?

When we say “the best”, we mean that on the set of all such spaces, there is
a relation ≽ describing which family is better or equal in quality. This relation
must be transitive (if F is better than G, and G is better than H, then F is
better than H).

This relation must also clearly be reflexive: F ≽ F for every family F .
This relation is not necessarily asymmetric, because we can have two families

of the same quality. However, we would like to require that this relation be
final in the sense that it should define a unique best family Fopt, for which
∀G (Fopt ≽ G). Indeed:

• if none of the families is the best,

• then this criterion is of no use.
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So, there should be at least one optimal family. Similarly:

• if several different families are equally best,

• then we can use this ambiguity to optimize something else.

For example:

• if we have two families with the same approximating quality,

• then we can choose the one which is easier to compute.

As a result, the original criterion was not final: we obtain a new criterion:
F ≽new G, if:

• either F gives a better approximation,

• or F ∼old G and G is easier to compute.

For this new optimality criterion, the class of optimal families is narrower.
We can repeat this procedure until we obtain a final criterion for which there

is only one optimal family.

Scale invariance. The numerical value of each quantity xi depends on the
choice of the measuring unit. If instead of the original measuring unit, we choose
a new one which is λi times smaller, then all numerical values are multiplied by
λi: xi → x′

i = λi · xi. For example:

• if to measure height, we use centimeters instead of meters,

• then all numerical values of height are multiplied by 100: e.g., 2 m becomes
200 cm.

It is reasonable to require that the relative quality of two families should not
change if we simply apply such re-scaling to one of the variables xi.

Thus, we arrive at the following definition.

Definition 1. Let n > 0 and N > 0 be integers.

• By a N -dimensional family, we mean a family F of all functions of the
type

{C1 · F1(x1, . . . , xn) + . . .+ CN · FN (x1, . . . , xn)},

where F1, . . . , FN are given analytical functions, and C1, . . . , CN are arbi-
trary (real) constants.

• By an optimality criterion, we mean a transitive reflexive relation ≽ on
the set of all N -dimensional families.

• We say that a criterion is final if there exists one and only one optimal
family, i.e., family for which Fopt for which ∀G (Fopt ≽ G).
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• For every transformation T = λ · x (λ > 0), and for every i, we define

(Ti(F ))(x1, . . . , xn)
def
= F (x1, . . . , xi−1, T (xi), xi+1, . . . , xn),

and Ti(F)
def
= {Ti(F ) |F ∈ F}.

• We say that a criterion ≽ is scale-invariant if for every two families F
and G, for every i, and for every linear function T (x) = λ · x, F ≽ G
implies Ti(F) ≽ Ti(G).

Proposition 1. Let ≽ be a final scale-invariant optimality criterion on the
set of all families. Then, every function F from the optimal family Fopt is a
polynomial.

Comments.

• This result justifies the Taylor models.

• This result is stronger than the result from [9], since there, we also required
that the optimality criterion be invariant wif we change the starting point
for measuring xi.

Proof.

1◦. Let us first prove that the optimal family Fopt is itself scale-invariant, i.e.,
that for every rescaling T and for every i, we have Ti(Fopt) = Fopt.

Indeed, let T and i be given. Since Fopt is optimal, for every other
family G, we have Fopt ≽ T−1

i (G) (where T−1
i means the inverse trans-

formation). Since the optimality criterion ≽ is invariant, we conclude that
Ti(Fopt) ≽ Ti(T

−1
i (G)) = G. Since this is true for every family G, the family

Ti(Fopt) is also optimal. But since our criterion is final, there is only one optimal
family and therefore, Ti(Fopt) = Fopt.

2◦. Since the family Fopt is scale-invariant, in particular, it means that for every
function F (x1, . . . , xn) from this family, and for every λ > 0, the function

Fλ(x1, . . . , xn)
def
= F (λ · x1, . . . , λ · xn)

also belongs to the optimal family.

3◦. Let us now take any function F (x1, . . . , xn) from the optimal family Fopt

and prove that this function is a polynomial.
The family consists of analytical functions, thus the selected function

F (x1, . . . , xn) is also analytical.
By definition, an analytical function f(x1, . . . , xn) is an infinite series con-

sisting of monomials m(x1, . . . , xn) of the type

ai1...in · xi1
1 · . . . · xin

n .
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For each such term, by its total order, we will understand the sum i1 + . . .+ in.
The meaning of this total order is simple: if we multiply each input of this
monomial by λ, then the value of the monomial is multiplied by λk:

m(λ · x1, . . . λ · xn) = ai1...in · (λ · x1)
i1 · . . . · (λ · xn)

in =

λi1+...+in · ai1...in · xi1
1 · . . . · xin

n = λk ·m(x1, . . . , xn).

For each order k, there are finitely many possible combinations of integers
i1, . . . , in for which i1+. . .+in = k, so there are finitely many possible monomials
of this order. Let Pk(x1, . . . , xn) denote the sum of all the monomials of order
k from the series describing the function F (x1, . . . , xn). Then, we have

F (x1, . . . , xn) = P0 + P1(x1, . . . , xn) + P2(x1, x2, . . . , xn) + . . .

Some of these terms may be zeros – if the original expansion has no monomi-
als of the corresponding order. Let k0 be the first index for which the term
Pk0(x1, . . . , xn) is not identically 0. Then,

fF (x1, . . . , xn) = Pk0(x1, . . . , xn) + Pk0+1(x1, x2, . . . , xn) + . . .

Since the family Fopt is scale-invariant, it also contains the function

Fλ(x1, . . . , xn) = F (λ · x1, . . . , λ · xn).

At this re-scaling, each term Pk is multiplied by λk; thus, we get

Fλ(x1, . . . , xn) = λk0 · Pk0(x1, . . . , xn) + λk0+1 · Pk0+1(x1, x2, . . . , xn) + . . .

Since Fopt is a linear space, it also contains a function

λ−k0 · Fλ(x1, . . . , xn) = Pk0(x1, . . . , xn) + λ · Pk0+1(x1, x2, . . . , xn) + . . .

Since Fopt is finite-dimensional, it is closed under turning to a limit. In the
limit λ → 0, we conclude that the term Pk0(x1, . . . , xn) also belongs to the
family Fopt.

Since Fopt is a linear space, this means that the difference

F (x1, . . . , xn)− Pk0(x1, . . . , xn) =

Pk0+1(x1, x2, . . . , xn) + Pk0+2(x1, x2, . . . , xn) + . . .

also belongs to Fopt. If we denote, by k1, the first index k1 > k0 for which the
term Pk1(x1, . . . , xn) is not identically 0, then we can similarly conclude that
this term Pk1(x1, . . . , xn) also belongs to the family Fopt, etc.

We can therefore conclude that for every index k for which term
Pk(x1, . . . , xn) is not identically 0, this term Pk(x1, . . . , xn) also belongs to the
family Fopt.

Monomials of different total order are linearly independent. Thus, if there
were infinitely many non-zero terms Pk in the expansion of the function
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F (x1, . . . , xn), we would have infinitely many linearly independent function in
the family Fopt – which contradicts to our assumption that the family Fopt is a
finite-dimensional linear space.

So, in the expansion of the function F (x1, . . . , xn), there are only finitely
many non-zero terms. Hence, the function F (x1, . . . , xn) is a sum of finitely
many monomials – i.e., a polynomial.

The proposition is proven.

Comment. As we can see form the proof, to show that every function from the
optimal family is a polynomial,w e do not even need to use scale-invariance with
respect to each of the variables: it is sufficient to require that the optimality
criterion is invariant with respect to a simultaneous re-scaling of all the variable:

x1 → λ · x1, . . . , xn → λ · xn.

3 Why Modified Taylor Models: A Justification

Discussion. In the original Taylor model, coefficients at the unknown functions
were real numbers. The main idea behind modified Taylor models is that we
can have interval-valued coefficients. Thus, we arrive at the following definition.

Definition 2. Let n > 0, N > 0, and M > 0 be integers.

• By a (N,M)-family, we mean a family F of all interval-valued functions
of the type

{C1 · F1(x1, . . . , xn) + . . .+ CN · FN (x1, . . . , xn)+

C1 ·G1(x1, . . . , xn) + . . .+CM ·GM (x1, . . . , xn)},

where F1, . . . , FN and G1, . . . , GM are given analytical functions,
C1, . . . , CN are arbitrary (real) constants, and Ck = [Ck, Ck] are arbi-
trary intervals.

• By an optimality criterion, we mean a transitive reflexive relation ≽ on
the set of all (N,M)-families.

• We say that a criterion is final if there exists one and only one optimal
family, i.e., family for which Fopt for which ∀G (Fopt ≽ G).

• For every transformation T = λ · x (λ > 0), and for every i, we define

(Ti(F ))(x1, . . . , xn)
def
= F (x1, . . . , xi−1, T (xi), xi+1, . . . , xn),

and Ti(F)
def
= {Ti(F ) |F ∈ F}.

• We say that a criterion ≽ is scale-invariant if for every two families F
and G, for every i, and for every linear function T (x) = λ · x, F ≽ G
implies Ti(F) ≽ Ti(G).
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Proposition 2. Let ≽ be a final scale-invariant optimality criterion on the set
of all families. Then, every function F from the optimal family Fopt is a sum
of finitely many monomials with interval coefficients.

Comment. This result justifies the modified Taylor models.

Proof.

1◦. First let us notice that each interval [Ck, Ck] can be represented as Ck +

[0,Wik], where Wk
def
= Ck − Ck is the width of the k-th interval. Substituting

this expression into the general formula for a family, we conclude that each
interval-valued function from the family is a linear combination of:

• real-valued functions Fj and Gk and

• functions Gk multiplied by an interval [0,Wk].

Thus, without losing generality, we can safely assume that in each interval Ck,
the lower endpoint is 0, i.e., that each such interval has the form [0,Wk] for
some Wk ≥ 0.

2◦. Similarly to the proof of Proposition 1, we can prove that the optimal family
is scale-invariant, i.e., remains unchanged if we re-scale each variable xi → λi ·xi.

In other words, for each interval-valued function from the optimal family,

• if we re-scale all the variables,

• we get an interval-valued function from the same family – but probably
corresponding to different coefficients C ′

k and W ′
k.

So, the re-scaled interval-valued function

Fλ(x1, . . . , xn)+

[0,W1] · ·G1(λ1 · x1, . . . , λn · xn) + . . .+ [0,WM ] ·GM (λ1 · x1, . . . , λn · xn),

where

Fλ(x1, . . . , xn)
def
= C1 ·F1(λ1 ·x1, . . . , λn ·xn)+ . . .+CN ·FN (λ1 ·x1, . . . , λn ·xn),

coincides with the interval-valued function

F ′(x1, . . . , xn) + [0,W ′
1] ·G1(x1, . . . , xn) + . . .+ [0,W ′

M ] ·GM (x1, . . . , xn),

where

F ′(x1, . . . , xn)
def
= C ′

1 · F1(x1, . . . , xn) + . . .+ C ′
N · FN (x1, . . . , xn).

Each interval-valued function is a convex set in the class of all functions, ob-
tained by taking all possible values wk ∈ [0,Wk].
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Since the convex sets coincide, this means that their sets of extreme points
should also coincide. These extreme points correspond to extreme values 0 and
Wk of the parameters wk ∈ [0,Wk]. Thus, for the re-scaled family, they are:

Fλ(x1, . . . , xn), Fλ(x1, . . . , xn) +W1 ·G1(λ1 · x1, . . . , λn · xn), . . . ,

Fλ(x1, . . . , xn) +WM ·GM (λ1 · x1, . . . , λn · xn),

Fλ(x1, . . . , xn) +W1 ·G1(λ1 · x1, . . . , λn · xn) +W2 ·G2(λ1 · x1, . . . , λn · xn), . . .

For the new family. the extreme points are:

F ′(x1, . . . , xn), F ′(x1, . . . , xn) +W ′
1 ·G1(x1, . . . , xn), . . . ,

F ′(x1, . . . , xn) +W ′
M ·GM (x1, . . . , xn),

F ′(x1, . . . , xn) +W ′
1 ·G1(x1, . . . , xn) +W ′

2 ·G2(x1, . . . , xn), . . .

For λ1 = . . . = λn = 1, the first function in the first list coincides with the
first function in the second list, etc. Since the dependence on λi is continuous,
we cannot switch to different equalities, so always:

• the first extreme function from the first list must coincide with the first
extreme function from the second list,

• the second extreme function from the first list must coincide with the
second extreme function from the second list, etc.

Equality of the first terms means that, for every tuple C1, . . . , CN and for
every tuple λ1, . . . , λn, there exist values C ′

1, . . . , C
′
N for which

Fλ(x1, . . . , xn) = C1 ·F1(λ1 ·x1, . . . , λn ·xn)+ . . .+CN ·FN (λ1 ·x1, . . . , λn ·xn) =

F ′(x1, . . . , xn) = C ′
1 · F1(x1, . . . , xn) + . . .+ C ′

N · FN (x1, . . . , xn).

This means that the class of all functions

C1 · F1(x1, . . . , xn) + . . .+ CN · FN (x1, . . . , xn)

corresponding to different values Cj is scale-invariant. Thus, based on Proposi-
tion 1, all the functions Fj(x1, . . . , xn) are polynomials – i.e., a sum of finitely
many monomials.

For each k from 1 to M , since both the first and the (k + 1)-st terms in the
two lists are equal to each other, we conclude the differences between these term
should also be equal. Thus, we conclude that

Wk ·Gk(λ1 · x1, . . . , λn · xk) = W ′
k ·Gk(x1, . . . , xn).

For W1 = 1, this means that for every tuple λ1, . . . , λn, there exists a value W ′
k

for which
Gk(λ1 · x1, . . . , λn · xk) = W ′

k ·Gk(x1, . . . , xn).

10



The function Gk(x1, . . . , xn) is an analytical function and is, thus, the sum of
monomials ci1...in · xi1

1 · . . . · xin
n . Under re-scaling xi → λi · xi, each monomial is

multiplied by different coefficients λi1
1 · . . . ·λin

n . So, the only case when the whole
sum of monomials is multiplied by the same number W ′

k is when the function
Gk(x1, . . . , xn) consists of a single monomial.

Thus, each interval-valued function from the optimal family is indeed a sum
of finitely many monomials Gk(x1, . . . , xn) with interval coefficients. The propo-
sition is proven.
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