Bellman-Zadeh Fuzzy Optimization Under Interval Uncertainty

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, El Paso, Texas, USA
500 W. University, El Paso, TX 79968. USA
mceberio@utep.edu, olgak@utep.edu, vladik@utep.edu

Bellman-Zadeh fuzzy optimization. In many real-life situations, in addition to well-defined constraints that limit alternatives x to a certain set X, we also have fuzzy constraints like “temperature should not be too high”. For such constraints, instead of knowing exactly which alternatives x satisfy the desired constraint and which do not, we only have degree of confidence $(x) \in [0, 1]$ that describe to what extent the experts believe that the alternative x satisfies the desired constraints; see, e.g., [2]. If we have an objective function $f(x)$ that we want to maximize, how do we optimize it under such fuzzy constraints?

A solution to this problem was proposed in a joint paper [1] by Richard Bellman of optimization fame and Lotfi Zadeh, father of fuzzy techniques: after selecting an “and”-operation $f_{\&}(a, b)$ – a function that is non-decreasing with respect to a and b – we should select an alternative x that maximizes the expression

$$F(x) \overset{\text{def}}{=} f_{\&} \left(f(x) - f_+ - f_- ; \mu(x) \right),$$

(1)

where $f_- \overset{\text{def}}{=} \inf \{ f(y) : y \in X \}$ and $f_+ \overset{\text{def}}{=} \sup \{ f(y) : y \in X \}$.

Case of interval uncertainty. In the ideal case, we know the exact values of the objective function $f(x)$, and we know the exact values of the expert’s degree of confidence $\mu(x)$. In practice, we often only know $f(x)$ and $\mu(x)$ with interval uncertainty. In other words, for every x, we only know the bounds $f(x) \leq f(x) \leq \overline{f}(x)$ and $\underline{\mu}(x) \leq \mu(x) \leq \overline{\mu}(x)$ for these values.

Fuzzy optimization under interval uncertainty: formulation of the problem. For different values $f(x) \in [f(x), \overline{f}(x)]$ and $\mu(x) \in [\underline{\mu}(x), \overline{\mu}(x)]$, we get different values of $F(x)$.

In such situations, to make a decision, it is reasonable to find the range $[F(x), \overline{F}(x)]$ of possible values of $F(x)$. Once we have found this range, we can:
• either select all the alternatives which can be optimal for some \(F(x) \in [F(x), \overline{F}(x)] \), i.e., all alternatives for which \(F(x) \geq \sup_y F(y) \),

• or, if we want to select a single alternative, follow the usual Hurwicz decision-making strategy (see, e.g., [3]): find the value \(\alpha \in [0,1] \) that reflects the decision maker’s degree of optimism-pessimism, and select the alternative for which the value \(F_\alpha(x) \equiv \alpha \cdot \overline{F}(x) + (1 - \alpha) \cdot \underline{F}(x) \) is the largest possible.

Main result. We prove that

\[
F(x) = f_\&(\max(0, \frac{f(x) - f_+(x)}{\max(f(x), \overline{f}(x)) - f_+(x)}), \mu(x))
\]

and

\[
\overline{F}(x) = f_\&(\min(1, \frac{\overline{f}(x) - \min(\overline{f}(x), f_-(x))}{\max(\overline{f}(x), \underline{f}(x)) - \min(\overline{f}(x), f_-(x))}), \overline{\mu}(x))
\]

where

\[
f_-(x) \equiv \inf\{f(y) : y \in X, y \neq x\}, \quad f_+(x) \equiv \sup\{f(y) : y \in X, y \neq x\},
\]

\[
\overline{f}_-(x) \equiv \inf\{\overline{f}(y) : y \in X, y \neq x\}, \quad \overline{f}_+(x) \equiv \sup\{\overline{f}(y) : y \in X, y \neq x\}.
\]

References

