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Abstract—If all we know about normalized fuzzy sets is which
set is a subset of which, will we be able to detect crisp sets? It
is known that we can do it if we allow all possible fuzzy sets,
including non-normalized ones. In this paper, we show that a
similar detection is possible if we only allow normalized fuzzy
sets. We also show that we can detect type-1 fuzzy sets based
on the subsethood ordering of normalized interval-valued fuzzy
sets.

I. INTRODUCTION

A fuzzy set is usually defined as function A from a certain
set U – known as Universe of discourse – to the interval [0, 1];
see, e.g., [1], [2], [3], [5], [6], [8]. Traditional – “crisp” – sets
can be viewed as particular cases of fuzzy sets, for which
A(a) ∈ {0, 1} for all x.

In most applications, we consider normalized fuzzy sets,
i.e., fuzzy sets for which A(x) = 1 for some x ∈ U . For crisp
sets, this corresponds to considering non-empty sets.

For two crisp sets, A is a subset or B if and only if A(x) ≤
B(x) for all x. The same condition is used as a definition of
the subsethood ordering between fuzzy sets: a fuzzy set A is
a subset of a fuzzy set B if A(x) ≤ B(x) for all x. Subsets
B ⊆ A which are different from the set A are called proper
subsets of A.

A natural question is: if we have a class of all normalized
fuzzy sets with the subsethood relation, can we detect which
of these fuzzy sets are crisp? It is known that:

• if we alow all possible fuzzy sets – even non-normalized
ones,

• then we can detect crisp sets; see, e.g., [7].
In this paper, we show that such a detection is possible even

if we restrict ourselves only to normalized sets.

II. MAIN RESULT

In order to describe general crisp sets in terms of subsethood
relation ⊆ between fuzzy sets, we will first describe some
auxiliary notions in these terms.

In this section, we only consider normalized fuzzy sets.

Proposition 1. A normalized fuzzy set is a 1-element crisp set
if and only if it has no proper normalized fuzzy subsets, i.e.,
if and only if B ⊆ A implies B = A.

Proof.

1◦. Let us first prove that a 1-element crisp set A = {x0} (i.e.,
a set for which A(x0) = 1 and A(x) = 0 for all x ̸= x0) has
the desired property.

Indeed, if B ⊆ A, this means that B(x) ≤ A(x) for all x. For
x ̸= x0, we have A(x) = 0, so we have B(x) = 0 as well.

Since B is a normalized fuzzy set, it has to attain value 1
somewhere. Since we have B(x) = 0 for all x ̸= x0, the only
point x ∈ U at which we can have B(x) = 1 is the point x0.
Thus, we have B(x0) = 1.

So, indeed, we have B(x) = A(x) for all x, i.e., B = A.

2◦. Vice versa, let us prove that each normalized fuzzy set
A which is different from a 1-element crisp set has a proper
normalized fuzzy subset.

Indeed, since A, is normalized, we have A(x0) = 1 for some
x0. Then, we can take B = {x0}. Clearly, B ⊆ A, and, since
A is not a 1-element crisp set, B ̸= A.

The proposition is proven.

Definition 1. By a 2-element set, we mean a normalized fuzzy
set A for which A(x) > 0 for exactly two elements x ∈ U .

Proposition 2. For a normalized fuzzy set A which is not a 1-
element crisp set, the following two conditions are equivalent
to each other:

• A is a non-crisp 2-element set, and
• the class {B : B ⊆ A} of all its subsets is linearly

ordered, i.e.:

if B1 ⊆ A and B2 ⊆ A then B1 ⊆ B2 or B2 ⊆ B1.



Proof.

1◦. Let us first prove that if A is a 2-element non-crisp set,
then the class of all its subsets is linearly ordered.

Indeed, since A is a normalized fuzzy set, we must have
A(x0) = 1 for some x0 ∈ U . Since A is a 2-element set,
there must be one more value x ∈ U for which A(x) > 0. Let
us denote this value by x1. So, we have:

• A(x0) = 1,
• A(x1) > 0 and
• A(x) = 0 for all other x ∈ U .

If we had A(x1) = 1, then A would be a crisp set – namely,
we would have A = {x0, x1}. Since A is a non-crisp set, we
thus cannot have A(x1) = 1, so we have 0 < A(x1) < 1.

If B is a normalized fuzzy set for which B ⊆ A, then for
all x different from x0 and x1, we have B(x) ≤ A(x) = 0 and
thus, B(x) = 0. Since B is normalized, we have B(x) = 1
for some x.

• This x cannot be different from x0 and x1 – because then
B(x) = 0.

• This x cannot be equal to x1, since then we would have
1 = B(x1) ≤ A(x1) < 1 and 1 < 1.

Thus, this x must be equal to x0, i.e., we must have B(x0) =
1. So, all fuzzy normalized subsets B of the set A have the
following form:

• B(x0) = 1,
• B(x1) ≤ A(x1), and
• B(x) = 0 for all other x.

For two such subsets, we can have:
• either B1(x1) ≤ B2(x1),
• or B2(x1) ≤ B1(x1).

One can easily check that:
• if B1(x1) ≤ B2(x1), then B1(x) ≤ B2(x) for all x and

thus, B1 ⊆ B2;
• similarly, if B2(x1) ≤ B1(x1), then B2(x) ≤ B1(x) for

all x and thus, B2 ⊆ B1.
So, for every two normalized fuzzy subsets B1 and B2 of the
set A, we have either B1 ⊆ B2 or B2 ⊆ B1. Thus, the class
of all such subsets is indeed linearly ordered.

2◦. To complete the proof of Proposition 2, let us now prove
that if a normalized fuzzy set A is not a 1-element fuzzy set
and not a non-crisp 2-element set, then the class

{B : B ⊆ A}

is not linearly ordered, i.e., there exists normalized fuzzy
subsets B1 ⊆ A and B2 ⊆ A for which B1 ̸⊆ B2 and
B2 ̸⊆ B1.

The fact that the set A is not a 1-element set means that
A(x) > 0 for at least two different values x.

By definition, a non-crisp 2-element set is a normalized
fuzzy set:

• which is a 2-element set and
• which is not crisp.

So, if a normalized fuzzy set A is not a non-crisp 2-element
set, this means that it is:

• either not a 2-element set
• or it is a crisp 2-element set.

Let us show that in both cases, we can find subsets B1 ⊆ A
and B2 ⊆ A for which B1 ̸⊆ B2 and B2 ̸⊆ B1.

2.1◦. Let us first consider the case when A is not a 2-element
set, i.e., when, in addition to the point x0 at which A(x0) =
1, there exist at least two other points x1 and x2 for which
A(x1) > 0 and A(x1) > 0.

In this case, we can take the following sets B1 and B2:
• B1(x0) = B2(x0) = 1;
• B1(x1) = A(x1) and B2(x1) = 0;
• B2(x1) = 0 and B2(x2) = A(x2), and
• B1(x) = B2(x) for all other x.

One can see that B1(x) ≤ A(x) and B2(x) ≤ A(x) for all x,
so indeed B1 ⊆ A and B2 ⊆ A. However, here:

• B1(x1) = A(x1) > 0 = B2(x1), so we cannot have
B1 ⊆ B2, because that would imply B1(x1) ≤ B2(x1);

• similarly, B2(x2) = A(x2) > 0 = B1(x2), so we cannot
have B2 ⊆ B1, because that would imply B2(x2) ≤
B1(x2).

So, we indeed have B1 ̸⊆ B2 and B2 ̸⊆ B1.

2.2◦. Let us now consider the case when A is a 2-element
crisp set, i.e., when A = {x0, x1}.

In this case, we can take B1 = {x0} and B2 = {x1}. Clearly,
B1 ⊆ A and B2 ⊆ A, but B1 ̸⊆ B2 and B2 ̸⊆ B1.

So, the proposition is proven.

Proposition 3. A normalized fuzzy set A is a crisp 2-element
set if and only if the following two conditions are satisfied:

• the set A itself is not a 1-element crisp set and not a
2-element non-crisp set, but

• each proper normalized fuzzy subsets B ⊆ A is either a
crisp 1-element sets or a non-crisp 2-element set.

Proof.

1◦. If A is a 2-element crisp set, i.e., if A = {x0, x1} for some
x0 ̸= x1, then it is clearly:

• not a 1-element crisp set, and
• not a non-crisp 2-element set.
Let us prove that in this case, every proper normalized fuzzy

subset B ⊆ A is
• either a 1-element crisp set
• or a non-crisp 2-element set.

Since A(x) > 0 for only two values x = x0 and x = x1, and
B(x) ≤ A(x) for all x, the value B(x) can be positive also
for at most two values xi.

If B(x) > 0 for only one value x, then, since B is
normalized, for this x, we must have B(x) = 1. Thus, we
have B = {x}, i.e., B is a 1-element crisp set.



If B(x) > 0 for two different values x, this means that
we have B(x0) > 0 and B(x1) > 0. Since the set B is
normalized, one of these value must be equal to 1. If the
second one is equal to 1, we will have B = A – but B is
a proper subset. Thus, one of the values B(xi) is smaller than
1 – thus, B is a non-crisp 2-element set.

2◦. Let us now prove that if a normalized fuzzy set A is not
a 2-element crisp set, then one of the above properties is not
satisfied, i.e.,

• either A is 1-element crisp set or a 2-element non-crisp
set,

• or one of its proper subsets B ⊆ A is not a non-crisp
2-element set.

In other words, we want to prove that if A is:
• not a crisp 1-element set,
• not a crisp 2-element set, and
• not a non-crisp 2-element set,

then one of its proper subsets B ⊆ A is not a non-crisp 2-
element set.

The condition on A means that it is:
• not a 1-element set and
• not a 2-element set.

This means that there must exist at least three different values
x ∈ U for which A(x) > 0. For one of these values, we have
A(x0) = 1, let us denote the other two values by x1 and x2,
then A(x1) > 0 and A(x2) > 0.

Let us now take the following normalized fuzzy set B;
• B(x1) = 0.5 ·A(x1),
• B(x2) = 0.5 ·A(x2), and
• B(x) = A(x) for all other x.

Here, B(x0) = A(x0) = 1, so B is indeed a normalized
fuzzy set. One can easily check that B(x) ≤ A(x) for all
x, so it is indeed a subset of A. Since A(x1) > 0, we have
B(x1) = 0.5 ·A(x1) ̸= A(x1), so B is a proper subset of A.

However, B(x0) = 1 > 0, B(x1) > 0, and B(x2) > 0, so
B is not a 2-element set.

The proposition is proven.

Comment. Now, we are ready to show that crisp sets can be
described in terms of the subsethood relation.

Proposition 4. A normalized fuzzy set is crisp if and only if
we have one of the following two cases:

• A is a 1-element fuzzy set, or
• for every subset B ⊆ A which is a non-crisp 2-element

set, there exists a crisp 2-element set C for which

B ⊆ C ⊆ A.

Comment. Since Propositions 1–3 show that the properties
of being a crisp 1-element set, a crisp 2-element set, and a
non-crisp 2-element set can all be described in terms of the
subsethood relation, this Proposition shows that crispness can
indeed be described in terms of subsethood.

Proof.

1◦. Let us first prove that if A is a crisp set, then:
• either it is a 1-element crisp set,
• or for every non-crisp 2-element set B ⊆ A, there exists

a crisp 2-element set C for which B ⊆ C ⊆ A.

Indeed, let B be a non-crisp 2-element set. This means that
for some elements x0 ∈ U and x1 ∈ U , we have:

• B(x0) = 1,
• 0 < B(x1) < 1, and
• B(x) = 0 for all other x.

Since B ⊆ A, we have:
• 1 = B(x0) ≤ A(x0) – thus A(x0) = 1; and
• 0 < B(x2) ≤ A(x1) – thus A(x1) > 0.
The set A is crisp, so A(x1) can be either 0 or 1. Since

A(x1) > 0, we must have A(x1) = 1. Thus, for a 2-element
crisp set C = {x0, x1}, we have B ⊆ C ⊆ A.

2◦. To complete our proof, let us prove that if a normalized
crisp set A is not a crisp set, then there exists a non-crisp
2-element set B ⊆ A for which no crisp 2-element set C
satisfies the property B ⊆ C ⊆ A.

By definition, for a crisp set, all the values A(x) are either
0s or 1s. So, the fact that A is not crisp means that we have
0 < A(x1) < 1 for some x1 ∈ U .

Since A is normalized, there exists x0 for which A(x0) = 1.
Let us now take the following set B;

• B(x0) = 1,
• 0 < B(x1) = A(x1) < 1, and
• B(x) = 0 for all other x.

Clearly, B is a non-crisp 2-element set a nd B ⊆ A.
If we had B ⊆ C ⊆ A for some crisp 2-element set C, then

due to 1 = B(x0) ≤ C(x0) and B(x1) ≤ C(x1), we would
have C(x0) = 1 and C(x1) > 0 – hence C(x1) = 1 (since C
is crisp). But in this case, C(x1) = 1 > A(x1), so we cannot
have C ⊆ A.

The proposition is proven.

III. INTERVAL-VALUED CASE

Formulation of the problem. The traditional fuzzy logic
assumes that experts can meaningfully describe their degrees
of certainty by numbers from the interval [0, 1]. In practice,
however, experts cannot meaningfully select a single number
fuzzy describing their degree of certainty – since it is not
possible to distinguish between, say, degrees 0.80 and 0.81. A
more adequate description of the expert’s uncertainty is when
we allow to characterize the uncertainty by a whole range of
possible numbers, i.e., by an interval

[
A(x), A(x)

]
.

This idea leads to interval-valued fuzzy numbers (see, e.g.,
[3], [4]), i.e., mappings that assign, to each element x from
the Universe of discourse, an interval A(x) =

[
A(x), A(x)

]
.

For two interval-valued degrees A =
[
A,A

]
and B =[

B,B
]
, it is reasonable to say that A ≤ B if

A ≤ B and A ≤ B.



Thus, we can define a subsethood relation between two
interval-valued fuzzy sets A and B as A(x) ≤ B(x) for all x.

An interval-valued fuzzy set is normalized if A(x0) = 1 for
some x0.

Traditional (type-2) fuzzy sets can be viewed as particular
cases of interval-valued fuzzy sets, with “degenerate” intervals

[A(x), A(x)].

Here, we have a similar problem: can we detect traditional
fuzzy sets based only on the subsethood relation between
interval-valued fuzzy sets?

Let us show that this is indeed possible.

Definition 2. By an uncertain 1-element set, we mean a
normalized interval-valued fuzzy set A for which, for some
x0 ∈ U , we have:

• A(x0) = [0, 1] and
• A(x) = [0, 0] for all other x.

Proposition 5. A normalized interval-valued fuzzy set A is
an uncertain 1-element set if and only if it has no proper
normalized subsets.

Comment. So, we can determine uncertain 1-element sets
based on the subsethood relation.

Proof.

1◦. Let us first prove that for an uncertain 1-element set A,
there are no proper subsets.

Indeed, if A(x0) = [0, 1], A(x) = [0, 0] for all x ̸= x0, and
B(x) ≤ A(x), then:

• for x ̸= x0, from B(x) ≤ A(x) = 0 and B(x) ≤ A(x) =
0, it follows that B(x) = B(x) = 0, so

B(x) = [0, 0] = A(x);

• for x = x0, from A(x0) ≤ A(x0) = 0, it follows that

B(x0) = 0 = A(x0).

On the other hand, B is a normalized interval-valued fuzzy set,
so we must have ]overlineB(x) = 1 for some x. This cannot
be for x ̸= x0, since then B(x) = 0. So, the only remaining
option is x = x0. Hence, B(x0) = 1, thus, B(x0) = A(x0).

Therefore, if B ⊆ A, then B = A. So, the normalized
interval-valued fuzzy sets A does not have any proper subsets.

2◦. To complete the proof, let us prove that if a normalized
interval-valued fuzzy set has no proper subsets, then it is an
uncertain 1-element set.

Indeed, since A is normalized, there exists an element x0 for
which A(x0) = 1. Then, as one can easily check, we have
B ⊆ A, where:

• B(x0) = [0, 1], and
• B(x) = [0, 0] for all other x

Since A has no proper subsets, we thus conclude that A = B,
i.e., that A is an uncertain 1-element set.

The proposition is proven.

Definition 3. By a basic 1-element set, we mean a normalized
interval-valued fuzzy set A for which, for some x0 ∈ U , we
have:

• A(x0) = [a, 1] for some a > 0, and
• A(x) = [0, 0] for all x ̸= x0.

Definition 4. By a basic 2-element set, we mean a normalized
interval-valued fuzzy set A for which, for some x0 ̸= x1, we
have:

• A(x0) = [0, 1],
• A(x1) = [0, a] for some a ∈ (0, 1), and
• A(x) = [0, 0] for all other x.

Proposition 6. Let A be a normalized interval-valued fuzzy set
which is not an uncertain 1-element set. Then, the following
two conditions are equivalent to each other:

• the class {B : B ⊆ A} of all subsets of A is linearly
ordered;

• A is either a basic 1-element set or a basic 2-element
set.

Comment. So, we can determine, based on the subsethood
relation, whether A is a basic set.

Proof.

1◦. Let us first prove that if A is a basic 1-element set or a
basic 2-element set, then the class of all its subsets is linearly
ordered.

1.1◦. Let us first consider the case when A is a basic 1-element
set.

In this case, B ⊆ A implies B(x) = B(x) = 0 for all
x ̸= x0. Since B is normalized, then, similarly to the proof
of Proposition 5, we get B(x0) = 1. The final inequality
B(x0) ≤ A(x0) = a implies that for b def

= B(x0), we have

b ≤ a.

So, the set B has the following form:
• B(x) = [0, 0] for all x ̸= x0, and
• B(x0) = [b, 1], where we denoted b = B(x0).

One can easily check that the class of such sets is linearly
ordered: namely, if for two such sets B1 and B2, we denote
the corresponding values b by b1 and b2, then:

• if b1 ≤ b2, then B1 ⊆ B2, and
• vice versa, if b2 ≤ b1, then B2 ⊆ B1.

1.2◦. Let us consider the case when A is a basic 2-element
set.

Let B ⊆ A. Then, from B(x) ≤ A(x), we conclude that
B(x) = [0, 0] when x is different from x0 and x1, and that
B(x0) = B(x1) = 0.

The set B is normalized, so B(x) = 1 for some x.
• This x cannot be different from x0 and x1, since for such

x, we have
B(x) = 0 < 1.



• It cannot be equal to x1, since we have

B(x1) ≤ A(x1) = a < 1.

Thus, the only possible element x is x = x0, hence we have
B(x0) = 1. The final inequality B(x1) ≤ A(x1) = a implies
that for b def

= B(x1), we have b ≤ a.
So, the set B has the following form:
• B(x) = [0, 0] for all x which are different from x0

and x1;
• B(x0) = [0, 1], and
• B(x1) = [0, b], where b = B(x1).

One can easily check that the class of such sets is linearly
ordered: namely, if for two such sets B1 and B2, we denote
the corresponding values b by b1 and b2, then:

• if b1 ≤ b2, then B1 ⊆ B2, and
• vice versa, if b2 ≤ b1, then B2 ⊆ B1.

2◦. Let us now prove that if the class of all normalized subsets
of a normalized fuzzy interval-valued set A is linearly ordered,
then A is either a basic 1-element set or a basic 2-element set.

Since the set A is normalized, there exists an element x0 ∈ U
for which A(x0) = 1. Let us consider two possible cases:

• A(x0) > 0 and
• A(x0) = 0.

2.1◦. Let us first consider he case when A(x0) > 0. Let us
prove that in this case, we have a basic 1-element set, i.e., that
A(x) = [0, 0] for all x ̸= x0.

We will prove this by contradiction. Let us assume that
A(x) > 0 for some x ̸= x0. Then, we can consider the
following two subsets of A:

• B1(x0) = A(x0), B2(x0) = [0, 1];
• B2(x1) = [0, 0], B2(x1) = A(x1), and
• A(x) = B(x) = [0, 0] for al other x ∈ U .

One can easily check that B1 ⊆ A and B2 ⊆ A. However:
• we have B1(x0) = A(x0) > 0 = B2(x0), hence we

cannot have B1 ⊆ B2;
• on the other hand, B2(x1) = A(x1) > 0 = B1(x1),

hence we cannot have B2 ⊆ B1.
The fact that here B1 ̸⊆ B2 and B2 ̸⊆ B1 shows that A(x) > 0
is impossible. Thus, A(x) = 0 for all x ̸= x0, so A is indeed
a basic 1-element set.

2.2◦. Let us first consider he case when A(x0) = 0. Let us
prove that in this case, we have a basic 2-element set, i.e.,
that:

• A(x1) = [0, a] for some x1 ∈ U and some a ∈ (0, 1),
and

• A(x) = [0, 0] for all other x.

Indeed, since A(x0) = [0, 1], but the set A is not an uncertain
1-element set, there exists some x1 ̸= x0 for which A(x1) > 0.

2.2.1◦. Let us prove that in this case, A(x) = [0, 0] for all
other x.

We prove this by contradiction. Let us assume that for some
x2, we have x2 ̸= x0, x2 ̸= x1 and A(x2) > 0. In this case,
we can form the following two subsets B1 and B2;

• B1(x0) = B2(x0) = [0, 1];
• B1(x1) = A(x1), B2(x1) = [0, 0];
• B1(x2) = [0, 0], B2(x2) = A(x2); and
• B1(x) = B2(x) = [0, 0] or all other x.

Clearly, B1 ⊆ A and B2 ⊆ A, but:
• B1(x1) > 0 = B2(x1), so we cannot have B1 ⊆ B2,

and
• B2(x2) = A(x2) > 0 = B1(x2), so we cannot have

B2 ⊆ B1.

This contradicts to our assumption that the class of all subsets
of A is linearly ordered. Thus, A(x) = [0, 0] for all element
x which are different from x0 and x1.

2.2.2◦. Let us prove, by contradiction, that A(x1) = 0.

Indeed, if A(x1) > 0, then we can form the following sets B1

and B2:
• B1(x0) = B2(x0) = [0, 1];
• B1(x1) =

[
0, A(x1)

]
, B2(x1) = 0.5 ·A(x1).

• B1(x) = B2(x) = [0, 0] for all other x.
One can easily check that B1 ⊆ A and B2 ⊆ A, but:

• B1(x1) = A(x1) ≥ A(x1) > 0.5 · A(x1) = B2(x1), so
we do not have B1 ⊆ B2;

• on the other hand, B2(x1) = 0.5 ·A(x1) > 0 = B1(x1),
so we do not have B2 ⊆ B1 either.

This contradicts to our assumption that the class of all subsets
of A is linearly ordered. This contradiction shows that

A1(x1) = 0.

2.2.3◦. Finally, let us prove that A(x1) < 1.

Indeed, if A(x1) = 1, i.e., if A(x1) = [0, 1], then we can
find the following two sets B1 ⊆ A and B2 ⊆ A for which
B1 ̸⊆ B2 and B2 ̸⊆ B1:

• B1(x0) = [0, 1], B2(x0) = [0, 0];
• B1(x1) = [0, 0], B2(x1) = A(x1) = [0, 1], and
• B1(x) = B2(x) = [0, 0] for all other x.

Then:
• B1(x0) = 1 > B2(x0), so we cannot have B1 ⊆ B2;
• B2(x1) = 1 > 0 = B1(x1), so we cannot have B2 ⊆ B1.

Contradiction show that we cannot have A(x1) = 1, thus

A(x1) < 1.

Thus, in this case, A is a basic 2-element set. The proposition
is proven.



Proposition 7. If A is a basic 1-element set or a basic 2-
element set, then the following two properties are equivalent
to each other:

• A is a crisp 1-element set;
• no proper superset of A is a basic 1-element set or a

basic 2-element set.

Comment. So, we can determine crisp 1-element sets based
only on the subsethood relation.

Proof. If A = {x0}, then clearly A cannot have any proper
supersets which are basic 1-element or basic 2-element sets.

Vice versa, if A is a basic 1-element set with A(x0) < 1,
then B = {x0} is its proper superset which is a a 1-element
basic set.

Similarly, if A is a basic 2-element set, with A(x0) = [0, 1].
A(x1) = 0, and A(x1) < 1, then we can have the following
proper superset B ⊇ A wit is also a basic 2-element set:

• B(x0) = [0, 1];

• B(x1) =

[
0,

1 +A(x1)

2

]
; and

• B(x) = 0 for all other x.
The proposition is proven.

Proposition 8. For a normalized interval-valued fuzzy set, the
following two conditions are satisfied:

• A is either an uncertain 1-element set or a basic 1-
element set;

• A is a subset of a crisp 1-element set.

Proof: straightforward.

Comment. Since we know how to describe, based on the
subsethood relation,

• when A is an uncertain 1-element set, and
• when A is a basic set,

we can therefore determine:
• basic 1-element sets and
• basic 2-element sets

based on subsethood relation only.

Definition 5. Let A be a basic 2-element set, with:
• A(x0) = [0, 1],
• A(x1) = [0, a] for some a ∈ (0, 1), and
• A(x) = [0, 0] for all other x.

Then, by its type-1 cover, we mean a normalized interval-
valued fuzzy set A′ for which:

• A′(x0) = [1, 1],
• A′(x1) = [a, a], and
• A′(x) = [0, 0] for all other x.

Let us show that the type-1 cover can be determined in terms
of the subsethood relation.

Proposition 9. Let A be a basic 2-element set. Then, its type-1
cover A′ is the ⊆-smallest normalized interval-valued fuzzy set
that contains all the normalized interval-valued sets B ⊇ A
for which the following four conditions are satisfied:

• the set B is not a basic 2-element set;
• the class of all basic 2-element subsets of B is linearly

ordered;
• the class {C : A ⊆ C ⊆ B} of all normalized interval-

valued set between A and B is linearly ordered; and
• the set B has only one uncertain 1-element subset.

Proof.

1◦. Let us first prove that a set B satisfies the above four
conditions if and only if it has one the following two forms:

• either it has the form B(x0) = [b, 1] for some b > 0,
B(x1) = A(x1), and B(x) = [0, 0] for all other x; we
will call these B of the first form;

• or it has the form B(x0) = A(x0), B(x1) = [b, a] for
some b > 0, and B(x) = [0, 0] for all other x; we will
call these B of the second form.

1.1◦. Let us first prove that the all the sets B of the first form
satisfy all the above four conditions.

1.1.1◦. Indeed, clearly, such B is not a basic 2-element set.

1.1.2◦. If C is a basic 2-element set for which C ⊆ B, then
we have:

• C(x0) = [0, 1],
• C(x) = [0, 0] for all x different from x0 and x1, and
• C(x1) = [0, c] for some c ≤ a.

Clearly, the set of all such C is linearly ordered: if we have
two such sets, corresponding to elements c1 and c2, then:

• if c1 ≤ c2, then we have C1 ⊆ C2, and
• if c2 ≤ c1, then we have C2 ⊆ C1.

1.1.3◦. If A ⊆ C ⊆ B, then we have:
• C(x0) = [c, 1] for some c ∈ [b, 1],
• C(x1) = A(x1), and
• C(x) = [0, 0] for all other x.

Thus, if we have two such sets, corresponding to elements c1
and c2, then:

• if c1 ≤ c2, then we have C1 ⊆ C2, and
• if c2 ≤ c1, then we have C2 ⊆ C1.

1.1.4◦. Of course, the only uncertain 1-element set contained
in B is the set corresponding to x0.

All four conditions are proven.

1.2◦. Let us now prove that the all the sets B of the second
form satisfy all the above four conditions.

1.2.1◦. Indeed, clearly, such B is not a basic 2-element set.

1.2.2◦. If C ⊆ B is a basic 2-element set, then we have:
• C(x0) = [0, 1],
• C(x) = [0, 0] for all x different from x0 and x1, and
• C(x1) = [0, c] for some c ≤ a.

Clearly, the set of all such C is linearly ordered: if we have
two such sets, corresponding to elements c1 and c2, then:

• if c1 ≤ c2, then we have C1 ⊆ C2, and



• if c2 ≤ c1, then we have C2 ⊆ C1.

1.2.3◦. If A ⊆ C ⊆ B, then we have:
• C(x0) = A(x0),
• C(x1) = [c, a] for some c ∈ [b, a], and
• C(x) = [0, 0] for all other x.

Thus, if we have two such sets, corresponding to elements c1
and c2, then:

• if c1 ≤ c2, then we have C1 ⊆ C2, and
• if c2 ≤ c1, then we have C2 ⊆ C1.

1.2.4◦. Of course, the only uncertain 1-element set contained
in B is the set corresponding to x0.

All four conditions are proven.

1.3◦. Let us now prove that if a set B satisfies the above four
conditions, then B is either of the first form or of the second
form.

1.3.1◦. Let us first prove that we must have B(x) = [0, 0] for
all elements x which are different from x0 and x1.

We will prove this by contradiction. Assume that B(x2) > 0
for some element x2 which is different from x0 and x1. Then,
in addition to a basic 2-element set A ⊆ B, we also have
another basic 2-element set C ⊆ B for which:

• C(x0) = [0, 1],
• C(x2) =

[
0, B(x2)

]
, and

• C(c) = [0, 0] for all other elements x.
Then:

• A(x1) = a > 0 = C(x1), so we cannot have A ⊆ C;
and

• C(x2) > 0 = A(x2), so we cannot have C ⊆ A either.
This contradicts to the condition that set of all basic 2-element
sets which are subsets of B is linearly ordered.

Thus, B(x) > 0 is impossible. So, indeed, B(x) = [0, 0]
for all elements x which are different from x0 and x1.

1.3.2◦. Due to Part 1.3.1 of this proof, the set B is uniquely
described by its values B(x0) and B(x1). The condition that
A ⊆ B implies that A(x0) = 1 and that:

• B(x0) ≥ 0,
• B(x1) ≥ 0, and
• that B(x1) ≥ a = A(x1).

Since B is not a basic 2-element set and A is such a set, we
have B ̸= A. Thus, at least one of the above inequalities must
be strict. Let us consider these three inequalities one by one.

1.3.3◦. Let us first consider the case when B(x0) > 0. Let us
prove that in this case, we have B(x1) = A(x1), i.e., that we
have a set of the first form.

We will first prove, by contradiction, that B(x1) = 0. Indeed,
if B(x1) > 0, then we can form the following two sets C1

and C2 for which A ⊆ C1 ⊆ B, A ⊆ C2 ⊆ B, but C1 ̸⊆ C2

and C2 ̸⊆ C1:
• C1(x0) = A(x0) = [0, 1], C1(x1) = B(x1), and

C1(x) = [0, 0] for all other x;

• C2(x0) = B(x0), C2(x1) = A(x1), and C2(x) = [0, 0]
for all other x.

Here:
• C1(x1) = B(x1) > 0 = C2(x1), so we cannot have

C1 ⊆ C2;

• C2(x0) = B(x0) > 0 = C1(x0), so we cannot have

C2 ⊆ C1.

This contradicts to our assumption that the class of all inter-
mediate fuzzy sets C is linearly ordered. Thus, we must have
B(x1) = 0.

Let us now prove, by contradiction, that B(x1) = A(x1).
Indeed, suppose that B(x1) > A(x1). Then we can form the
following two sets C1 and C2 for which A ⊆ C1 ⊆ B, A ⊆
C2 ⊆ B, but C1 ̸⊆ C2 and C2 ̸⊆ C1:

• C1(x0) = A(x0) = [0, 1], C1(x1) = B(x1), and
C1(x) = [0, 0] for all other x;

• C2(x0) = B(x0), C2(x1) = A(x1), and C2(x) = [0, 0]
for all other x.

Here:
• C1(x1) = B(x1) > A(x1) = C2(x1), so we cannot have

C1 ⊆ C2;

• C2(x0) = B(x0) > 0 = C1(x0), so we cannot have

C2 ⊆ C1.

This contradicts to our assumption that the class of all inter-
mediate fuzzy sets C is linearly ordered. Thus, we must have

B(x1) = A(x1).

So, in this case, we indeed have a set of the first form.

1.3.4◦. Let us now consider the case when B(x1) > 0. Let
us prove that in this case, we have B(x0) = 0 and B(x1) =
A(x1), i.e., that we have a set of the second form.

We will first prove, by contradiction, that B(x0) = 0. Indeed,
if B(x0) > 0, then we can form the following two sets C1

and C2 for which A ⊆ C1 ⊆ B, A ⊆ C2 ⊆ B, but C1 ̸⊆ C2

and C2 ̸⊆ C1:
• C1(x0) = A(x0) = [0, 1], C1(x1) = B(x1), and

C1(x) = [0, 0] for all other x;
• C2(x0) = B(x0), C2(x1) = A(x1), and C2(x) = [0, 0]

for all other x.
Here:

• C1(x1) = B(x1) > 0 = C2(x1), so we cannot have

C1 ⊆ C2;

• C2(x0) = B(x0) > 0 = C1(x0), so we cannot have

C2 ⊆ C1.



This contradicts to our assumption that the class of all inter-
mediate fuzzy sets C is linearly ordered. Thus, we must have

B(x0) = 0.

Let us now prove, by contradiction, that B(x1) = A(x1).
Indeed, suppose that B(x1) > A(x1). Then we can form the
following two sets C1 and C2 for which A ⊆ C1 ⊆ B, A ⊆
C2 ⊆ B, but C1 ̸⊆ C2 and C2 ̸⊆ C1:

• C1(x0) = [0, 1], C1(x1) = B(x1), and C1(x) = [0, 0]
for all other x;

• C2(x0) = B(x0), C2(x1) = A(x1), and C2(x) = [0, 0]
for all other x.

Here:
• C1(x1) = B(x1) > A(x1) = C2(x1), so we cannot have

C1 ⊆ C2;

• C2(x0) = B(x0) > 0 = C1(x0), so we cannot have

C2 ⊆ C1.

This contradicts to our assumption that the class of all inter-
mediate fuzzy sets C is linearly ordered. Thus, we must have

B(x1) = A(x1).

So, in this case, we indeed have a set of the second form.

1.3.5◦. Finally, let us prove that the case when B(x1) > A(x1)
is not possible.

We will first prove, by contradiction, that in this case, B(x0) =
0. Indeed, if B(x0) > 0, then we can form the following two
sets C1 and C2 for which A ⊆ C1 ⊆ B, A ⊆ C2 ⊆ B, but
C1 ̸⊆ C2 and C2 ̸⊆ C1:

• C1(x0) = A(x0) = [0, 1], C1(x1) = B(x1), and
C1(x) = [0, 0] for all other x;

• C2(x0) = B(x0), C2(x1) = A(x1), and C2(x) = [0, 0]
for all other x.

Here:
• C1(x1) = B(x1) > A(x1) = C2(x1), so we cannot have

C1 ⊆ C2;

• C2(x0) = B(x0) > 0 = C1(x0), so we cannot have

C2 ⊆ C1.

This contradicts to our assumption that the class of all inter-
mediate fuzzy sets C is linearly ordered. Thus, we must have

B(x0) = 0.

Let us now prove, by contradiction, that B(x1) = 0. Indeed,
suppose that B(x1) > 0. Then we can form the following two

sets C1 and C2 for which A ⊆ C1 ⊆ B, A ⊆ C2 ⊆ B, but
C1 ̸⊆ C2 and C2 ̸⊆ C1:

• C1(x0) = A(x0) = [0, 1], C1(x1) =
[
0, B(x1)

]
, and

C1(x) = [0, 0] for all other x;
• C2(x0) = A(x0) = [0, 1], C2(x1) =

[
B(x1), A(x1)

]
,

and C2(x) = [0, 0] for all other x.
Here:

• C1(x1) = B(x1) > A(x1) = C2(x1), so we cannot have

C1 ⊆ C2;

• C2(x1) = B(x1) > 0 = C1(x1), so we cannot have

C2 ⊆ C1.

This contradicts to our assumption that the class of all inter-
mediate fuzzy sets C is linearly ordered. Thus, we must have

B(x1) = 0.

Finally, B(x1) < 1, since otherwise B would have two
uncertain 1-element subsets:

• a subset corresponding to x0, and
• a subset corresponding to x1,

Then, since we know that B(x0) = 1 and we have proved that
B(x0) = B(x1) = 0 and B(x1) < 1, we conclude that the set
B is a basic 2-element set – and we explicitly assumed that
it is not.

Thus, the third inequality cannot be strict, so B is indeed either
of the first form, or of the second form. Once can check that
the smallest set containing all such sets is indeed the set A′.

The proposition is proven.

Definition 6. Let A be an uncertain 1-element set, with:
• A(x0) = [0, 1], and
• A(x) = [0, 0] for all other x.

Then, by its type-1 cover, we mean a crisp set A′ = {x0}.

Proposition 10. A normalized interval-valued fuzzy set is a
type-1 set if and only if the following two conditions are
satisfied:

• if B ⊆ A for some uncertain 1-element set, then B′ ⊂ A,
and

• if B ⊆ A for some basic 2-element set, then B′ ⊆ A.

Comment. Since we have shown that:
• the operation B′,
• uncertain 1-element sets, and
• basic 2-element sets

can all be described in terms of the subsethood relation, we
can thus conclude that we can detect type-1 sets based on the
subsethood relation between normalized interval-valued fuzzy
sets.



Proof.

1◦. One can see that the type-1 cover of a set A(x) =[
A(x), A(x)

]
has the form A′(x) =

[
A(x), A(x)

]
.

For a type-1 set, A(x) = A(x), thus A′ = A, and clearly,
A ⊆ B implies A′ ⊆ B.

2◦. Vice versa, let us prove that if the above two conditions
are satisfied, then A is a type-1 set, i.e., that A(x) = A(x) for
all x.

To prove this, let us consider two possible cases:
• elements x for which A(x) = 1, and
• elements x for which A(x) < 1.

2.1◦ Let us first consider an element x for which A(x) = 1.
In this case, B ⊆ A for the uncertain 1-element set B for
which B(x) = [0, 1] and B(y) = [0, 0] for all y ̸= x. Then,
B′ = {x}, i.e., B′(x) = [1, 1]. Thus, from B′ ⊆ A it follows
that 1 = B′(x) ≤ A(x), so A(x) = 1 = A(x). So, for such
elements x, we indeed have A(x) = A(x).

2.2◦. Finally, let us consider an element x for which A(x) < 1.
Since A is normalized, there exists an element x0 for which
A(x0) = 1. Now, we can form the following basic 2-element
set B:

• B(x0) = [0, 1],
• B(x) =

[
0, A(x)

]
, and

• B(y) = [0, 0] for all other elements y.
Clearly, B ⊆ A, hence B′ ⊆ A. Here, B′(x) =[
B(x), B(x)

]
=

[
A(x), A(x)

]
. So, B′ ⊆ A implies B′(x) =

A(x) ≤ A(x), thus A(x) = A(x).

The proposition is proven.
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