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Abstract—To process huge amounts of data, one possibility is
to combine some data points into granules, and then process
the resulting granules. For each group of data points, if we try
to include all data points into a granule, the resulting granule
often becomes too wide and thus rather useless; on the other
case, if the granule is too narrow, it includes only a few of the
corresponding point — and is, thus, also rather useless. The need
for the trade-off between coverage and specificity is formalized
as the principle of justified granularity. The specific form of this
principle depends on the selection of a measure of specificity.
Empirical analysis has show that exponential and power law
measures of specificity are the most adequate. In this paper, we
show that natural symmetries explain this empirically observed
efficiency.

I. FORMULATION OF THE PROBLEM

Granular computing: a brief reminder. In many practical

situations, it is difficult to deal with the whole amount of data:

« it may be that we have too much data, so it is not feasible

to apply the usual data processing algorithms to the data

as a whole; this is the situation known as big data; see,
e.g., [9];

e it may be that while in principle, it is possible to
eventually process all the data points, this would take
longer time than we have — e.g., when we need to make
a decision right away;

« it may also be that we want to use our intuition to better
process the data, and to use our intuition, we need to
present the data in presentable form.

There may be other cases when we have too much data. To
deal with such cases, a natural idea is compress the original
data into a smaller set.

The overall amount of available data can be estimated by
multiplying the overall number of data points by the average
amount of bits in each data point. In general, each data point
does not carry too much information, so the main way to
decrease the overall amount of information is to decrease the
number of data points. Of course, we could simply take a
sample from the original data set, but that would deprive us
of all the information provided by the un-used data points.

A much better idea is to each each new “data point” corre-
spond to several original ones. This “combined” data point is

known as a granule, and the resulting technique is known as
granular computing. The general idea of granular computing
can be traced to Lotfi Zadeh [21]; for latest developments, see,
e.g., [16], [17].

There are many possible types of granules. For example,
instead of several numerical values:

e we can consider intervals that contain all — or at least
most — of the data points; see, e.g., [5], [9], [12];

e we can consider fuzzy sets, that describe not only which
values are possible, and also to what degree different data
points are possible; see, e.g., [1], [6], [10], [14], [20];

e we can consider fype-2 fuzzy or probabilistic granules;
see, e.g., [10], [11]

o we can consider rough sets, etc.

How to combine data points into a granule: towards the
principle of justifiable granularity. Once we have selected a
group of data points that we want to compress into a granule,
the question is which granule to select based on these data
points.

o If we try to include all data points into a granule, the
resulting granule often becomes too wide and thus rather
useless.

o On the other case, if the granule is too narrow, it includes
only a few of the corresponding point — and is, thus, also
rather useless.

We thus need to achieve a trade-off between coverage and
specificity.

According to decision theory (see, e.g., [3], [4], [7], [13],
[18]), decisions of a rational decision maker can be described
as optimizing the expected value of a special function —
called utility function u(s) — that describes the corresponding
preference. In other words, if after making a selection a, we
get situations si,...,s, with probabilities p;(a),...,pn(a),
then we should make a selection for which the expected value

pi(a) - u(s1) + ...+ pn(a) - u(sn)

attains its largest possible value.



One can easily check that if we replace the utility function
u(a) by a re-scaled one

ui(s) =k -u(s) + ¢, (1)

then we get the same order between selections. Vice versa, if
two utility functions u(s) and wu;(s) always lead to the same
decisions, then these two functions are linearly related, i.e.,
there exist constants k£ > 0 and ¢ for which the formula (1)
holds for all situations s. In this sense, utility is similar to
physical quantities like time or temperature, whole numerical
values can change if we select:

« a different measuring unit and/or
« a different starting point.

In our case, hen we replace several data points, we lose
information, so in this case, the utility is negative. In our
problem, we have two situations.

For some points, we replace these points with a granule.

o The probability P of this replacement can be naturally
computed as the proportion of data points that fit into the
corresponding granules. This proportion depends on the
size of the granule: depends on the size ¢ of the granule:
P = P(e): the larger the size, the higher the proportion.

o The utility of this replacement also depends on the size £
of the granule: u = u(e): the larger the size, the smaller
the utility.

Other points do not fit into the granule and are, thus, simply

dismissed (or at least processed in a more complex way).

o The probability of this dismissal (or alternative process-
ing) is, clearly, the remaining probability 1 — P(e). item
Let us denote the utility of this dismissal (or alternative
processing) by ug.

According to decision making, we thus need to select the

size ¢ that maximizes the expected utility

P(e)-ule) + (1 — P(e)) - ug.
This expression can be equivalently rewritten as
P(e) - S(e) + uo, (2)

where we denoted
def

S(e) = ule) — up.
The objective function (2) can be further simplified if we take
into account that subtracting the same value u( from all the
values does not change the order and thus, does not change
the optimal selection.
Thus, we need to select the value € for which the product

P(e) - 5(e) (3)
takes the largest possible value. This ideas has indeed been

used to select an appropriate granule:

o the probability P(e) that describes what proportion of
the data points is covered by the granule is known as the
coverage;

o the expression S(g) — that describes how specific is the
granule — is known as measure of specificity, and

o the idea of maximizing the product (3) is known as the
Principle of Justified Granularity.

Which specificity functions work best? The specific selec-
tion of the granule size depends on+ the selection of the
measure of specificity.

Empirical analysis has shown that, out of several measures
of specificity that have been tested, the most adequate results
are obtained we when use the following two measures of
specificity:

« the exponential measure of specificity

S(g) = const - exp(—c - €),

for some constant ¢, and
« the power law measure of specificity

S(e) = const - (1 —c-¢)*,
for some constants ¢ and &.

What we do in this paper. In this paper, we provide a
theoretical explanation for this empirical choice. Namely, we
show that this choice follows form natural symmetries.

Comment. By definition, the measure of specificity S(g) differs
from the utility function u(¢) only by an additive constant ug.
Since, as we have mentioned, the utility function is defined
modulo an additive constant ¢ anyway, we can as well talk
about selecting an appropriate utility function.

II. SHIFT-INVARIANCE: FIRST NATURAL SYMMETRY

Shift-invariance: formulation of the first natural symmetry.
The data points come from measurements (or from expert
estimates). Measurements are never absolutely accurate. Thus,
the measured values are, in general, somewhat different from
the actual (unknown) values of the corresponding quantity.

We usually take the measurement uncertainty into account.
However, often, there is an additional source of error that we
did not think about. What if there is indeed such additional
source of error, of size £y? In this case, when a granule of size
¢ includes all appropriate measurement results, for this granule
to include the actual values, we must increase the granule size
to € + €p.

It is reasonable to require that the relative quality of different
granules not change if we take this unknown uncertainty
into account. In other words, it is reasonable to require that
selections based on the shifted utility

def
u1(e) = ule + &)

lead to the same selection as selections based on the original

utility.

Analysis of the problem. We have already mentioned that
when two different utility functions lead to the same selections,
we must have

ui(e) =k-ule)+¢



for some k£ > 0 and 4.

The coefficients k and ¢, of course, depend on the shift &¢.
Thus, we conclude that for every e, there exists the values
k(eo) and £(eg) for which, for all possible values € > 0 and
€0, we have

ul(e + £0) = k(o) - ule) + E(eo). (4)

Additional natural requirement: smoothness. It is also
reasonable to require that when we change the granule size a
little bit, the utility will also change a little bit. In mathematical
terms, this means that the desired utility function u(e) should
be smooth, i.e., differentiable.

Now, we are ready for our first result.

Proposition 1. If u(e) is a differentiable function that satisfies
the equation (4) for some k(eo) and £(eq), then

u(e) = const - exp(—c - €)

or
u(e) = const- (1 —c-¢)

fOl’ some constant c.

Discussion. Thus, we have justified:

« the exponential measure of specificity and
« a specific case of the power law measure of specificity
corresponding to £ = 1.

Proof.

1°. We assumed that the utility function u(e) is differentiable.
Let us prove that in this case, the auxiliary functions k(eg)
and {(g¢) are also differentiable.

Indeed, if we pick two different values ¢ = ¢; and ¢ =
€9 # €1, then the formula (4) takes the following form:

u(er +¢e0) = k(eo) - u(er) + (go);
u(eq + e0) = k(eo) - u(e2) + £(eo)-

Thus. we have a system of two linear equations for the two
unknowns k(gg) and £(g).

By the Cramer’s rule, the solution to this system is a
rational — hence differentiable — function of the coefficient and
free terms. Since the function u(e) is differentiable, all these
coefficients and free terms are also differentiable. Thus, we can
conclude that the functions k(eg) and £(g¢) are differentiable.

2°. Now that we know that all three functions u(e), k(eo),
and ¢(g¢) and differentiable, we can use this fact to come up
with a differential equation — an equation that will be easier
to solve than the original functional equation (4).

For this purpose, let us differentiate both sides of the equation
(4) with respect to €. As a result, we get the following

expression, where, as usual, f’(x) denotes the derivative of
the function f(x):

u' (e +¢e0) = K (0) - u(e) + ¢ (g9)-
Substituting €9 = 0 into this formula, we get
u'(e) = ko - u(e) + Lo, (5)

where we denoted

def

def
ko /

K'(0) and £y = ¢'(0).

Since v/ = ——, we can rewrite the resulting differential
e

equation as

du
£:k0'u+€0. (6)

3°. Let us now solve the corresponding differential equation.
For this purpose, let us separate the variables. We can do it if
we:

« multiply both sides of the equation (6) by de and
« divide both sides of this equation by kg - u + 4.

As a result, we get the following formula:
du B
ko-u+4ty

Here, we have two options:

de. (7)

o the first option is that ky = 0;
« the second option is that kg # 0.

Let us consider these two options one by one.

3.1°. Let us first consider the case when ky = 0. In this case,
integrating both sides of the equation (7), we get:

u
—=ec+C,
4o
where C' is an integration constant, i.e.,
U
% = . (]. —C- 5)7
where we denoted
cur_L
ok

Multiplying both sides of this formula by ¢y, we get
u(e)=Cr1-(1—c-e),

where we denoted C def by - C.
Thus, in the case of ky = 0, we get a linear measure of
specificity.

3.2°. Let us now consider the case when kg # 0. In this case,

for a new variable

def Lo
vE U+ —,
k(]

we have dv = du and

ko-u+ 4y =kg-v.



Thus, the formula (7) takes a simplified form

dv
]{i()'?}

= de.

Integrating both sides of this formula, we get

1
— -In(v)=¢e+C,
ko
where C' is an integration constant. Multiplying both sides of
this formula by ko, we get

In(v) = ko - e+ C,
where C} def ko - C. By applying exp to both sides, we get
v(e) = exp(ln(v)) = exp(ko - € + C1) = Co - exp(kp - €),

where Cy ! exp(Ch).
Thus for

we get
u(e) = Cq - exp(ko - €) + const.

So, in the case when kg # 0, we get the exponential measure
of specificity.

The proposition is proven.

III. SCALE-INVARIANCE: SECOND NATURAL SYMMETRY

Scale-invariance: formulation of the first natural symme-
try. The size of the granule is measured in the same units as
the values forming this granule. For example, if the granule
contains values of length, then the size — i.e., the accuracy
of representing a value by the granule — is also measured by
units of length.

As we have mentioned earlier, the numerical values of a
physical quantity depend on the choice of a measuring unit.
If we replace the original unit by a new unit which is A times
smaller, then all the numerical values are multiplied by .

For example, if we replace meters by centimeters, all
numerical values are multiplied by 100: 2 m becomes 200
cm.

When we change the units, the values ¢ are replaced by new
values A - . It therefore seems reasonable to require that the
relative quality of different measures of specificity not change
if we simply change the measuring unit.

In other words, it seems to reasonable to require that the
utility function w;(g) def u(A - €) be equivalent to the original
utility function.

Full scale-invariance is rarely possible. By using the above-
mentioned criterion for the equivalence of two utility func-
tions, we conclude that we should have

u(A-e) = k() - ule) + £(N), (8)

for some functions k(\) and £(\) depending on .

We already know that, due to shift-invariance, the utility
function is either exponential or linear. While linear function
satisfies the equation (8), the exponential function does not.

Thus:

« if we require both shift- and scale-invariance, we end up
with only linear measures of specificity, and

« we know that empirically, sometimes non-linear measures
of specificity work better.

So, we cannot require both shift- and scale-invariance. What
can we do?

IV. LET Us COMBINE SHIFT- AND SCALE-INVARIANCE

Why such a combination makes sense. Combining several
different invariances makes perfect sense. For example, in
the Ohm’s Law V = I - R that relates voltage, current, and
resistance:

« if we simply change the unit for current,
o the law stops working.

For the formula to remain valid:

o for each change of the unit for measuring current,
o we also need to appropriately change the unit for mea-
suring voltage.

In general, such a situation is typical in physics:

o when a formula is not invariant with respect to one class
of transformation,

o it usually means that for each transformation from this
class, there is an appropriate transformation from some
related class

« so that if we apply both transformations at the same time,
we get the same formula as before;

see, e.g., [2].
Let us apply this idea to our case.

Resulting formulation. Since we cannot require that the
utility function be invariant with respect to arbitrary re-scaling,
let us combine it with shift-invariance the same way as it
is done in physics — the same way as have just described.
Namely, we require that for every )\, there exists a value £(\)
for which:

o the re-scaled utility function u(\ - €) is equivalent to a

« correspondingly shifted one u(e + £o(A)).

As we have mentioned, equivalence means that
u(A-e) = k(A) - u(e +eo(N) + £(N). (9)

Proposition 2. Let u(e), £9(\), k(N\) and £(X\) e differentiable
Sfunctions for which the equality (9) is satisfied for all \ and e.
Then, either

u(e) =C - (1 —c-€)® + const

or
u(e) = C -In(1 — ¢- ¢) + const,

for some constants C' and c.



Discussion. This result explains the efficiency of the power
law measure of specificity.

Comment. One can easily check that the logarithmic expres-
sion is actually the limit case of the power law expression
when ¢ tends to 0.

Proof.

1°. Similarly to the proof of Proposition 1, let us reduce the
difficult-to-solve functional equation (9) to an easier-to-solve
differential equation.

For this purpose, let us differentiate both side of the formula
(9) by A. As a result, we get the following formula:

e-u'(N-e)=
E'(N) - u(e +e0(N) + k(N - (e +e0(N) - e5(A) + £/ (N).
Substituting A = 1 into this formula, and taking into account
that for A = 1, there is no change and thus, go(1) = 0, k(1) =
1, and ¢(1) = 0, we get:
e-u'(e) = ko - u(e) +mo-u'(e) + Lo,
where we denoted
ko K (1), mo € el(1), and £o & £(1).

This formula can be rewritten as

du du
gizko.u_’_moi

L.
de d5+0

2°. Let us now solve this differential equation.

Moving the terms proportional to ' to the left-hand side, we
conclude that

du
(6—m0)~E:k0~u+€0.

Now, we can separate the variable. We can do it if we:
« multiply both sides by de,
« divide both sides by € — mg, and
o divide both side by kg - u + £p.
As a result, we get the following equation:
du _ de
ko-u+f e—mgo

(11)

Similarly to the proof of Proposition 1, let us consider two
possible cases:

e case when kg = 0, and

« case when kg # 0.

2.1°. If ky = 0, then integrating both sides of the formula (11)
and taking into account that d(e — mg) = d(e), we conclude

that
u

W=
for some integration constant C'. Thus. we have

In(mo —€) + C,

U(S) =Y - hl(mo - E) + (1,

where C4 def by - C.

Here,
mog—e=mg-(1—c-e),
where
def 1
c= —
mo
Thus,

In(mo —e) =In(mg - (1 —c-€)) =In(mop) +1In(l — ¢ &).
Hence, the above formula takes the form
u(@) = EO . 111(1 —C- 8) + CQ,

where
def

02 = 01 + éo . ln(mo).
So, in the case of ky = 0, we get the logarithmic measure
of specificity.

3.2°. Let us now consider the remaining case kg # 0. In this
case, similarly to the proof of Proposition 1, we can introduce
a new variable

Lo
v=u-+ k—o

for which the equation (11) takes the form
dv de

k‘o-?] e—mo'

Integrating both parts of this equation, we get

1
— In(v) = In(mg — ) + C,
ko
where C' is an integration constant, i.e.,
L l—coe)+ 0,
ko
where
det 1

C =

— and C' = C + In(my).
mo

Multiplying both sides of this equation by kg, we conclude
that
In(v) = ko -In(1 — c-€) + Cy,

where C} def ko - C'. Applying exp to both sides, and taking
into account that

exp(ko - In(z)) = (exp(In(z)))* = 2%,
we conclude that
v==Cy (1 —c-e)ko,
where Cy %' exp(C1). Thus,
u(e) = Cy - (1 — ¢ &) + const.

Thus, in the case of ky # 0, we get the power law measure
of specificity.

The proposition is proven.
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