
JOTA manuscript No.
(will be inserted by the editor)

A New Kalman Filter Model for Nonlinear Systems

Based on Ellipsoidal Bounding

Ligang Sun, Hamza Alkhatib, Boris

Kargoll, Vladik Kreinovich, Ingo

Neumann

Received: date / Accepted: date

Abstract In this paper, a new filter model called set-membership Kalman fil-

ter for nonlinear state estimation problems was designed, where both random

and unknown but bounded uncertainties were considered simultaneously in the

discrete-time system. The main loop of this algorithm includes one prediction

step and one correction step with measurement information, and the key part

in each loop is to solve an optimization problem. The solution of the optimiza-
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tion problem produces the optimal estimation for the state, which is bounded

by ellipsoids. The new filter was applied on a highly nonlinear benchmark

example and a two-dimensional simulated trajectory estimation problem, in

which the new filter behaved better compared with extended Kalman filter

results. Sensitivity of the algorithm was discussed in the end.

Keywords Set-membership Kalman filter · State estimation · Ellipsoidal

bounding · Nonlinear programming · Optimization methods
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1 Introduction

State estimation is applicable to virtually all areas of engineering and sci-

ence. Any discipline that is concerned with the mathematical modeling of its

systems is a likely candidate for state estimation. This includes electrical engi-

neering, mechanical engineering, chemical engineering, aerospace engineering,

robotics, dynamical systems’ control and many others. Nonlinear filtering can

be a difficult and complex subject in the field of state estimation. It is certainly

not as mature, cohesive, or well understood as linear filtering. There is still a

lot of room for advances and improvement in nonlinear estimation techniques.

The optimal state estimation problem can be summarized as follows: given

a mathematical model of a real system, and allowing some state perturbation-

s and noise corrupted measurements, the state of the real system has to be

estimated [1]. The estimation usually bases on the solving of an optimization

problem, the estimated result relies on the assumptions made on uncertain-

ties. Developed in the past hundreds years, the stochastic state estimation

techniques are most widely applied in the real world. This approach bases

on the probabilistic assumptions of the uncertainties in the system, such as

Kalman filter [2] and extended Kalman filter (EKF) [3,4] where uncertain

parts (usually noise) in the system are assumed to have certain probability

distribution (usually Gaussian distribution).

However, in many cases these probability distributions could be question-

able, especially when the real process generating the data are complex so that

only simplified models can be practically used in the estimation process [5].
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There is another interesting approach, referred to set-membership uncertainty

state estimation. Developed since 1960s [6–8], this approach assumes that the

uncertainty is unknown but bounded (UBB). No further assumption was made

except for its membership of a given bound. Under this assumption, the opti-

mal estimated state, noisy measurements and uncertainty are in some compact

sets, respectively. This new technique is more appropriate in many cases where

the bounded description is more realistic than stochastic distributed hypoth-

esis. Classified by the geometrical representations, there are four major meth-

ods to bound the uncertainty, which are polytopes [9,10], ellipsoids [11–13],

zonotopes [14–16,1,17] and intervals [18–20]. Polytope can be used to obtain

better estimated accuracy, however, one major drawback is its computation

load in multi-dimensional nonlinear systems, especially to zonotope. Ellipsoid

has been widely used due to its simplicity of propagation, but the Minkovski

sum of two ellipsoids is not an ellipsoid anymore, therefore the prorogation of

its related algorithm requires solving an optimization problem.

In this paper, a new filter model called set-membership Kalman filter (SKF)

for nonlinear systems was designed, in which both random and set-membership

uncertainties were considered at the same time. This work extends Benjamin

Noack’s previous work in his PhD dissertation [21], where the linear case was

discussed sufficiently. The novel SKF takes UBB uncertainties into account in

both process equation and measurement equation, therefore it has a better

uncertainty measures. It also keeps the recursive framework of random uncer-

tainties from Kalman filter, thus the advantages of KF are reserved during the
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prorogation process. A better estimation under these more reliable assump-

tions is calculated based on solving an optimization problem in each step.

Section 2 gives mathematics preliminaries and dynamical system which

would be considered later. Section 3 shows the detailed derivation of this new

filter model. Section 4 is the algorithm in a practical form. Section 5 demon-

strates how this new filter model works and shows that the SKF behaves better

than EKF in some cases. The last section is the conclusion and future work.

2 Mathematical Model

2.1 Preliminaries

The following definitions, theorems and corollaries are required for the

derivation of the new filter model. The detailed proofs were given in [13].

Definition 2.1 Given S a positive-definite matrix, denoted by S > 0, a

bounded ellipsoid E in Rn with nonempty interior is defined as

E = E(c, S) = {x ∈ Rn|(x− c)TS−1(x− c) ≤ 1, S > 0} (1)

where c ∈ Rn is called the center of the ellipsoid E, and S is the shape matrix

which is positive-definite and specifies the size and orientation of the ellipsoid.

Definition 2.2 In geometry, the Minkowski sum is an operation of two sets

A and B in Euclidean space Rn, which is defined by adding each vector in A

to each vector in B, i.e.,

A⊕B = {a+ b|a ∈ A, b ∈ B}. (2)
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Given K ellipsoids of Rn

Ek = E(ck, Sk), (k = 1, 2, . . . ,K) (3)

their Minkowski sum is

UK =

K∑
k=1

Ek, (4)

which is not an ellipsoid anymore but still a convex set.

Denote the problem of finding the smallest ellipsoid (under the criterion of

matrix trace) containing the Minkowski sum of the K ellipsoids as Problem

T+:

E∗ = arg min
UK⊂E

trS (Problem T+), (5)

and from [13], this ellipsoid E∗ exists and is unique.

Theorem 2.1 The center of the optimal ellipsoid E∗ for Problem T+ is given

by

c∗ =

K∑
k=1

ck (6)

Theorem 2.2 Let D be the convex set of all vectors α ∈ RK with all αk > 0

and
∑K
k=1 αk = 1. For any α ∈ D, the ellipsoid Eα = E+(c∗, Sα), with c∗

defined by (6) and

Sα =

K∑
k=1

α−1k Sk, (7)

contains UK .

Corollary 2.1 Special case of Theorem (2.2). When K = 2, we have α1 +

α2 = 1, the Sα can be rewritten as

Sα =
1

α1
S1 +

1

α2
S2 = (1 +

1

β
)S1 + (1 + β)S2 (8)
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where β can be any nonnegative real number.

Proof Let α2 = 1
1+β , β ≥ 0 one can easily get above result.

Theorem 2.3 In the family Eα = E+(c∗, Sα), the minimal-trace ellipsoid con-

taining the sum of the ellipsoids Ek = E+(ck, Sk), k = 1, 2, . . . ,K is obtained

for

Sα∗ =

(
K∑
k=1

√
trSk

)(
K∑
k=1

Sk
√

trSk

)
(9)

Corollary 2.2 Special case of Theorem (2.3). When K = 2, we have

Sα∗ = (1 +
1

β∗
)S1 + (1 + β∗)S2 (10)

where β∗ =
√

trS1

trS2
.

2.2 Dynamical System

Consider the following nonlinear dynamical system:

xk+1 = fk(xk, uk, wk, a1,k, a2,k, ..., aI,k) (11a)

yk = hk(xk, vk, bk) (11b)

where xk is a n-dimensional state vector, uk is the known input vector, wk ∼

N(0, Cuk ) is a Gaussian system noise with covariance matrix Cuk , ai,k ∈ E(0, Suik)

is the unknown but bounded perturbation with shape matrix Suik. i = 1, 2, . . . , I.

denotes the ith set-membership perturbation in the prediction equation. vk ∼

N(0, Czk) is the a Gaussian measurement noise with covariance matrix Czk , and
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bk ∈ E(0, Szk) is the unknown but bounded perturbation with shape matrix

Szk . In this literature, u and z in the parameters denote they are relative to

system equation and measurement equation, respectively. All the notations

above represent the information at time k.

The following Fig. 1 shows an estimated schematic diagram via set-membership

Kalman filter in 2D case [16]. Different with standard Kalman filter, where the

output is usually an gaussian distribution and the mean of the distribution was

regarded as the estimated point, in set-membership Kalman filter, a set con-

taining all the mean values of possible distributions was put out.

Fig. 1: Schematic diagram of 2D estimated result under SKF

2.3 Linearization

Recall the process of EKF, linearization is the first step in estimation for

nonlinear dynamical systems. Perform Taylor series expansion for system equa-
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tion (11a) around the point (xk = x̂+k , uk = uk, wk = 0, ai,k = 0, 1 ≤ i ≤ I):

xk+1 =fk(x̂+k , uk, 0, 0) +
∂fk
∂xk

∣∣∣∣
(x̂+

k ,uk,0,0)

(xk − x̂+k ) +
∂fk
∂wk

∣∣∣∣
(x̂+

k ,uk,0,0)

wk

+

I∑
i=1

∂fk
∂ai

∣∣∣∣
(x̂+

k ,uk,0,0)

ai,k + · · ·

≈fk(x̂+k , uk, 0, 0) + Fx,k(xk − x̂+k ) + Fw,kwk +

I∑
i=1

Fai,kai,k

=Fx,kxk + [fk(x̂+k , uk, 0, 0)− Fx,kx̂+k ] + Fw,kwk +

I∑
i=1

Fai,kai,k

=Fx,kxk + ũk + Fw,kwk +

I∑
i=1

Fai,kai,k.

(12)

Here ũk = fk(x̂+k , uk, 0, 0)− Fx,kx̂+k .

Take Taylor series expansion for measurement equation (11b) around point

(xk = x̂−k , vk = 0, bk = 0):

yk =hk(x̂−k , 0, 0) +
∂hk
∂xk

∣∣∣∣
(x̂−

k ,0,0)

(xk − x̂−k ) +
∂hk
∂vk

∣∣∣∣
(x̂−

k ,0,0)

vk

+
∂hk
∂bk

∣∣∣∣
(x̂−

k ,0,0)

bk + · · ·

≈hk(x̂−k , 0, 0) +Hx,k(xk − x̂−k ) +Hv,kvk +Hb,kbk

=Hx,kxk + z̃k +Hv,kvk +Hb,kbk.

(13)

Here z̃k = hk(x̂−k , 0, 0)−Hx,kx̂
−
k . z̃k = 0 if measurement equation is linear.

Then we get the a linearized system for the original system (11)

xk+1 = Fx,kxk + ũk + Fw,kwk +Ak (14a)

yk = Hx,kxk + z̃k +Hv,kvk +Hb,kbk (14b)

where Ak =
∑I
i=1 Fai,kai,k.

Both priori estimation x̂−k and posteriori estimation x̂+k are random vari-

ables. Assume that the expectation and covariance matrix of priori estimation
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x̂−k are µ̂−k and C−k , the expectation and covariance matrix of posteriori esti-

mation x̂+k are µ̂+
k and C+

k . All the priori expectations µ̂−k form an ellipsoid

centered at x̂c−k with shape matrix S−k , i.e., µ̂−k ∈ E(x̂c−k , S−k ). Similarly to

posteriori expectation we have µ̂+
k ∈ E(x̂c+k , S+

k ).

Our objective is to calculate the explicit expressions of x̂c−k , C−k , S−k and

x̂c+k , C+
k , S+

k .

3 Derivation of Set-membership Kalman Filter

After linearization of the nonlinear dynamical systemn (11), in this section

we derive the set-membership Kalman filter model. Conclusions from section

2.1 are required and the results of this section would be summarized into one

algorithm in section 4.

3.1 Prediction

Assume that the difference between the true state xk and the posteriori

estimations center x̂c+k contains two components, i.e., the random part and

the UBB part:

xk − x̂c+k = x̃r+k + x̃s+k . (15)

So from last section we can get x̃r+k ∼ N(0, C+
k ) and x̃s+k ∈ E(0, S+

k ). And the

mean squared error of posteriori estimation is given by

E[(xk − x̂c+k )(xk − x̂c+k )T ] = E[(x̃r+k + x̃s+k )(x̃r+k + x̃s+k )T ]

=E[x̃r+k x̃r+,Tk ] + E[x̃s+k x̃s+,Tk ] = C+
k + x̃s+k x̃s+,Tk .

(16)
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Recalling EKF we have

x̂−k+1 = Fx,kx̂
+
k + ũk + Fw,kwk +Ak. (17)

Notice that Fw,kwk ∼ N(0, Fw,kC
u
kF

T
w,k), so for a fixed posteriori estima-

tion µ̂+
k ∈ E(x̂c+k , S+

k ), the predicted state follows by

x̂−k+1 = Fx,kµ̂
+
k + ũk +Ak + Fw,kwk ∼ N(Fx,kµ̂

+
k + ũk +Ak, Fw,kC

u
kF

T
w,k

∣∣x̂+k ).

(18)

Therefore the expectation of x̂−k+1 would be

µ̂−k+1 = E(x̂−k+1) = Fx,kµ̂
+
k + ũk +Ak, (19)

which forms a set E(x̂c−k+1, S
−
k+1) when x̂+k being ergodic in the set E(x̂c+k , S+

k ).

Without loss of generality we have

x̂c−k+1 = Fx,kx̂
c+
k + ũk. (20)

Then the difference between the true state and the priori estimation center

would be

xk+1 − x̂c−k+1 = Fx,k(xk − x̂c+k ) + Fwwk +Ak

= Fx,k(x̃r+k + x̃s+k ) + Fwwk +Ak.

(21)
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Consider its covariance matrix we have

E[(xk+1 − x̂c−k+1)(xk+1 − x̂c−k+1)T ]

=E{[Fx,k(x̃r+k + x̃s+k ) + Fwwk +Ak] · [Fx,k(x̃r+k + x̃s+k ) + Fwwk +Ak]T }

=Fx,kE[(x̃r+k + x̃s+k )(x̃r+k + x̃s+k )T ]FTx,k + Fx,kx̃
s+
k ATk

+ Fw,kE(wkw
T
k )FTw,k +Akx̂

s+,T
k +AkA

T
k

=Fx,kC
+
k F

T
x,k + Fw,kC

u
kF

T
w,k + (Fx,kx̃

s+
k +Ak)(Fx,kx̃

s+
k +Ak)T .

(22)

Compared to equation (32), we find that the predicted random uncertainty

can be represented by

C−k+1 = Fx,kC
+
k F

T
x,k + Fw,kC

u
kF

T
w,k. (23)

Notice that a possible posteriori mean value x̂+k ∈ E(x̂c+k , S+
k ), and

Ak =

I∑
i=1

Faiai,k, ai,k ∈ E(0, Sui,k) (24)

Faiai,k ∈ E(0, FaiS
u
i,kF

T
ai). (25)

So

Ak ∈
I∑
i=1

E(0, FaiS
u
i,kF

T
ai). (26)

i.e., Ak is one fixed element of a convex set which is the Minkowski sum of I

ellipsoids.

Recalling (19) we have

µ̂−k+1 =E(x̂−k+1) = Fx,kµ̂
+
k + ũk +Ak

∈E(Fx,kx̂
c+
k + ũk, Fx,kS

+
k F

T
x,k)⊕

I∑
i=1

E(0, FaiS
u
i,kF

T
ai)

(27)
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Recalling 2.3, there exists an optimal ellipsoid E(c∗k, Sα∗,k) such that

Fx,kµ̂
+
k + ũk +Ak ∈ E(Fx,kx̂

c+
k + ũk, Fx,kS

+
k F

T
x,k)⊕

I∑
i=1

E(0, FaiS
u
i,kF

T
ai)

⊂ E(x̂c−k+1, S
−
k+1)

(28)

From 2.1 we can get the center of the ellipsoid:

x̂c−k+1 = Fx,kx̂
c+
k + ũk. (29)

From 2.3 we can calculate the shape matrix of the ellipsoid:

S−k+1 =(
√

tr(Fx,kS
+
k F

T
x,k) +

I∑
i=1

√
tr(Fa,iSui,kF

T
a,i))

· (
Fx,kS

+
k F

T
x,k√

tr(Fx,kS
+
k F

T
x,k)

+

I∑
i=1

Fa,iS
u
i,kF

T
a,i√

tr(Fa,iSui,kF
T
a,i)

)

(30)

Equation (23), (29) and (30) gave us the elicit expressions of C−k , x̂c−k and

S−k respectively.

3.2 Filtering

Similar with (15), here we assume that

xk − x̂c−k = x̃r−k + x̃s−k . (31)

So from last section we can get x̃r−k ∼ N(0, C−k ) and x̃s−k ∈ E(0, S−k ). And the

mean squared error of priori estimation is given by

E[(xk − x̂c−k )(xk − x̂c−k )T ] = E[(x̃r−k + x̃s−k )(x̃r−k + x̃s−k )T ]

=E[x̃r−k x̃r−,Tk ] + E[x̃s−k x̃s−,Tk ] = C−k + x̃s−k x̃s−,Tk .

(32)
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z̃k = hk(x̂−k , 0, 0)−Hx,kx̂
−
k (33)

yk − z̃k = Hx,kxk +Hv,kvk +Hb,kbk. (34)

Therefore, recalling equation (13) and (14) and the derivation process in

EKF, we also assume

x̂+k =x̂−k +Kk[y − hk(x̂−k , 0, 0)] = x̂−k +Kk[y − z̃k(x̂−k )−Hx,kx̂
−
k ]

=(I −KkHx,k)x̂−k +Kk[y − z̃k(x̂−k )].

(35)

The expectations µ̂+
k of posteriori estimations x̂+k would be

µ̂+
k = E(x̂+k ) = (I −KkHx,k)µ̂−k +Kk[y − z̃k(µ̂−k )]. (36)

The center of the ellipsoid E(x̂c+k , S+
k ) would be

x̂c+k =x̂c−k +Kk[y − hk(x̂c−k , 0, 0)] = x̂c−k +Kk[y − z̃k(x̂c−k )−Hx,kx̃
c−
k ]

=(I −KkHx,k)x̂c−k +Kk[y − z̃k(x̂c−k )].

(37)

Subtract x̂c+k from the true state xk we get:

xk − x̂c+k =xk − (I −KkHx,k)x̂c−k −Kk[yk − z̃k(x̂c−k )]

=xk − (I −KkHx,k)x̂c−k −Kk(Hx,kxk +Hv,kvk +Hb,kb, k)

=(I −KkHx,k)(x̃r−k + x̃s−k )−Kk(Hv,kvk +Hb,kbk).

(38)

So the mean squared error of the posteriori estimation center would be

E[(xk − x̂c+k )(xk − x̂c+k )T ]

=E{[(I −KkHx,k)(x̃r−k + x̃s−k ) +Kk(Hv,kvk +Hb,kbk)]·

[(I −KkHx,k)(x̃r−k + x̃s−k ) +Kk(Hv,kvk +Hb,kbk)]T }

=(I −KkHx,k)C−k (I −KkHx,k)T +KkHv,kC
z
kH

T
v,kK

T
k

+ [(I −KkHx,k)x̃s−k −KkHb,kbk][(I −KkHx,k)x̃s−k −KkHb,kbk]T .

(39)
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Compared with equation (32), we get

C+
k = (I −KkHx,k)C−k (I −KkHx,k)T +KkHv,kC

z
kH

T
v,kK

T
k . (40)

Similar to Kalman filter (KF), the covariance matrices in the SKF provide us

with a measure for uncertainty in our predicted and filtering state estimate,

which is a very important feature for various applications of filtering theory

since we then know how much to trust our predictions and estimates.

Notice that

µ̂−k ∈ E(x̂c−k , S−k ) (41)

and

yk − z̃k = Hx,kxk +Hv,kvk +Hb,kbk ∈ E(Hx,kxk +Hv,kvk, Hb,kS
z
kH

T
b,k). (42)

So back to equation (36) we have

µ̂+
k = (I −KkHx,k)µ̂−k +Kk(yk − z̃k)

∈ (I −KkHx,k)E(x̂c−k , S−k )⊕KkE(Hx,kxk +Hv,kvk, Hb,kS
z
kH

T
b,k)

= E[(I −KkHx,k)x̂c−k , (I −KkHx,k)S−k (I −KkHx,k)T ]

⊕ E[Kk(Hx,kxk +Hv,kvk),KkHb,kS
z
kH

T
b,kK

T
k ] ⊂ E(x̂c+k , S+

k ),

(43)

where the midpoint is exactly in accordance with our previous assumption

(37):

x̂c+k = (I −KkHx,k)x̂c−k +Kk[y − z̃k(x̂c−k )], (44)

and from Corollary 2.1 we have

S+
k (β) = (1 +

1

β
)(I −KkHx,k)S−k (I −KkHx,k)T + (1 + β)KkHb,kS

z
kH

T
b,kK

T
k .

(45)
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3.3 Optimization Problem

Now comparing to its counterpart in EKF, the only thing left is to derive

the new optimal Kalman gain, which should minimize the mean square error

of the posteriori estimation.

Here we introduce another parameter η ∈ [0, 1] to balance the random

uncertainty and set-membership in the dynamical system, and define the fol-

lowing cost function as:

J(β) = (1− η)tr(C+
k ) + ηtr(S+

k (β)) (46)

which represents the global uncertainty of the posteriori estimation. The new

optimal Kalman gain to be found should be used to minimize this cost function

in a comprehensive way.

Plugging (32) and (45) into (46) we get:

J(β) =(1− η)tr[(I −KkHx,k)C−k (I −KkHx,k)T ]

+ (1− η)tr[KkHv,kC
z
kH

T
v,kK

T
k ]

+ η(1 +
1

β
)tr[(I −KkHx,k)S−k (I −KkHx,k)T ]

+ η(1 + β)tr(KkHb,kS
z
kH

T
b,kK

T
k )

,(1− η)tr[(I −KkHx,k)C−k (I −KkHx,k)T ]

+ (1− η)tr[KkHv,kC
z
kH

T
v,kK

T
k ] + η(1 +

1

β
)M + η(1 + β)N.

(47)

where M and N are defined directly from above.

Notice that the cost function J relies on two variables Kk and β. Firstly

we minimize J respect with β.



Title Suppressed Due to Excessive Length 17

Since M > 0 and N > 0, therefore

(1 +
1

β
)M + (1 + β)N = M +N +

1

β
M + βN ≥M +N + 2

√
MN. (48)

When 1
βM = βN , i.e., M = β2N, β = β1 =

√
M
N , we have

(1 +
1

β1
)M + (1 + β1)N = M +N + 2

√
MN = (

√
M +

√
N)2 (49)

Therefore we can find the local minimum point of function J with respect to

β:

J(β1) =(1− η)tr[(I −KkHx,k)C−k (I −KkHx,k)T ]

+ (1− η)tr[KkHv,kC
z
kH

T
v,kK

T
k ] + η(

√
M +

√
N)2.

(50)

Next we calculate the global minimum by taking Kk into account.

Notice that

∂
√
M

∂K
=

1

2
M−

1
2
∂M

∂K
= − 1

2
√
M

(I −KkHx,k)(S−,Tk + S−k )HT
x,k

=− 1√
M

(I −KkHx,k)S−k H
T
x,k

(51)

∂
√
N

∂K
=

1

2
N−

1
2
∂N

∂K
=

1

2
√
N
KkHb,k(Sz,Tk + Szk)HT

b,k

=
1√
N
KkHb,kS

z
kH

T
b,k

(52)

Then

∂J

∂Kk
=2(1− η)(KkHx,k − I)C−k H

T
x,k + 2(1− η)KkHv,kC

z
kH

T
v,k

+ 2η(1 +
1

β
)(KkHx,k − I)S−k H

T
x,k + 2η(1 + β)KkHb,kS

z
kH

T
b,k.

(53)

Let ∂G1

∂Kk
= 0 and solve for Kk, we get an adaptive Kalman gain:

Kk =[(1− η)C−k H
T
x,k + η(1 +

1

β
)S−k H

T
x,k] · [(1− η)Hx,kC

−
k H

T
x,k

+ (1− η)Hv,kC
z
kH

T
v,k + η(1 +

1

β
)Hx,kS

−
k H

T
x,k + η(1 + β)Hb,kS

z
kH

T
b,k]−1

(54)
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Now we get the elicit expression of the cost function (46) by collecting (40),

(45) and (54). All the procedures in this filtering step rely on the solution of

the following optimization problem.

min
β

J(β)

s.t. β ∈ [0,+∞) ⊂ R1

(55)

where the cost function J(β) was defined in (46) and the solution of above

optimization problem was denoted by β∗. Putting β∗ into (54), (40) and (45)

and we finished the filtering step.

Here are three remarks about this optimization problem:

(1) Problem (55) is a nonlinear programming problem since the objective func-

tion (46) is nonlinear.

(2) Problem (55) is a convex optimization problem [21]. Therefore, any exist-

ing local minimum is a global minimum.

(3) Usually, it is hard to solve a nonlinear programming problem due to the

constrained equations or inequalities. MATLAB function fminsearch is

an efficient way to solve the problem (55). Further, an advanced toolbox

INTLAB can also be used [22].

The parameter η was introduced to balance the random uncertainty and

set-membership uncertainty. There are three very interesting cases need to be

noticed [13].

When η = 1
2 , the stochastic uncertainty and set-membership uncertainty

have the same weight and K(p) contains no α in this case. This solution is
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recommended to users when there is no expert-based information about η

available.

When η = 0,

Kk(β) = C−k H
T
x,k · [Hx,kC

−
k H

T
x,k +Hv,kC

z
kH

T
v,k]−1 (56)

which is exactly the Kalman gain in the standard EKF [23].

When η = 1, the model now only contains set-membership uncertainty. In

this case,

Kk(β) = (1 +
1

β
)S−k H

T
x,k · [(1 +

1

β
)Hx,kS

−
k H

T
x,k + (1 + β)Hb,kS

z
kH

T
b,k]−1. (57)

4 Algorithm

An algorithm for SKF was summarized according to previous derivation.

Algorithm 1 Set-membership Kalman filter model

1: Initialization:

(1) Initial state midpoint x̂c+0 = x0.

(2) Initial estimated random covariance matrix C+
0 .

(3) Initial estimated set-membership shape matrix S+
0 .

2: for k=1,2,. . . ,K do

3: Input of Prediction Step:

(1) Point post-estimation x̂+k , with estimated covariance C+
k and shape

matrix S+
k .

(2) Nonlinear system model

xk+1 = fk(xk, uk, wk, a1,k, a2,k, ..., aI,k), (58)
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where wk ∼ N(0, Cuk ) and ai,k ∈ E(0, Sui,k), i = 1, 2, . . . , I.

(3) Control input uk, random noise covariance Cuk and shape matrices Sui,k,

i = 1, 2, . . . , I. for set-membership uncertainty.

4: Calculation of Prediction Step:

(1) Computation of error covariance matrix C−k+1 according to

C−k+1 = Fx,kC
+
k F

T
x,k + Fw,kC

u
kF

T
w,k. (59)

(2) The center of the priori ellipsoid:

x̂c−k+1 = Fx,kx̂
c+
k + ũk. (60)

(3) The shape matrix of the priori ellipsoid:

S−k+1 =(
√

tr(Fx,kS
+
k F

T
x,k) +

I∑
i=1

√
tr(Fa,iSui,kF

T
a,i))

· (
Fx,kS

+
k F

T
x,k√

tr(Fx,kS
+
k F

T
x,k)

+

I∑
i=1

Fa,iS
u
i,kF

T
a,i√

tr(Fa,iSui,kF
T
a,i)

).

(61)

The predicted point estimate x−k+1 is characterized by the random error

C−k+1 and the set-membership error by x̂c−k+1 and S−k+1.

5: Output of Prediction Step:

Priori estimated state: x̂c−k , C−k , and S−k .

6: Input of Filtering Step:

(1) Priori or predicted estimate x̂−k with error covariance matrix C−k and

ellipsoid center x̂c−k and shape matrix S−k .

(2) Nonlinear measurement model:

yk = hk(xk, vk, bk), (62)

where vk ∼ N(0, Czk) and bk ∈ E(0, Szk).
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(3) Observation yk, sensor noise with random covariance Czk and set-membership

shape matrix Szk .

(4) z̃k(x̂−k ) = hk(x̂−k , 0, 0)−Hx,kx̂
−
k .

(5) Weighting parameter η.

7: Calculation of Filtering Step:

(1) For given weighting parameter η, the optimal gain factor Kk is

Kk(β) =[(1− η)C−k H
T
x,k + η(1 +

1

β
)S−k H

T
x,k] · [(1− η)Hx,kC

−
k H

T
x,k

+ (1− η)Hv,kC
z
kH

T
v,k + η(1 +

1

β
)Hx,kS

−
k H

T
x,k

+ η(1 + β)Hb,kS
z
kH

T
b,k]−1.

(63)

(2) Computation of the center of updated estimate x̂+k by means of

x̂c+k = (I −KkHx,k)x̂c−k +Kk[y − z̃k(x̂c−k )]. (64)

(3) Computation of updated error covariance matrix C+
k by

C+
k (β) = (I −KkHx,k)C−k (I −KkHx,k)T +KkHv,kC

z
kH

T
v,kK

T
k . (65)

(4) Update the shape matrix S+
k by

S+
k (β) = (1+

1

β
)(I−KkHx,k)S−k (I−KkHx,k)T+(1+β)KkHb,kS

z
kH

T
b,kK

T
k .

(66)

(5) The optimal parameter β∗ can be solved by

β∗ = arg min{(1− η)tr[C+
k (β)] + ηtr[S+

k (β)]}. (67)
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The updated point estimate x̂+k is characterized by random error char-

acteristic C+
k = C+

k (β) and set-membership error description S+
k =

S+
k (β). Put β∗ into above 4 functions to get the optimal output.

8: Output of Filtering Step:

Posteriori estimated state: x̂c+k , C+
k (β∗), and S+

k (β∗).

9: end for

5 Applications

5.1 Example 1: Highly Nonlinear Benchmark Example

Consider the following example:

xk+1 =
1

2
xk +

25xk
1 + x2k

+ 8 cos[1.2(k − 1)] + wk + ak, (68)

yk =
1

20
x2k + vk + bk. (69)

where xk is a scalar, uk = 8 cos[1.2(k − 1)] is the input vector, wk ∼

N(0, 1) is a Gaussian process noise, ai,k ∈ E(0, 9) is the unknown but bounded

perturbation, in this 1-D case the ellipsoid is the interval [−3, 3]. vk ∼ N(0, 1)

is the a Gaussian measurement noise, and bk ∈ E(0, 4) is the unknown but

bounded perturbation in the interval [−2, 2]. Initial true state is x0 = 0.1,

initial state estimate as x̂0 = x0, initial estimation covariance matrix is C+
0 = 2

and initial shape matrix is S+
0 = 1× 10−3. We used a simulation length of 50

time steps. Weight parameter η = 0.5.

This system was regarded as a benchmark in the nonlinear estimation

theory [24][25], and it is usually used to demonstrate the drawbacks of EKF
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comparing with particle filter [23]. The high degree of nonlinearity in both

the process and measurement equations makes this system a very difficult

state estimation problem for a Kalman filter. We use this example to show

the new SKF behaves better than the traditional first order EKF when some

set-membership uncertainties are included in the system.

We repeated this simulation for 100 times. And Fig. 2 shows the comparison

results between SKF and EKF at time k = 25, 50, 75, 100.

Fig. 2: Comparison results in 4 simulations

In above figures, the red stars denote the true positions of the state, the

black crosses represent the estimated positions via EKF, the blue lines give the

estimated ellipsoids (in this 1D case they are intervals) via SKF, and the blue
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k 1 11 21 31 41 51 61 71 81 91

S 53.59 116.38 70.38 102.95 100.16 75.81 82.11 48.71 66.30 81.55

E 72.49 116.64 230.08 234.69 80.73 31.32 109.53 79.69 8.63 64.95

Table 1: Comparison of SKF and EKF in 10 simulations

plus signs mark the centers of the output ellipsoids. The center of the ellipsoid

given by the new SKF is different with the traditional estimation via EKF, as

what we expected, the ellipsoids include the true positions sometimes.

To further compare this new method with EKF, we calculate the distance

vectors ds, de of SKF and EKF with the true states, respectively. Each distance

vector is 50 × 1 for the total 50 steps in every simulation. Table 1 shows the

detailed l2 norm comparison of these two distance vectors in 10 simulations

(k = 1, 11, ..., 91). The second row headed by S shows the distance error via

SKF, and the third row headed by E shows the counterpart via EKF. We use

the l2 norm here as a generic measure of the distance between the estimated

data and the true data, but other norms like l1 and l∞ are possible for use.

Without loss of generality, we choose the midpoints of these ellipsoids for

comparison.

In the whole 100-time simulation experiments, the overall l2 norm of the

distance vector under SKF is 148.70, with its counterpart in extended Kalman

filter 192.29. The new SKF behaved much better than EKF in these 100 sim-

ulations. However, this does not mean the SKF is always a better algorithm

comparing with EKF, since it is also possible to get opposite results when

repeating this experiment.
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5.2 Example 2: Two-Dimensional Trajectory Estimation

A vehicle moves on a plane with a curved trajectory [26]. The state vector

x = (x, y, vx, vy) contains positions and velocities of the target, in x-direction

and y-direction, respectively. After linearization, we do not consider the ac-

celeration process anymore, and the mathematical model of this vehicle was

assumed as following:

xk+1 = Fkxk + wk + ak (70)

where xk = (xk, yk, vx,k, vy,k) is the state vector at time tk. The transition

matrix Fk is designed by:

Fk =



1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


. (71)

wk which representing random uncertainty is gaussian with covariance matrix

Cuk , and ak is the unknown but bounded uncertainty, which was bounded by

an ellipsoid with shape matrix Suk . In total 300 points were observed and time

step dt = 0.1 seconds. The units of time, distance, angle are second, meter and

degree, respectively.

In this experiment, two observation stations S1 = [s12, s12] and S2 =

[s21, s22] were arranged to make the measurements. Each station measured

the distance and the direction angle of the vehicle. Here is the measurement

equation:

yk = hk(xk, vk, bk). (72)
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yk =



d1

d2

θ1

θ2


=



√
[x− s11]2 + [y − s12]2√
[x− s21]2 + [y − s22]2

arctan[(y − s12)/(x− s11)]

arctan[(y − s22)/(x− s21)]


+ vk + bk (73)

vk which representing random uncertainty is gaussian with covariance matrix

Czk , and bk is the unknown but bounded uncertainty, which was bounded by

an ellipsoid with shape matrix Szk .

The initial state, estimated covariance matrix and shape matrix are given

by: x0 = (0, 0, 0, 0), C+
0 = diag(0.01, 0.01, 0.01, 0.01) and C+

0 = diag(1 ×

10−6, 1× 10−6, 1× 10−6, 1× 10−6).

The initial covariance matrices in process equation and measurement equa-

tion are given by:

Cu0 =



0.0033 0 0.005 0

0 0.0033 0 0.005

0.005 0 0.01 0

0 0.005 0 0.01


, Cz0 =



0.0052 0 0 0

0 0.0052 0 0

0 0 0.0052 0

0 0 0 0.0052


.

(74)

The initial shape matrices of set-membership uncertainties in process e-

quation and measurement equation are setting by:

Su0 =



12 0 0 0

0 12 0 0

0 0 0.52 0

0 0 0 0.52


, Sz0 =



0.012 0 0 0

0 0.012 0 0

0 0 ( π
180 )2 0

0 0 0 ( π
180 )2


. (75)
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Weight parameter η = 0.5.

Below eight different trajectories were estimated by EKF and SKF from

eight different data sets. The following Fig. 3 shows the estimation results.

Red stars mark the true position according to the reference data, black cross-

es denotes the estimated position via EKF, and the blue plus signs are the

geometry centers of the ellipsoids.

(a) Trajectory 1 (b) Trajectory 2

(c) Trajectory 3 (d) Trajectory 4
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(e) Trajectory 5 (f) Trajectory 6

(g) Trajectory 7 (h) Trajectory 8

Fig. 3: Eight trajectories examples to compare SKF with EKF

One may notice that both EKF and SKF perform well in most part of

each trajectory, except that the ellipsoids getting large in the interaction area

between the trajectory and the straight line of two stations. Again, we calculate

the l2 norm of distance vectors to make further comparison in Table 2.

Trajectory 1 2 3 4 5 6 7 8

SKF 3.22 2.88 4.36 2.47 3.70 12.37 2.83 1.91

EKF 5.37 3.62 27.81 3.82 3.67 7.79 13.31 3.27

Table 2: Comparison of SKF and EKF in 8 trajectories
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To check the estimation errors, we chose Trajectory 5 to repeat for 100

times and then get the following error distribution.

Fig. 4: Distance Error of SKF in 100 times

From above Fig. 4 it is obvious to notice that the estimated error was get-

ting larger when k ∈ [200, 225], i.e., in Fig. 3 (e) one may get worse estimation

results in the intersection area of the line between the two observation sta-

tions and the trajectory of the vehicle. The following Fig. 5 shows more local

details in the interaction area of Trajectory 5, where the straight line connects

the two observation stations. Not only the estimated ellipsoids getting larg-

er in the interaction area, but the semi-major axes of the largest ellipsoid is

perpendicular to the straight line.
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Fig. 5: Local estimation details near the interaction area

There exist two major reasons causing this phenomena.

Firstly, the angle set-membership uncertainty played a more significant role

in the estimation. From (75) we notice that in Fig. 3 Trajectory 5, the set-

membership uncertainty of distance is [−0.01, 0.01] meter, and its counterpart

in angle is [−1, 1] degree. The distance between the observation station and

the interaction area is at least 85 meters, i.e., the uncertainty caused by angles

would be 80× π
180m = 1.4835m (in the vertical direction of the straight line),

which is greatly larger than the distance uncertainties 0.01m (in the parallel

direction of the straight line).

Secondly, the criterion of the optimization problem in (67) in the SKF al-

gorithm is the trace of a shape matrix. There are several minimum criterions
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to get one optimal ellipsoid given a shape matrix S, e.g., the trace of the shape

matrix tr(S), the determinant of the shape matrix |S|, and the largest eigen-

value of the shape matrix λM (S). Minimizing the largest eigenvalue λM (S)

smoothes the mean curvature and makes the ellipsoid more like a ball (circu-

lar in 2D case). Minimizing the trace or the determinant of the shape matrix

produces an ellipsoid with small volume, but sometimes causes the ellipsoid

getting oblate, i.e., more uncertainties in one certain direction in this example.

(a) Trajectory 5.1 (b) Trajectory 5.2

(c) Trajectory 5.3 (d) Trajectory 5.4

Fig. 6: Output ellipsoids are highly related to the initial settings.
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Fig. 6 shows that the output estimated ellipsoids are highly related to the

initial boundary of the set-membership uncertainties in both equations. The

principle semi-axes in Trajectory 5.3 (Su=diag([1002, 1002, 502, 502]),

Sz=diag([12, 12, (π/1.8)2, (π/1.8)2])) is 100 times larger than their counter-

parts in Trajectory 5.1 (Su=diag([12, 12, 0.52, 0.52]),

Sz=diag([0.012, 0.012, (π/180)2, (π/180)2]) and 10 times larger than their coun-

terparts in Trajectory 5.2 (Su=diag([102, 102, 52, 52]),

Sz=diag([0.12, 0.12, (π/18)2, (π/18)2])), the the outputs of the SKF are get-

ting very large. Both the input (accuracy of the instruments) and the out-

put (estimated positions) in Trajectory 5.2 and 5.3 are not realistic and one

more realistic example was shown in Trajectory 5.4 with initial shape matrix

Su=diag([0.52, 0.52, 0.52, 0.52]),

Sz=diag([0.012, 0.012, (π/180)2, (π/180)2].

6 Conclusion and Future Work

One cannot state that the new SKF is always better than the standard

EKF, however, the performance of SKF is much more reliable than EKF in

some cases (like in previous simulated experiments). To say the least, the SKF

is one reasonable and applicable model when some unknown but bounded

uncertainties were included in the nonlinear system. A difference with the

standard Kalman filter is that, the estimated states are ellipsoids instead of

single points, and every inner points of one ellipsoid have the same estimation

status. But one still can choose a series of particular points in these ellipsoids
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if necessary. The output is reasonable considering the unknown but bounded

uncertainties which were included in the original system, and extra information

in the measurement equation was issued properly in the filtering step.

Like other filter models, there is also some space for this SKF to improve.

For instance, the shape matrices of the set-membership uncertainties in both

system and measurement equation must be given properly at the beginning,

and also the weighting parameter should be decided by the user or experts.

The future work of our research includes deriving a similar algorithm for

second order extend Kalman filter or unscented Kalman filter, using zonotopes

or interval boxes to bound the unknown but bounded uncertainty, and min-

imizing the determinant or the largest eigenvalue of the shape matrix when

solving the optimization problem. Last but not least, the stability of this al-

gorithm should be carefully discussed considering that the state estimation

problem is usually ill-posed as an inverse problem [27].
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