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Abstract. To provide a more precise meaning to imprecise (fuzzy)
words like “probable” or “almost certain”, researchers analyzed how of-
ten intelligence predictions hedged by each corresponding word turned
out to be true. In this paper, we provide a theoretical explanation for
the resulting empirical frequencies.

1 How Intelligence Community Interprets Imprecise
(Fuzzy) Words

Need to interpret imprecise (fuzzy) words. A large portion of expert’s
knowledge is formulated by experts by using imprecise (fuzzy) words from nat-
ural language, such as “most probably”, “small”’, etc.

We humans understand such words, but computers have big trouble under-
standing such a knowledge. Computers are designed to process numbers, not
words. It is therefore necessary to develop techniques that would translate such
words into the language of numbers. This need was one of the main motivations
behind Lotfi Zadeh’s idea of fuzzy logic; see, e.g., [1, 5, 6, 8, 9, 14].

Why intelligence community needs to interpret imprecise (fuzzy)
words. Based on different pieces of intelligence, intelligence analysts estimate
the possibility of different scenarios. Their estimates usually come in terms of
imprecise (fuzzy) words from natural language such as “almost certain”, “prob-
able”, etc.

While the words themselves are imprecise, we can make their meaning more
precise if we analyze all the situations in which the expert used the correspond-
ing word – and count the frequency of cases in which the corresponding event
actually happened. We expect that for the cases when the experts were almost
certain, the corresponding frequency would be higher than for situations in which
the experts simply stated that the corresponding event is probable.
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Results of such analysis. This analysis was indeed undertaken at the US
Central Intelligence Afgency (CIA), under the leadership of Sherman Kent; see,
e.g., [3, 4] (see also [2, 12, 13]). This analysis has shown that the imprecise words
describing expert’s degree of certainty can be divided into seven groups. Within
each group, words are practically synonymous to each other. The frequencies
corresponding to a typical word from each group are as follows:

certain 100%
almost certain 93%

probable 75%
chances about even 50%

probably not 30%
almost certainly not 7%

impossible 0%

Here are example of synonyms:

– for “almost certain”:

• virtually certain,
• all but certain,
• high;y probable,
• highly likely,
• odds (or chances) overwhelming;

– for “possible”:

• conceivable,
• could,
• may,
• might,
• perhaps;

– for 50-50:

• chances about even,
• chances a little better (or less) than even;
• improbable,
• unlikely;

– for “probably not”:

• we believe that not,
• we estimate that not,
• we doubt,
• doubtful;

– for “almost certainly not”:

• virtually impossible,
• almost impossible,
• some slight chance,
• highly doubtful.
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What is clear and what is not clear about this empirical result. The
fact that we got exactly seven different categories in in perfect agreement with
the well-known “seven plus minus two law” (see, e.g., [7, 10]) according to which
human usually divide everything into seven plus minus two categories – with the
average being exactly seven.

What is not clear is why namely the above specific probabilities are associated
with seven terns, and not, e.g., more naturally sounding equidistant frequencies
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What we do in this paper. In this paper, we provide a theoretical explanation
for the above empirical frequencies.

2 Towards a Theoretical Explanation for Empirical
Frequencies

We make decisions based on finite number of observations. Crudely
speaking, expert’s estimates are based on his/her past experience. At any given
moment of time, an expert has observed a finite number of observations. Let us
denote this number by n.

If the actual probability of an event is p, then, for large n, the observed
frequency is approximately normally distribution, with mean µ = p and standard
deviation

σ =

√
p · (1− p)

n
;

see, e.g., [11].
For two different processes, with probabilities p and p′, the difference between

the corresponding frequencies is also normally distributed, with mean d
def
= p−p′

and standard deviation

σd =
√

σ2 + (σ′)2,

where σ is as above and

σ′ =

√
p′ · (1− p′)

n
.

In general, for a normal distribution,all the values are:

– within the 2-sigma interval [µ− 2σ, µ+ 2σ] with probability ≈ 90%;
– within the 3-sigma interval [µ− 3σ, µ+ 3σ] with probability ≈ 99.9%;
– within the 6-sigma interval [µ− 6σ, µ+6σ] with probability ≈ 1− 10−8, etc.

Whatever level of confidence we need, for appropriate k0, all the value are within
the interval [µ− k0 · σ, µ+ k0 · σ] with the desired degree of confidence.

Thus:
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– if |p − p′| ≤ k0 · σd, then the zero difference between frequencies belongs to
the k0-sigma interval

[µ− k0 · σd, µ+ k0 · σd]

and thus, it is possible that we will observe the same frequency in both cases;
– on the other hand, if |p−p′| > k0 ·σd, this means that the zero difference be-

tween the frequencies is no longer within the corresponding k0-sigma interval
and thus, the observed frequencies are always different; so, by observing the
corresponding frequencies, we can always distinguish the resulting probabil-
ities.

Natural idea. Since we cannot distinguish close probabilities, we have a finite
number of distinguishable probabilities. It is natural to try to identify them with
the above empirically observed probabilities.

From the qualitative idea to precise formulas. For each value p, the small-
est value p′ > p which can be distinguished from p based on n observations is
the value p′ = p +∆p, where ∆p = k0 · σd. When p ≈ p′, we have σ ≈ σ′ and
thus,

σm ≈
√
2p · (1− p)

n
.

So,

∆p = k0 ·
√

2p · (1− p)

n
.

By moving all the terms connected to p to the left-hand side of this equality,
we get the following equality:

∆p√
p · (1− p)

= k0 ·
√

2

n
. (1)

By definition, the ∆p is the difference between one level and the next one.
Let us denote the overall number of levels by L. Then, we can associate:

– Level 0 with number 0,

– Level 1 with number
1

L− 1
,

– Level 2 with number
2

L− 1
, etc.,

– until we reach level L− 1 to which we associate the value 1.

Let v(p) is the value corresponding to probability p. In these terms, for the two
neighboring values, we get

∆v =
1

L− 1
,

thus 1 = L ·∆v, and the formula (1) takes the form

∆p√
p · (1− p)

= k0 ·
√

2

n
· (L− 1) ·∆v,
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i.e., the form
∆p√

p · (1− p)
= c ·∆v,

where we denoted

c
def
= k0 ·

√
2

n
· (L− 1).

The differences∆p and∆v are small, so we can approximate the above difference
equation by the corresponding differential equation

dp√
p · (1− p)

= c · dv.

Integrating both sides, we conclude that∫
dp√

p · (1− p)
= c · v.

The integral in the left-hand side can be explicitly computed if we substitute
p = sin2(t) for some auxiliary quantity t. In this case, dp = 2 · sin(t) · cos(t) · dt,
and 1− p = 1− sin2 t = cos2(t), thus√

p · (1− p) =

√
sin2(t) · cos2(t) = sin(t) · cos(t).

Hence,
dp√

p · (1− p)
=

2 sin(t) · cos(t) · dt
sin(t) · cos(t)

= 2dt,

so ∫
dp√

p · (1− p)
= 2t,

and the above formula takes the form

t =
c

2
· v.

Thus,

p = sin2(t) = sin2
( c
2
· v
)
.

We know that the highest level of certainty v = 1 corresponds to p = 1, so

sin2
( c
2

)
= 1,

hence
c

2
=

π

2
and c = π.

Finally, we arrive at the following formula for the dependence on p on v:

p = sin2
(π
2
· v
)
.

In our case, we have 7 levels: Level 0, Level 1, . . . , until we reach Level 6. Thus,

the corresponding values of v are
i

6
. So:
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– for Level 0, we have v = 0, hence

p = sin2
(π
2
· 0
)
= 0;

– for Level 1, we have v =
1

6
, so we have

p = sin2
(
π

2
· 1
6

)
= sin2

( π

12

)
≈ 6.7% ≈ 7%;

– for Level 2, we have v =
2

6
=

1

3
, so we have

p = sin2
(
π

2
· 1
3

)
= sin2

(π
6

)
= sin2(30◦) = (0.5)2 = 0.25;

– for Level 3, we have v =
3

6
=

1

2
, so we have

p = sin2
(
π

2
· 1
2

)
= sin2

(π
4

)
= sin2(45◦) =

(√
2

2

)2

= 0.5;

– for Level 4, we have v =
4

6
=

2

3
, so we have

p = sin2
(
π

2
· 2
3

)
= sin2

(π
3

)
= sin2(60◦) =

(√
3

2

)2

=
3

4
= 0.75;

– for level 5, we have v =
5

6
, so we have

p = sin2
(
π

2
· 5
6

)
= sin2

(
5π

12

)
≈ 0.93;

item finally, for Level 6, we have we have v = 1, hence

p = sin2
(π
2
· 1
)
= 12 = 1;

Conclusion. We have an almost perfect match.
The only difference is that, for Level 2, we get 25% instead of 30%. However,

since the intelligence sample was not big, we can probably explain this difference
as caused by the small size of the sample.
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