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Abstract

For control under uncertainty, interval methods enable us to find a box B = [u1, u1] × . . . [un, un]
for which any control u ∈ B has the desired properties – such as stability. Thus, in real-life control,
we need to make sure that ui ∈ [ui, ui] for all parameters ui describing control. In this paper, we
describe the economically optimal way of guaranteeing these bounds.
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1 Formulation of the Problem
Control problems: a very brief reminder. In control problems, we need to find the values of the
control

u = (u1, . . . , un).

Usually, there are some requirements on the control: e.g., that under this control, the system should
be stable, etc. These conditions are usually described by inequalities; see, e.g., [1].

From optimal control to constraint satisfaction. In general, there are many different controls that
satisfy all the desired constraints.

In the ideal case, when:

• we know the exact initial state of the system and

• we know the equations that describe the system’s dynamics under different controls,

we can compute the exact consequences of each control. Thus, depending on what is our objective, we can
select an appropriate objective functions and looks for the control that optimized this objective function.

The objective function depends on the task. For example, for selecting a plane trajectory, we can
have different objective functions:

• In the situation of medical emergency, we need to find the trajectory of the plane that brings the
medical team to the remote patient as soon as possible.

• For a regular passenger communications, we need to minimize expenses – and hence, instead o
flying at the largest possible speed, we should fly at the speed that saves as much fuel as possible.

• For a private jet, a reasonable objective function is the ride’s smoothness.

In practice, we rarely know the exact initial state and the exact system’s dynamics. Often, for each
of the corresponding parameters, we only know the lower and upper bounds on possible values, i.e., in
other words, we only know the interval that contains all possible values of the corresponding parameter;
see, e.g., [1–4]. In such cases, for each control, instead of the exact value of the objective function, we get
the range of possible values [v, v]. Computing this range under interval uncertainty is a particular case
of the main problem of interval computations [1–3]

In such situations, it make sense, e.g., to describe all the control u which are possibly optimal, i.e.,
for which

v(u) ≥ max
u′

v(u′).

What we get from interval computations. In situations of interval uncertainty, interval methods
enable us to find a box

B = [u1, u1]× . . . [un, un]
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for which any control u ∈ B has the desired properties – such as stability or possible optimality.

Resulting problem. Thus, in real-life control, we need to make sure that

ui ∈ [ui, ui]

for all parameters ui describing control.
What is the most economical way to guarantee these bounds?

2 Towards Formulating the Problem in Precise Terms
Analysis of the problem. Actuators are never precise, so we can only set up the control value ui with
some accuracy ai. Thus, if we aim for the midpoint

umi
def
=

ui + ui
2

,

we will get the actual value ui within the interval

[umi − ai, umi + ai].

The only way to guarantee that the control value is indeed within the desired interval is to measure
it. Measurement are also never absolutely precise. Let us assume that we use a measuring instrument
with accuracy εi. This means that for each actual value ui of the corresponding parameter, the measured
value ũi is somewhere within the interval

[ui − εi, ui + εi].

Based on the measurements, the only thing we can conclude about the actual (unknown) value ui is that
it belongs to the interval

[ũi − εi, ũi + εi].

We want to make sure that all the values from this interval are within the desired interval

[ui, ui],

i.e., that
ui ≤ ũi − εi (1)

and
ũi + εi ≤ ui. (2)

These inequalities must hold for all possible values

ũi ∈ [ui − εi, ui + εi].

For the inequality (1) to hold for all these values, it is sufficient to require that this inequality holds for
the smallest possible value

ũi = ui − εi,
i.e., that we have

ui ≤ (ui − εi)− εi = ui − 2εi. (3)

Similarly, for the inequality (2) to hold for all the values

ũi ∈ [ui − εi, ui + εi],

it is sufficient to require that this inequality holds for the largest possible value

ũi = ui + εi,

i.e., that we have
(ui + εi) + εi = ui + 2εi ≤ ui. (4)

The inequalities (3) and (4) must hold for all possible values ui ∈ [umi−ai, umi+ai]. For the inequality
(3) to hold for all these values, it is sufficient to require that this inequality holds for the smallest possible
value ui = umi − ai, i.e., that we have

ui ≤ umi − 2εi − ai. (5)
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Similarly, for the inequality (4) to hold for all the values ui ∈ [umi−ai, umi +ai], it is sufficient to require
that this inequality holds for the largest possible value ui = umi + ai, i.e., that we have

umi + 2εi + ai ≤ ui. (6)

Let us denote the half-width of the interval

[ui, ui]

by

∆i
def
=

ui − ui
2

.

In terms of the half-width,
ui − umi = umi − ui = ∆i.

Thus, the inequalities (5) and (6) are equivalent to the inequality

2εi + ai ≤ ∆i. (7)

In the optimal solution, we have equality. In general, the more accuracy we want, the more
expensive will be the corresponding measurements and actuators. From this viewpoint, if

2εi + ai < ∆i,

then we can use slightly less accurate actuators and/or measuring instruments and still guarantee the
desired inequality (7). Thus, in the most economical solution, in the formula (7), we should have the
exact equality:

2εi + ai = ∆i, (8)

i.e., equivalently,
ai = ∆i − 2εi. (9)

Towards resulting formulation of the problem. So, the problem is to find. among all the values ai
and εi that satisfy the equality (9), the values for which the overall expenses are the smallest possible.

To solve this problem, we need to know how the cost of actuators and measurements depends on
accuracy. To analyze this dependence, we start with a 1-D case, when we only have a single control
parameter u1.

3 1-D Case, When We Have a Single Control Parameter u1

Cost of actuators: main idea. Actuators – such as robotic arms – are usually rather crude, so we
may not be able to properly orient the robot after the first attempt. A natural way to provide a better
accuracy is to repeat the attempts until we get the desired location (or, in general, the desired value of
the parameter ui).

Cost of actuators: from idea to a formula. Let us assume that the given actuator can provide the
value ui with some accuracy Ai. This means that if we aim for the midpoint umi, we will get values from
the interval

[umi −Ai, umi +Ai].

We do not know the relative frequency of different values within this interval. Since we have no
reasons to assume that some of these values are more probable and some are less probable, it is therefore
reasonable to assume that all the values from the interval

[umi −Ai, umi +Ai]

are equally probable, i.e., that we have a uniform probability distribution on this interval.
By repeatedly trying, we want to get the value ui within the interval

[umi − ai, umi + ai]
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for some
ai < Ai.

For the uniform distribution, the probability to be within a subinterval is proportional to the width of
this subinterval – namely, it is equal to the ratio between the width of the subinterval and the width of
the entire interval. In particular, the probability that at each try, the value ui is within the interval is
equal to the ratio

p =
2ai
2Ai

=
ai
Ai
.

So, on average, we need
1

p
=
Ai

ai

iterations to get into the desired interval

[umi − ai, umi + ai].

Cost of measurements. How to gauge the cost of accurate measurements? It is known that if we start
with a measuring instrument with 0 mean and standard deviation σi, then, by performing M independent
measurements and averaging the results, we get a

√
M times smaller standard deviation.

Indeed, the variance of the sum of independent random variables is equal to the sum of the variances,
so for the sum of M measurement errors, the variance is m · σ2

i , and thus, the standard deviation is√
m · σi. The arithmetic average is obtained by dividing the sum by M , so its standard deviation is

√
M · σi
M

=
σi√
M
.

So, if we start with a measuring instrument with accuracy σi, and we want accuracy εi, we need to
repeat each measurement Mi times, where

σi√
Mi

= εi,

i.e.,

Mi =
σ2
i

ε2i
.

The cost of measurement is proportional to the number Mi of such measurements, so it is equal to

mi ·Mi = mi ·
σ2
i

ε2i
,

where by mi, we denoted the cost of a single measurement.

Overall cost. Let Ti denote the cost of a single actuator try.
The overall cost of one try of an actuator is equal to the actuator trying cost Ti plus the measurement

cost mi ·
σ2
i

ε2i
, i.e., it is equal to

Ti +mi ·
σ2
i

ε2i
.

To achieve the actuator accuracy
ai = ∆i − 2εi,

we need to perform
Ai

ai
=

Ai

∆i − 2εi
tries. Thus, the overall cost C of all the tries is equal to

C =
Ai

∆i − 2εi
·
(
Ti +mi ·

σ2
i

ε2i

)
. (10)

Resulting optimization problem. In the 1-D case, we need to find the value εi for which the cost
(10) is the smallest possible.

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018



Discussion.

• When εi is close to 0, the cost of measurement tends to infinity, so we have a very large overall cost.

• Similarly, when ai is close to 0, i.e., when

εi ≈
∆i

2
,

the actuator cost becomes very large, so the overall cost is also very large.

Thus, there should be values εi between 0 and

∆i

2

for which the cost of maintaining ui within the desired interval

[ui, ui]

is the smallest possible.

How to solve this optimization problem. In the 1-D case, where we have a single unknown εi, to
find the optimal value of this unknown, we can simply differentiate the objective function (1) with respect
to εi and equate the derivative to 0.

Minimizing the expression (10) is equivalent to minimizing its logarithm

ln(Ai)− ln(∆i − 2εi) + ln

(
Ti +mi ·

σ2
i

ε2i

)
.

Differentiating this expression with respect to εi and equating the derivative to 0, we get

2

∆i − 2εi
− 2 ·mi · σ2

i ·
1

ε3i
· 1

Ti +mi · σ2
i · ε

−2
i

= 0.

Dividing both sides by 2, moving the negative term to the right-hand side, and explicitly multiplying the
expressions in the right-hand side, we get

1

∆i − 2εi
=

mi · σ2
i

ε3i · Ti +mi · σ2
i · εi

.

Bringing both fractions to the common denominator, we get a cubic equation

ε3i · Ti +mi · σ2
i · εi = mi · σ2

i · (∆i − 2εi),

i.e., equivalently,
Ti · ε3i + 3mi · σ2

i · εi −mi · σ2
i ·∆i = 0. (11)

Resulting algorithm. To find the optimal accuracy εi of the measuring instrument, we can use one of
the standard methods (e.g., Newton’s method) so solve the cubic equation (11).

Then, we can find the optimal value ai of the actuator accuracy as

ai = ∆i − 2εi.

4 General Case
Notations. In general, we may have several actuators. Let us denote the number of actuators by A.
For each actuator a = 1, . . . , A, let us denote:

• the cost of one try by Ta, and

• the number of the corresponding control parameters by na.

For each actuator a, and for each i from 1 to na, let us denote:

• the i-th control parameter by uai;
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• the bounds of the corresponding control parameter by uai and uai;

• the midpoint of the resulting interval by

umai
def
=

uai + uai
2

;

• the half-width of the corresponding interval by

∆ai
def
=

uai − uai
2

;

• the bounds achievable on one try by Aai,

• the desired actuator accuracy by aai,

• the desired measurement accuracy by εai,

• the accuracy of the corresponding measuring instrument by σai, and

• the cost of a single measurement with that accuracy by mai.

Relation between accuracies of actuator and measurement. Similarly to the 1-D case, we can
conclude that in the general case, for each a and i, we have

2εai + aai = ∆ai,

i.e.:
aai = ∆ai − 2εai.

Cost of actuators. We assume that the actuator a can provide the value uai with some accuracy Aai.
This means that if we aim for the midpoint umai, we will get values from the interval

[umai −Aai, umai +Aai].

Similar to the 1-D case, it is reasonable to assume that all the combinations

(ua1, . . . , aana
)

from the corresponding box

[uma1 −Aa1, uma1 +Aa1]× . . .× [umana −Aana , umana +Aana ]

are equally probable, i.e., that we have a uniform probability distribution on this box.
By repeatedly trying, we want to get the value

(ua1, . . . , uana
)

within the smaller box

[uma1 − aa1, uma1 + aa1]× . . .× [umana
− aana

, umana
+ aana

].

For the uniform distribution, the probability to be within a sub-box is proportional to the volume of this
sub-box – namely, it is equal to the ratio between the volume of the sub-box and the volume of the entire
box. In particular, the probability that at each try, the values aai are within the desired box is equal to
the ratio

p =
(2a1) · . . . · (2ana

)

(2A1) · . . . · (2Ana
)

=
aa1 · . . . · aana

Aa1 · . . . ·Aana

.

So, on average, we need

1

p
=
Aa1 · . . . ·Aana

aa1 · . . . · aana

=

na∏
i=1

Aai

aai
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iterations to get into the desired box

[uma1 − aa1, uma1 + aa1]× . . .× [umana
− aana

, umana
+ aana

].

Overall cost for each actuator. Similarly to the 1-D case, for each i, the cost of measuring the value
uai with accuracy εai is equal to

mai ·
σ2
ai

ε2ai
.

Thus, the overall cost of measuring all these values is equal to the sum

na∑
i=1

mai ·
σ2
ai

ε2ai
.

The overall cost of one try of an actuator is equal to the actuator trying cost Ta plus the measurement
cost:

Ta +

na∑
i=1

mai ·
σ2
ai

ε2ai
.

To achieve the actuator accuracy

aai = ∆ai − 2εai,

we need to perform
na∏
i=1

Aai

aai
=

na∏
i=1

Aai

∆ai − 2εai

tries. Thus, the overall cost Ca of all the tries is equal to

Ca =

na∏
i=1

Aai

∆ai − 2εai
·

(
Ta +

na∑
i=1

mai ·
σ2
ai

ε2ai

)
. (12)

The overall cost of all the actuators. The overall cost C of all the actuators can be obtained by
adding up all the costs of all the actuators:

C =

A∑
a=1

Ca =

A∑
a=1

(
na∏
i=1

Aai

∆ai − 2εai
·

(
Ta +

na∑
i=1

mai ·
σ2
ai

ε2ai

))
. (13)

Resulting optimization problem. In the general case, we need to find the values εai for which the
cost (13) is the smallest possible.

Towards solving the optimization problem. First, one can notice that each cost Ca depends only
on the parameters corresponding to this actuator. Thus, to optimize the overall cost C, it is sufficient to
optimize the cost Ca for each actuator a.

For each a, minimizing Ca is equivalent to minimizing its logarithm

na∑
i=1

ln(Aai)−
na∑
i=1

ln(∆ai − 2εai) + ln

(
Ta +

na∑
i=1

mai ·
σ2
ai

ε2ai

)
.

Differentiating this expression with respect to εai and equating the derivative to 0, we get

2

∆ai − 2εai
− 2 ·mai · σ2

ai ·
1

ε3ai
· 1

ma
= 0, (14)

where we denoted

ma
def
= Ta +

na∑
j=1

maj ·
σ2
aj

ε2aj
. (15)
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Dividing both sides of the formula (14) by 2, moving the negative term to the right-hand side, and
explicitly multiplying the expressions in the right-hand side, we get

1

∆ai − 2εai
=
mai · σ2

ai

ε3ai ·ma
.

Bringing both fractions to the common denominator, we get a cubic equation

ε3i ·ma = mai · σ2
ai · (∆ai − 2εai),

i.e., equivalently,
ma · ε3ai + 2mai · σ2

ai · εai −mai · σ2
ai ·∆ai = 0. (16)

Resulting algorithm. For each actuator a, once we fixed the value ma, we can find each value εai
(i = 1, . . . , na) by solving the cubic equation (16).

We can then check whether our guess was correct by checking whether the formula (15) is satisfied
for the resulting values εai. By using bisection, we can find the value ma for which the equality (15) is
satisfied.

Then, we can find the optimal value aai of the actuator accuracy as

aai = ∆ai − 2εai.
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