
When Is Propagation of Interval and Fuzzy Uncertainty
Feasible?

Vladik Kreinovich,1* Andrew M. Pownuk,2 Olga Kosheleva,3 and Aleksandra Belina4

1Department of Computer Science, University of Texas at El Paso, USA
2Department of Mathematical Sciences, University of Texas at El Paso, USA

3Department of Teacher Education, University of Texas at El Paso, USA
4Department of Building Structures, Silesian University of Technology, Poland

*Corresponding author: vladik[at]utep.edu

Abstract

In many engineering problems, to estimate the desired quantity, we process measurement results and
expert estimates. Uncertainty in inputs leads to the uncertainty in the result of data processing. In
this paper, we show how the existing feasible methods for propagating the corresponding interval and
fuzzy uncertainty can be extended to new cases of potential practical importance.

Keywords: Interval uncertainty, fuzzy uncertainty, uncertainty propagation, feasible algorithms

1 Introduction
Need for data processing. In many practical situations, we are interested in a quantity y which is
difficult (or even impossible) to measure directly.

For example, when we design a structure – a building, an airplane, etc. – we would like to know the
maximal force that can be applied without breaking this structure. For a building, directly measuring
this force by trying to topple the building would be too expensive.

Another example is prediction: we want to predict the mechanical properties of an airplane several
years from now, without having to wait these several years.

In all such cases, what helps is that we usually know the relation y = f(x1, . . . , xn) between the desired
quantity y and some easier-to-measure and/or easier-to-estimate quantities x1, . . . , xn. This dependence
is sometimes given in terms of an explicit expression, but more often, it is given as an algorithm for
computing y based on xi – e.g., for mechanical or thermal properties. the algorithm for solving the
corresponding partial differential equations.

Then, after measuring and/or estimating xi, we apply the algorithm f to the measurement/est8imation
results x̃i, and get an estimate ỹ = f(x̃1, . . . , x̃n) for y. Such an application of the algorithm f is an
important case of data processing.

Need for propagating uncertainty. Neither measurement nor expert estimates are absolutely precise.
As a result, the estimates x̃i are somewhat different from the actual (unknown) values xi. So, even if the
algorithm f is precise, the result ỹ = f(x̃1, . . . , x̃n) of applying this algorithm to the estimates x̃i is, in
general, different from the value y = f(x1, . . . , xn) that we would have gotten if we knew the exact values
of the input quantities.

It is therefore desirable to estimate the corresponding “propagated” uncertainty ∆y
def
= ỹ − y; see,

e.g., [30]. How big can this approximation error be?
This is very important in many practical situations. For example, if we are designing a chemical

plant, and, based on our computations, we conclude that the predicted level of undesired chemicals in
the air ỹ will not exceed the required threshold y0, this does not necessarily mean that we can start
building this plant: it all depends on how accurate this estimate is. If ỹ is slightly smaller than y0, but
the approximation error ∆y can be large, this means that there is a real possibility that the plant will
not be functioning safely.

Similarly, if, based on the measurement results, we predict that the building will withstand the
earthquake of given magnitude, this does not necessarily mean that people in this building will be safe:
it all depend on how accurate were our predictions.

In all such situation, it is important to estimate the approximation error ∆, i.e., to propagate the
uncertainty of measuring/estimating xi through the data processing algorithm f .

Need for interval uncertainty. The desired approximation error ∆y comes from the measure-

ment/estimation errors ∆xi
def
= x̃i − xi. Thus, to estimate ∆y, we need to have information about

8th International Workshop on Reliable Computing, “Computing with Confidence”
University of Liverpool, Liverpool, UK

16–18 July 2018

the error ∆xi.
Ideal case is when for each i, we know which values ∆xi are possible and what is the probability of

getting each possible values – i.e., when we know the probability distribution for each ∆xi. In principle,
we can get this probability distribution if we calibrate the corresponding measuring instrument – i.e.,
compare its results with the results of a much more accurate (“standard’) measuring instrument. However,
calibration is a very expensive procedure. As a result, in many engineering applications, we do not know
these probabilities. At best, we know the upper bound ∆i on the corresponding measurement error:
|∆xi| ≤ ∆i. In this case, based on the measurement result x̃i, all we can conclude about the actual
(unknown) value xi is that this value is somewhere on the interval [x̃i −∆i, x̃i + ∆i]. This situation is
therefore known as a situation of interval uncertainty; see, e.g., [15, 21, 24].

Different values xi from the corresponding intervals lead, in general, to different values y. It is therefore
desirable to find the range of all possible values y, i.e., the interval

[y, y] = {f(x1, . . . , xn) : xi ∈ [x̃i −∆i, x̃i + ∆i] for all i}.

The problem of computing this range is known as the main problem of interval computations.
It is known that, in general, this problem is NP-hard; see, e.g., [18]. This means that, unless P=NP

(which most computer scientists believe to be impossible), it is not possible to have a feasible algorithm
that exactly computes the range [y, y] for all possible functions f(x1, . . . , xn). It is therefore desirable to
find cases when feasible algorithms are possible.

Need for fuzzy uncertainty. Often – e.g., for expert estimates – we do not even have a guaranteed
upper bound. Instead, we have several bounds with different levels of certainty. As a result, instead of
explicitly saying which values of ∆xi are possible and which are not – as in the case of interval uncertainty
– we have, in effect, for each possible value ∆xi, a degree to which, according to the experts, this value
is possible. In mathematical terms, this means that we have a function µ that maps every possible value
of ∆xi into a degree µ(∆xi) from the interval [0, 1], so that:

• 1 corresponds to full confidence, and

• 0 corresponds to complete absence of confidence.

Such a function is known as a fuzzy set, and the corresponding uncertainty is known as fuzzy uncertainty;
see, e.g., [2, 16, 23, 27, 28, 35].

What is known and what we do in this paper. Due to the fact that the problem of propagating
interval and fuzzy uncertainty is of great practical importance, there exist many techniques for such a
propagation. In this paper, we list some of the known techniques – and show how these known techniques
can be extended to new cases of potential practical importance.

2 Linearized Case: Interval Uncertainty
Possibility of linerization. In many practical situations, the measurement errors ∆xi = x̃i − xi are
small. In such situations, we can explan the expression

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series in ∆xi and ignore quadratic and higher order terms in this expansion. As a result, we
get the following expression:

∆y =

n∑
i=1

ci ·∆xi, (1)

where

ci
def
=

∂f

∂xi |xi=x̃i

.

Known result: in the linearized case, the main problem of interval computation is feasible
to solve. In the linearized case (1), the dependence of ∆y on ∆xi is linear. Each variable ∆xi takes all
possible value from −∆i to ∆i.

It is easy to see that:

• when ci > 0, then ∆y is an increasing function of ∆xi and thus, its largest possible value is attained
when ∆xi takes its largest possible value ∆xi = ∆i;

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

• when ci < 0, then ∆y is a decreasing function of ∆xi and thus, its largest possible value is attained
when ∆xi takes its smallest possible value ∆xi = −∆i.

In both cases, the optimizing value of ∆xi is equal to sign(ci) ·∆i, where:

• sign(ci) = 1 if ci > 0, and

• sign(ci) = −1 if ci < 0.

For these optimizing values, each term ci ·∆xi takes the form ci · sign(ci) ·∆i. One can easily see that
ci · sign(ci) = |ci|, so the largest possible value of ∆y is equal to

∆ =

n∑
i=1

|ci| ·∆i. (2)

Similarly:

• when ci > 0, then ∆y is an increasing function of ∆xi and thus, its smallest possible value is
attained when ∆xi takes its smallest possible value ∆xi = −∆i;

• when ci < 0, then ∆y is a decreasing function of ∆xi and thus, its smallest possible value is attained
when ∆xi takes its largest possible value ∆xi = ∆i.

In both cases, the optimizing value of ∆xi is equal to −sign(ci) · ∆i. For this optimizing values, each
term ci ·∆xi takes the form −|ci| ·∆i, so the smallest possible value of ∆y is equal to

−
n∑

i=1

|ci| ·∆i = −∆.

The value ∆y thus ranges from −∆ to ∆, so the range of possible values of y = ỹ−∆y is the interval
[ỹ −∆, ỹ + ∆].

Computing ∆ by using the expression (2) is definitely feasible: once we know ci and ∆i, this can be
done by a simple linear-time algorithm.

Need to consider constraints. The above argument assumes that all possible combinations of values
xi are possible. In practice, we often have some dependence between these quantities.

In some cases, we have constraints like energy conservation, according to which some combination
of the variables xi is equal to a known value g(x1, . . . , xn) = g0. Substituting xi = x̃i − ∆xi into this
formula, we get

g(x̃i −∆x1, . . . , x̃n −∆xn) = g0.

Since we assume that the measurement errors ∆xi are small – and thus, that their squares can be safely
ignored – we can linearize this constraint and get a linear constraint of the type∑

i=1

gi ·∆xi = G0, (3)

where

gi
def
=

∂g

∂xi xi=x̃i

and G0 = g0 − g(x̃1, . . . , x̃n).

In other cases, we have inequality constraints. For example, the second law of thermodynamics states
that the entropy at the next moment of time must be smaller than or equal to the entropy at the
previous moment of time. In such cases, we have constraints of the type h(x1, . . . , xn) ≥ h0, which after
linearization turn into linear inequalities

n∑
i=1

hi ·∆xi ≥ H0, (4)

where

hi
def
=

∂h

∂xi xi=x̃i

and H0 = h0 − h(x̃1, . . . , x̃n).

In such situations, instead of finding the range of all possible values of f(x1, . . . , xn), we are interested
in the range over all possible tuples (x1, . . . , xn) that satisfy the given constraints.

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

It turns out that in this case, we still have a feasible algorithm – although not as fast as in the
no-constraints case.

First new (simple) result: in the linearized case, computing the range under constraints is
also feasible. Indeed, in this case, we need to find the largest and the smallest possible values of a linear
expression

∆y =

n∑
i=1

ci ·∆xi

under linear equalities and inequalities of the type (3) and (4).
The corresponding optimization problems are particular case of the general linear programming prob-

lem: optimize a linear function under linear constraints. Feasible algorithms are known for solving this
problem; see, e.g., [19].

Comment. It should be noted, however, that while these algorithms are feasible, they are not as fast as the
linear-time algorithm for computing the expression (2) – and there seems to be no hope of speeding them
up by using, e.g., parallelization, since linear programming is known to be provably the most difficult to
parallelize; see, e.g., [29].

Second new result: in the linearized case, computing the range under sparsity constraint is
also feasible. Often, a natural constraint on the values is that the tuple (x1, . . . , xn) should be sparse,
i.e., that no more than a certain number (K) of values xi are different from 0; see, e.g., [1, 3–7, 10–
14, 20, 22, 25, 32, 33].

We are interested in finding the range for y = ỹ −∆y. In the linearized case, ∆y is described by the
formula (1), where ∆xi = x̃i−xi. Substituting the definition of ∆xi into the formula (1) and substituting
the resulting expression for ∆y into the formula for y, we get

y = ỹ −
n∑

i=1

ci · (x̃i − xi),

i.e.,

y = Y +

n∑
i=1

ci · xi,

where we denoted

Y
def
= ỹ −

n∑
i=1

ci · x̃i.

The values xi for which 0 6∈ [x̃i−∆i, x̃i +∆i] clearly cannot be equal to 0, so when looking for 0 values
of xi we should look among values for which 0 ∈ [x̃i −∆i, x̃i + ∆i], i.e., for which x̃i −∆i ≤ 0 ≤ x̃i + ∆i.
No more than K of these values are different from 0.

For each i for which ci > 0:

• the largest value of the corresponding term ci · xi is attained when xi attains its largest possible
value xi = x̃i + ∆i, and

• the smallest value of the corresponding term ci · xi is attained when xi attains its smallest possible
value xi = x̃i −∆i.

For each i for which ci < 0:

• the largest value of the corresponding term ci · xi is attained when xi attains its smallest possible
value xi = x̃i −∆i, and

• the smallest value of the corresponding term ci · xi is attained when xi attains its largest possible
value xi = x̃i + ∆i.

In both cases:

• the largest value yi of the corresponding term ci ·xi is attained when xi = x̃i + sign(ci) ·∆i, so that
this largest value is equal to

yi = ci · xi = ci · x̃i + ci · sign(ci) ·∆i = ci · x̃i + |ci| ·∆i;

and

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

• the smallest value y
i

of the corresponding term ci · xi is attained when xi = x̃i − sign(ci) ·∆i, so
that this smallest value is equal to

y
i

= ci · xi = ci · x̃i − ci · sign(ci) ·∆i = ci · x̃i − |ci| ·∆i.

For terms i for which 0 6∈ [x̃i −∆i, x̃i + ∆i], these are the terms we take to find the largest y and the
smallest y values of y.

For terms i which could be 0:

• to find y, we take the K largest of these terms, and

• to find y, we take K smallest of these terms.

Thus, we arrive at the following algorithm for computing y and y. In this algorithm, we separate
indices i for which i ∈ [x̃i − ∆i, x̃i + ∆i] as possible zeros and all other indices as definitely non-zeros.
The algorithm is as follows:

• first, for all indices i, we compute yi = ci · x̃i + |ci| ·∆i and y
i

= ci · x̃i − |ci| ·∆i;

• to compute y, to Y , we add all the values yi for all definitely non-zero i and K largest of the terms
yi corresponding to possible zeros;

• to compute y, to Y , we add all the values y
i

for all definitely non-zero i and K smallest of the terms
y
i

corresponding to possible zeros,

This algorithm is clearly feasible: it takes linear time + time O(n · log(n)) for sorting; see, e.g., [9].

3 Linearized Case: Fuzzy Uncertainty
Towards a precise formulation of the problem. In fuzzy approach, instead of simply indicating
which values are possible and which are not, we have experts’ degrees indicating to what extend each
value is possible.

Once we know the corresponding degrees µi(∆xi) for different possible values of the measurement
errors ∆xi, we need to combine them into a degree µ(∆y) indicating to what extent each value ∆y is
possible.

A value ∆y is possible if there exist values ∆x1, . . . , ∆xn all of which are possible and for which the
formula (1) holds. In other words, ∆y is possible if and only if there exist ∆x1, . . . ,∆xn for which (1) is
true and for which ∆x1 is possible and . . . and ∆xn is possible.

We know the degree µi(∆xi) to which each value ∆xi is possible. We get these degrees from the
expert(s). Ideally, to find the degree to which ∆x1 is possible and ∆x2 is possible, etc., we should also
ask experts – but there are so many combinations (∆x1, . . . ,∆xn) that asking about all of them is not
realistic.

Since we cannot elicit these degree directly, we need to estimate them based on what we know – i.e.,
based on the degrees to which each ∆xi is possible.

This is a typical situation in fuzzy reasoning:

• we know the degree a and b to which statements A and B are true, and

• we want to estimate to what extent their “and”-combination A&B is true.

Let f&(a, b) denote this estimate; the operation f&(a, b) is known as an “and”-operation, or, alternatively,
a t-norm.

There are several reasonable properties that such an “and”-operation should satisfy, For example, since
A&B and B&A means the same, we should have f&(a, b) = f&(b, a), i.e., the “and”-operation should
be commutative. Similarly, since A& (B&C) means the same as (A&B) &C, the “and”-operation must
be associative:

f&(a, f&(b, c)) = f&(f&(a, b), c).

All the operations with these properties are known. The simplest such operation is f&(a, b) =
min(a, b). This operation is widely used in fuzzy applications.

Other examples are operations of the type

f&(a, b) = g−1(g(a) + g(b)), (5)

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

where g(x) is a decreasing function from [0, 1] to non-negative numbers, and g−1(x) is its inverse function.
For example, for g(x) = − ln(x), we get f&(a, b) = a ·b. This operation is also widely used in applications.

In general, operations of type (5) are universal approximators, in the sense that for every “and”-
operation f&(a, b) and for every ε > 0, there exists an operation of type (5) which is ε-close to f&(a, b)
for all a and b; see, e.g., [26]. Thus, from the practical point, we can safely assume that the actually used
“and”-operation is of type (5).

So, our estimate of the expert’s degree of confidence that ∆x1 is possible and ∆x2 is possible ete.c is
equal to

f&(µ1(∆x1), µ2(∆x2), . . .).

We have this degree for each tuple (∆x1, . . . ,∆xn). We need to combine the degrees corresponding
to different tuples that satisfy the property (1). The phrase “there exists” is, in essence, an “or”: it
means that either this property holds for one of the tuples, or it holds for another tuple, etc. Similarly to
“and”-operations, in fuzzy logic, we also have “or”-operations f∨(a, b) (also known as t-conorms). The
simplest “or”-operation is f∨(a, b) = max(a, b) which is widely used. Other operations include operations
of the type (5) with increasing functions g(x). The mostly widely used example is f∨(a, b) = a+ b− a · b
which corresponds to g(a) = − ln(1− a).

At first glance, it may seem that, similar to the fact that we can use generic “and”-operations, we can
also use general “or”-operations. However, there is a big difference here:

• we use “and”-operations to combine a finite number of degrees, while ‘

• the “or”-operation is used to combine degrees corresponding to infinitely many possible tuples.

For infinitely many degrees, “or”-operations of type (5) usually lead to the meaningless value 1, so the
only meaningful choice is to use the max-operation f∨(a, b) = max(a, b).

Thus, we arrive at the following formula for the desired membership function µ(∆y):

µ(∆y) = max

{
f&(µ1(∆x1), . . . , µn(∆xn) :

n∑
i=1

ci ·∆xi = ∆y.

}
. (6)

Known result: for min “and”-operation, the problem is feasible to solve. In the simplest case,
when f&(a, b) = min(a, b), the formula (6) takes the form

µ(∆y) = max

{
min(µ1(∆x1), . . . , µn(∆xn) :

n∑
i=1

ci ·∆xi = ∆y.

}
. (7)

This formula was first derived by Zadeh himself and is thus known as Zadeh’s extension principle.

It is known that to compute µ(∆y), it is convenient to use α-cuts, i.e., sets of the type xi(α)
def
= {∆xi :

µi(∆xi) ≥ α} and y(α)
def
= {∆y : µ(∆y) ≥ α}.

Expert estimates for degrees µi(∆xi) usually decreases as we go further away from 0. In this case,
the α-cuts are simply intervals

xi(α) = [xi(α), xi(α)]

for appropriate endpoints xi(α) and xi(α).
By definition of µ(∆y), we have µ(∆y) ≥ α if and only there exist values ∆x1, . . . ,∆xn for which

(1) holds and for which min(µ1(∆x1), . . . , µn(∆xn)) ≥ α, i.e., equivalently, for which µ1(∆x1) ≥ α
and µ2(∆x2) ≥ α, etc. In other words, ∆y ∈ y(α) if and only if there exist ∆xi ∈ xi(α) for which

∆y =
n∑

i=1

ci ·∆xi. Thus, for each α, the interval y(alpha) is simply the range of the linear expression (1)

when each ∆xi is in the interval [xi(α), xi)(α)].

To compute this range, we can represent each of these intervals as [∆̃xi − δi, ∆̃xi + δi], where

∆̃xi
def
=

xi(α) + xi(α)

2

and

δi
def
=

xi(α)− xi(α)

2
.

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

Then, the desired range is equal to

[ŷ − δ, ŷ + δ],

where

ŷ
def
=

n∑
i=1

ci · ∆̃xi

and

δ
def
=

n∑
i=1

|ci| · δi.

All these explicit formula are clearly feasible.

Third new result: the problem is feasible for any “and”-operation. Let us show that the
problem remains feasible if instead of min, we use any “and”-operation of type (3).

For such an “and”-operation, the formula (6) takes the form

µ(∆y) = max

{
g−1(g(µ1(∆x1)) + . . .+ g(µn(∆xn))) :

n∑
i=1

ci ·∆xi = ∆y

}
.

Since the function g(x) is decreasing, we have µ(∆y) = g−1(z), where

z
def
= min

{
g(µ1(∆x1)) + . . .+ g(µn(∆xn)) :

n∑
i=1

ci ·∆xi = ∆y

}
.

Thus, if we can feasibly compute z, we can also feasible compute µ(∆y) as g−1(z).
To simplify our expression for z, let us denote

fi(∆xi)
def
= g(µi(∆xi)).

In these terms, the above formula for z takes the form

z = min

{
f1(∆x1) + . . .+ fn(∆xn) :

n∑
i=1

ci ·∆xi = ∆y

}
.

The problem of finding z is now a classical constraint optimization problem: minimize the sum

f1(∆x1) + . . .+ gn(∆xn)

under the constraint
n∑

i=1

ci ·∆xi = ∆y.

To solve this problem, we can use the usual Lagrange multiplier method to reduce it to the following
unconstrained optimization problem: minimize the expression

n∑
i=1

fi(∆xi) + λ ·

(
n∑

i=1

ci ·∆xi −∆y

)
,

for an appropriate Lagrange multiplier λ. Differentiating the above objective function with respect to
∆xi and equating the derivative to 0, we get

f ′i(∆xi) + λ · ci = 0,

i.e., that

∆xi = f−1i (λ · ci).

Thus, if we know λ, we can feasibly compute all the values ∆xi.
The only remaining problem is to find λ. The value λ must be found from the condition (1). Thus,

we can use, e.g., bisection to find the appropriate value λ. Hence, the whole computation is feasible.

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

4 Beyond Linearized Case
For boxes, interval computation is NP-hard already for quadratic functions. For linear func-
tions f(x1, . . . , xn), as we have mentioned, the problem of computing the interval range over a box

[x1, x1]× . . .× [xn, xn]

is feasible. However, already for quadratic functions f(x1, . . . , xn), this problem is NP-hard; see, e.g.,
[18].

Beyond boxes. But why concentrate on boxes? Boxes correspond to the case when we have no
constraints. In practice, as we have mentioned, we often have constraints, so we have a subset of the box.

Known result: for ellipsoids, the problem is feasible for quadratic functions f(x1, . . . , xn).
One of the typical sets of possible values is an ellipsoid, i.e., set of the type Q(x1, . . . , xn) ≤ q0 for some
quadratic function Q(x1, . . . , xn); see, e.g., [17, 34?] and references therein.

We want to find the range of a quadratic function f(x1, . . . , xn) over an ellipsoid. In other words, we
want to find the maximum y and the minimum y of this function over an ellipsoid. The maximum or
minimum occurs:

• either inside the ellipsoid

• or on its boundary Q(x1, . . . , xn) = q0.

If the maximum or minimum is attained inside, then all n partial derivatives of the quadratic function
f(x1, . . . , xn) must be equal to 0. Derivatives of a quadratic function are linear, so we get an easy-to-
solve system of n linear equations with n unknowns, for which we can easily find the corresponding tuple
(x1, . . . , xn) – and check that this tuple is indeed inside the given ellipsoid.

If the maximum or minimum is attained on the border, then the location of this maximum or min-
imum can be found by solving the following constraint optimization problem: optimize the function
f(x1, . . . , xn) under the constraint Q(x1, . . . , xn) = q0.

To solve this problem, we can also use the Lagrange multiplier method and solve the corresponding
unconstrained optimization problem of optimizing the expression

f(x1, . . . , xn) + λ · (Q(x1, . . . , xn)− q0).

For each λ, by differentiating this expression with respect to xi and equating each of these derivatives to
0, we get an easy-to-solve system of n linear equations with n unknowns. Thus we get the values xi(λ).

The only remaining problem is how to find λ from the condition that Q(x1(λ), . . . , xn(λ)) = q0. But
this is an equation with one unknown, and such equations are feasibly solvable. (The problem becomes
computationally complex when the number of variables grows.)

Fourth new result: for quadratic function, the problem is feasible also for intersection of
ellipsoids. Ellipsoids are sets of a very specific shape. Can we extend the above results to generic
shapes?

Of course, since the problem is NP-hard for boxes, we do not expect a feasible algorithm for all the
sets, but what we would like to have is a sequence of families of sets, with more and more parameters,
for each of which we have a feasible algorithm – although the complexity of such algorithm may increase
as we add more and more parameters to the family.

It turns out that as such a sequence of families, we can take intersections of ellipsoids:

• the first family is the family of ellipsoids,

• the next family is intersections of 2 ellipsoids,

• then intersections of 3 ellipsoids, etc.

Let us show that this way, we indeed get a universal approximation family, i.e., that any convex
set can be thus approximated. Indeed, each convex set can be approximated, with any given accuracy,
by a polyhedron: e.g., by the convex hull of sufficiently points on its surface; see, e.g. [31]. A convex
polyhedron is an intersection of half-spaces that contain it, and a half-space can be approximated by an
ellipsoid – since in an appropriate limit, an ellipsoid tends to a half-space.

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

For the intersection of K ellipsoids Qk(x1, . . . , xn) ≤ qk, the corresponding Lagrange multiplier prob-
lem takes the form

f(x1, . . . , xn) +

K∑
k=1

λk · (Qk(x1, . . . , xn)− qk) = 0.

We also need to consider 2K cases when the optimizing tuple (x1, . . . , xn) is inside some of the ellipsoids.
In all these cases, we get a system of linear equations enabling us to find all the values xi as functions of
λ1, . . . , λK : xi = xi(λ1, . . . , λK). The values λk must then be determined from the conditions that

Qk(x1(λ1, . . . , λK), . . . , xn(λ1, . . . , λK)) = qk

for all k from 1 to K. We thus have a system of K nonlinear equations with K unknowns. When K is
fixed, this system is feasible – although the complexity of solving this system grows exponentially with K.

Acknowledgments
This work was supported in part by the US National Science Foundation grant HRD-1242122 (Cyber-
ShARE Center of Excellence).

References
[1] B. Amizic, L. Spinoulas, R. Molina, and A. K. Katsaggelos, Compressive blind image deconvolution,

IEEE Transactions on Image Processing, 22(10), 3994–4006 (2013).

[2] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A Historical Perspective
(Oxford University Press, New York, 2017).

[3] E. J. Candès, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate mea-
surements, Communications in Pure and Applied Mathematics, 59, 1207–1223 (2006).

[4] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information, IEEE Transactions on Information Theory, 52(2),
489–509 (2006).

[5] E. J. Candès and T. Tao, Decoding by linear programming, IEEE Transactions on Information
Theory, 51(12), 4203–4215 (2005).

[6] E. J. Candès and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Processing
Magazine, 25(2), 21–30 (2008).

[7] F. Cervantes, B. Usevitch, L. Valera, and V. Kreinovich, Why sparse? fuzzy techniques explain
empirical efficiency of sparsity-based data- and image-processing algorithms, Proceedings of the 2016
World Conference on Soft Computing (Berkeley, California, May 22–25, 2016), 165–169.

[8] F. L. Chernousko, State Estimation for Dynamic Systems (CRC Press, Boca Raton, Florida, 1994).

[9] Th. H. Cormen, C. E. Leiserson, R. L., Rivest, and C. Stein, Introduction to Algorithms (MIT Press,
Cambridge, Massachusetts, 2009).

[10] D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52(4), 1289–1306.

[11] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk,
Single-pixel imaging via compressive sampling, IEEE Signal Processing Magazine, 25(2), 83–91
(2008).

[12] T. Dumrongpokaphan, O. Kosheleva, V. Kreinovich, and A. Belina, Why sparse?, In: O. Kosheleva,
S. Shary, G. Xiang, and R. Zapatrin (eds.), Beyond Traditional Probabilistic Data Processing Tech-
niques: Interval, Fuzzy, etc. Methods and Their Applications (Springer, Cham, Switzerland, 2018)
to appear.

[13] T. Edeler, K. Ohliger, S. Hussmann, and A. Mertins, Super-resolution model for a compressed-sensing
measurement setup, IEEE Transactions on Instrumentation and Measurement, 61(5), 1140–1148
(2012).

[14] M. Elad, Sparse and Redundant Representations (Springer Verlag, 2010).

[15] L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis, with Examples in Parameter
and State Estimation, Robust Control, and Robotics (Springer, London, 2001).

[16] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic (Prentice Hall, Upper Saddle River, New Jersey,
1995).

[17] O. Kosheleva and V. Kreinovich, For describing uncertainty, ellipsoids are better than generic poly-
hedra and probably better than boxes: a remark, Mathematical Structures and Modeling, 27, 38–41
(2013).

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

[18] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility of Data
Processing and Interval Computations (Kluwer, Dordrecht, 1998).

[19] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming (Springer, Cham, Switzerland,
2016).

[20] J. Ma and F.-X. Le Dimet, Deblurring from highly incomplete measurements for remote sensing,
IEEE Transactions on Geosciences Remote Sensing, 47(3), 792–802 (2009).

[21] G. Mayer, Interval Analysis and Automatic Result Verification (de Gruyter, Berlin, 2017).

[22] L. McMackin, M. A. Herman, B. Chatterjee, and M. Weldon, A high-resolution SWIR camera via
compressed sensing, Proceedings of SPIE, 8353(1), Paper 8353-03 (2012).

[23] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions (Springer,
Cham, Switzerland, 2017).

[24] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis (SIAM, Philadelphia,
2009).

[25] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Computing, 24,
227–234 (1995).

[26] H. T. Nguyen, V. Kreinovich, and P. Wojciechowski, Strict Archimedean t-norms and t-conorms as
universal approximator, International Journal of Approximate Reasoning, 18(3–4), 239–249 (1998).

[27] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic (Chapman and Hall/CRC, Boca
Raton, Florida, 2006).

[28] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy Logic (Kluwer, Boston,
Dordrecht, 1999).

[29] C. H. Papadimitriou, Computational Complexity (Pearson, Boston, Massachusetts, 1993).

[30] S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Practice (Springer Verlag,
Berlin, 2005).

[31] R. T. Rockafeller, Convex Analysis (Princeton University Press, Princeton, New Jersey, 1970).

[32] Y. Tsaig and D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52(4),
1289–1306 (2006).

[33] L. Xiao, J. Shao, L. Huang, and Z. Wei, Compounded regularization and fast algorithm for com-
pressive sensing deconvolution, Proceedings of the 6th International Conference on Image Graphics
(2011) 616–621.

[34] K. Villaverde, O. Kosheleva, and M. Ceberio, Why ellipsoid constraints, ellipsoid clusters, and
riemannian space-time: Dvoretzky’s theorem revisited, In: M. Ceberio and V. Kreinovich (eds.),
Constraint Programming and Decision Making (Springer Verlag, Berlin, Heidelberg, 2014) 203–207.

[35] L. A. Zadeh, Fuzzy sets, Information and Control, 8, 338–353 (1965).

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018

	Introduction
	Linearized Case: Interval Uncertainty
	Linearized Case: Fuzzy Uncertainty
	Beyond Linearized Case

