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Abstract—To gauge pavement conditions, researchers have
come up with a complex heuristic algorithm that combines several
expert estimates of pavement characteristics into a single index
– which is well correlated with the pavement’s durability and
other physical characteristics. While empirically, this algorithm
works well, it lacks physical or mathematical justification beyond
being a good fit for the available data. This lack of justification
decreases our confidence in the algorithm’s results – since it
is known that often, empirically successful heuristic algorithms
need change when the conditions change. To increase the practi-
tioners’ confidence in the resulting pavement condition estimates,
it is therefore desirable to come up with a theoretical justification
for this algorithm. In this paper, we show that by using fuzzy
techniques, it is possible to come up with the desired justification.

I. FORMULATION OF THE PROBLEM

It is important to gauge pavement conditions. Most roads
are heavily used. Heavy traffic stresses the pavement. As a
result, after several years, it is necessary to maintain – or
sometimes even repair – the roads.

Roads repairs are expensive. It is therefore important to ad-
equately gauge pavement conditions – so that we will be able
to correctly decide which road segments need maintenance or
repair, and which can wait a few more years.

This is especially important since it is known that a proper
maintenance can make the road last much longer and thus,
drastically decrease the need for expensive road repairs.

How pavement conditions are gauged now. One of the most
frequently used technique for gauging pavement conditions is
based on visual inspection of the pavement.

Visual inspection enables the inspectors to detect different
types of problems – known as distresses. We can have buck-
ling, we can have potholes, we can have cracks, etc. For each
type of distress, inspectors:

• measure the area affected by this type of distress (or the
length, for linear distresses like linear cracks), and

• use the results of these measurement to evaluate the
severity of the corresponding distress.

The resulting data is then combined into a single pavement
condition index (PCI).

The combination rules used in the computation of the PCI
are selected so as to provide the most accurate prediction of the
pavement durability. To improve the predictive quality, more
and more complex algorithms are used; see, e.g., the latest
international standard [1].

Problem. The problem is that the existing algorithm for
gauging the pavement condition is heuristic. This algorithm
has been selected purely empirically, it does not have any
physical or mathematical justification – beyond being a good
fit for the available data.

In general, heuristic methods often work well, but they are
usually less reliable than theoretically justified algorithms –
since they rely solely on the past experiences and when the
situations change, we may need to change the algorithms as
well. To increase the user’s confidence in the PCI algorithm,
it is thus desirable to come up with a theoretical justification
for this algorithm.

What we do in this paper. In this paper, we provide the
desired theoretical justification for the current state-of-the-art
complex heuristic algorithm for gauging pavement conditions.

In this justification, we take into account the fact that this
algorithm combines – somewhat subjective – inspector obser-
vations, observations which include information described not
in numerical terms, but rather in terms of imprecise (“fuzzy’)
words from natural language, such as “high”, “low”, and
“medium”. Thus, to analyze this problem, it is reasonable
to use techniques specifically designed for translating such
knowledge into precise numbers – namely, fuzzy techniques;
see, e.g., [2], [3], [4], [6], [7], [9].

These techniques are what we will use in our justification.



II. THE CURRENT STATE-OF-THE-ART ALGORITHM FOR
GAUGING PAVEMENT CONDITIONS: A BRIEF REMINDER

What we start with. For each road segment, this algorithm
starts with the numbers

x1, . . . , xn

that describe the relative areas (or relative lengths) of the
distresses within this segment.

First step: a non-linear transformation. First, an appropriate
non-linear transformation fi(xi) is applied to each value xi,
resulting in so-called deduct values

si = fi(xi)

ranging from 0 to 100 (or, equivalently, from 0 to 1). These
non-linear transformations

fi(xi)

are selected so that the resulting PCI have the largest correla-
tion with the pavement’s durability.

The deduct values are selected in such as way that larger
values of the scores correspond to more severe distresses:

• the value 100 (or 1) corresponds to the most sever
distress, while

• the value 0 corresponds to the absence of distress.

Second step: sorting the deduct values. The deduct values
corresponding to distresses of different types are then sorted in
the decreasing order, from the most severe to the least severe:

s(1) ≥ s(2) ≥ . . .

Third step: deciding how many deduct values to use. Based
on the largest deduct value, we then decide how many deduct
values to use. This number m of used deduct values is found
from a formula

m = 1 +
9

98
· (100− s(1)). (1)

We then use only the values

s(1) ≥ s(2) ≥ . . . ≥ s(m).

Final step: combining deduct values. To combine the values
s(1), . . . , s(m), we do the following:

• first, we compute the sum of the largest deduce value
s(1) and of m − 1 small values (equal to 2); we apply
an appropriate non-linear transformation to transform this
sum into the interval [0, 100]; thus, we get the first
combined deduct value c1;

• then, we compute the sum of the two largest deduct
values and of m − 1 2s – and apply a different non-
linear transformation to the resulting sum; thus, we get
the second combined deduct value c2;

• after that, we compute the sum of 3 largest deduct values
and m − 2 2s, and apply a yet different non-linear

transformation to the resulting sum; thus, we get the third
combined deduct value c3;

• then we repeat the same procedure for 4 largest deduct
values, for 5 largest deduct values, etc., until we are
combine all m deduct values.

As a result, we get m combined deduct values

c1, c2, , . . . , cm.

After that, we take the largest of the resulting combined
distress values

c
def
= max

i
ci.

The PCI is simply 100 minus this largest value:

PCI
def
= 100− c.

The resulting combination of somewhat subjective esti-
mates is indeed well-correlated with physical properties.
The algorithm has been selected so as to provide the largest
correlation with the pavement durability and other physical
characteristic. For example, it has been shown that PCI is
strongly correlated with the International Roughness Index
that measures the passing vehicle’s vibrations caused by the
pavement’s imperfection; see, e.g., [8].

Towards reformulating the final step. Our ultimate goal is
to decide when a road segment needs maintenance or repair.
This decision is made by comparing the PCI estimated for this
segment with a certain threshold t0. The condition that

100− c ≥ t0

is equivalent to
c ≤ 100− t0.

In its turn, the condition that

c = max
i

ci ≤ 100− t0

is equivalent to requiring that

ci ≤ 100− t0

for each i.
Each value ci is obtained from the sum

s(1) + . . .+ s(i) :

• by adding (m− i) values of 2 and
• by applying an appropriate non-linear transformation to

the resulting sum.
Thus, the condition

ci ≤ 100− t0

is equivalent to requiring that the sum

s(1) + . . .+ s(i)

is greater than or equal to some threshold ti. Thus, we can
reformulate the final step as follows.



Reformulation of the final step. To decide whether the given
road segment needs repairs or maintenance, we check, for each
i from 1 to m, whether

s(1) + s(2) + . . .+ s(i) ≥ ti

for the corresponding threshold ti.

What needs explanation. Natural questions are:
• Why should we use sum and not any other combination

function?
• Why should we consider the sum of a few largest distress

values and not of all these values?
• Why should we consider several sums instead of just one?
• Where does the formula for the number m of considered

deduct values come from?
There can be many other questions, since the above procedure,
with its emphasis on sorting and maxima, does not look
like any physical formula – physics formulas very rarely use
maxima.

III. WHY SHOULD WE USE SUM AND NOT ANY OTHER
COMBINATION FUNCTION: AN EXPLANATION

Let us start analyzing the problem. The road segment is
good if there are not too many distresses of each type, i.e., if
there are:

• few distresses of the first type and
• few distresses of the second type, etc.

In other words, the pavement is good if:
• the first value x1 is small and
• the second value x2 is small, etc.
This looks like a typical phrase to be analyzed by fuzzy

techniques. Namely, phrase is an “and”-combination of sim-
pler phrases like “the value x1 is small”, “the value x2 is
small”, etc. To assign a numerical value to the validity of this
phrase, it makes sense:

• first, to estimate the degree to which each simple state-
ment “xi is small” is true, and then

• combine these degree of confidence into a single degree.
This is exactly what we will do.

We need different membership functions for different i. In
accordance with the usual fuzzy techniques, for each i and for
each xi, we need to come with a number di describing to what
extend the given value xi is small. Let us denote this number
by µi(xi). In fuzzy techniques, the corresponding function
µi(xi) is known as the membership function corresponding to
the notion “small”.

In the traditional application of fuzzy techniques, when
we have several occurrences of the same word like “small”,
we use the same membership function. However, most fuzzy
textbooks emphasize that this is not necessarily the case: for
example, then transforming the size in meters into a number,
“small” means two different things when referring to cats or
to people – a cat the size of a small human being is, by cats’
standards, a giant.

This is exactly the case here. For example, if x1 describes
the relative area of severe distress, then x1 should really be
small for this distress to be acceptable and not requiring any
maintenance. However, for low severity distress x2, even if this
distress takes a significant part of the road segment, by itself,
this may not necessarily trigger any need for maintenance.
Thus, in our case, we need different membership functions
µi(xi) for different i.

How to combine the degrees. In general, the problem of
combining the degrees is as follows:

• we know the degrees a and b to which statements A and
B are true, and

• we want to use these values a and b to estimate the degree
to which a composite statement A&B is true.

In fuzzy logic, the corresponding estimate is called an “and”-
operation (or, for historical reasons, a t-norm); let us denote
it by f&(a, b).

In these terns, the desired degree of confidence that the road
segment is good is equal to

f&(µ1(x1), µ2(x2), . . .). (2)

Natural conditions on an “and”-operation. The “and”-
operation should satisfy several conditions. First, since A&B
and B&A mean the same, it is reasonable to expect that the
corresponding estimates for their degrees should be the same,
i.e., that we should have

f&(a, b) = f&(b, a)

for all a and nb. In other words, the “nd”-operation should be
commutative.

Similarly, since A&(A&C) and (A&B)&C means the
same, we expect that the estimates of the degree of these two
statement should be the same, i.e., that for all a, b, and c, we
should have

f&(a, f&(b, c)) = f&(f&(a, b), c).

In other words, an “and”-operation should be associative.
There are several other reasonable properties; see, e.g., [2],

[3], [4], [6], [7], [9]. An “and”-operation that satisfies all these
properties is usually what is called a t-norm.

Structure of a generic t-norm. Some t-norms have the form

f&(a, b) = g−1(g(a) + g(b)) (3)

for some increasing function g(z), where g−1(z) indicates an
inverse function, for which g−1(g(z)) = z. Such t-norms are
know as Archimedean.

For example, for the probability-inspired operation
f&(a, b) = a · b, we get this form with g(z) = ln(z).

It is known (see, e.g., [5]) that for every t-norm f&(a, b) and
for every ε > 0, there exists an Archimedean t-norm f ′

&(a, b)
which is ε-close to f&(a, b), i.e., for which

|f ′
&(a, b)− f&(a, b)| ≤ ε



for all a and b. Since the expert’s degrees of confidence are
always approximate, and ε can be arbitrary small, in practice,
we can safely replace the original t-norm with an ε-close
Archimedean one – as long as ε is small enough. Thus,
without losing generality, we can safely assume that the t-
norm f&(a, b) is Archimedean.

This explains why in gauging pavement conditions, we
use sum. Indeed, the degree of confidence that the road
segment is good is determined by the formula (2). As we have
discussed, we can safely assume that the corresponding t-norm
is Archimedean, i.e., that it is described by the formula (3).

Substituting the expression (3) into the formula (2), we
conclude that the desired degree d has the form

d = g−1(g(µ1(x)) + g(µ2(x2)) + . . .),

i.e., equivalently, the form

d = g−1(s), where s = s1 + s2 + . . . ,

si = fi(xi), and fi(z)
def
= g(fi(z)).

In particular, since the function g(z) is increasing, the
condition that road is good enough, i.e., that

d ≥ d0

for some threshold d0, can be equivalently reformulated as

s ≥ t0
def
= g(d0).

In other words, we get

s1 + s2 + . . . ≥ t0.

This is exactly the sum-based formula used to estimate the
desired degree – which is thus explained by fuzzy ideas.

IV. WHY SHOULD WE CONSIDER THE SUM OF A FEW
LARGEST DISTRESS VALUES AND NOT OF ALL THESE

VALUES?

Analysis of the problem: analyzed road segments are
reasonably good. The whole procedure makes sense when
roads are reasonably well maintained and are in reasonable
condition. If the road is in a clearly bad condition, there is no
need to accurately gauge its quality, we just need to repair it.

The need for an accurate estimate of the road’s quality
occurs when we have several segments of reasonably good
quality, and we need to find the way to maintain them and
making them even better.

In such situations, most distress values xi are small. When
a distress value is very small, it does not affect the overall
quality of a road segment.

Computational consequences of this analysis. Since small
distress values do not affect the quality of a road segment,
taking them into account would be a waste of computational
resources.

To avoid this waste, it makes sense to ignore these very
small values, and consider only a few largest distress values.
This is exactly whet is usually done: instead of taking the sum

of all the values s1 + s2 + . . ., we only consider the sum of
the m largest values

s(1) + s(2) + . . .+ s(m).

This is exactly what practitioners do.

V. WHY SHOULD WE CONSIDER SEVERAL SUMS
INSTEAD OF JUST ONE?

General idea. If, based on the largest distress, we know that
the road segment need repair or maintenance, there is no
need to consider all other distresses. In this case, taking other
distresses into account would be a waste of computational
resources.

If, based on the first distress, we cannot make a definite
conclusion, it is reasonable to also consider the second distress,
etc.

Thus, instead of always taking all m distresses into account,
it makes sense to first check just the largest distress, then two
largest, then three largest. etc.

This is exactly what is done in practice.

This is a fuzzy analog of lazy logical operations. In classical
2-valued logic, if we want to find the truth value of a statement
A&B and we know that A is false, there is no need to find the
truth value of B – we can already conclude that the composite
statement A&B is also false.

This simple observation saves us computation time. The
corresponding operation is known as a lazy “and”. This is
the most commonly used “and”-operation in programming
languages such as C or Java.

What we are describing here is the fuzzy analogue of such
lazy “and”-operations. Indeed, when the first values s(1), s(2),
. . . are already large – corresponding to close-to-false(0) values
of the corresponding degrees µi(xi) – then there is no need
to compute any further terms, we know that the road segment
needs repair or maintenance.

VI. WHERE DOES THE FORMULA FOR THE NUMBER m OF
CONSIDERED DEDUCT VALUES COME FROM?

Analysis of the problem. Suppose that we know the largest
distress s(1). Let us denote, by S0, the overall distress level
after which the road segment needs repairs or maintenance.

Let us denote, by s0, the smallest value of an individual
distress that is still worth taking into account, so that values
smaller than s0 can be safely set to 0. Then, if, in addition to
the largest distress, we take into account m−1 other non-zero
distresses, we get the overall value

s(1) + (m− 1) · s0.

If this value is already larger than or equal to the threshold
S0, this means that there is no need to consider any additional
distresses – we already know that the road segment needs
repairs or maintenance.

On the other hand, if among the m largest distresses, the
smallest is already below s0 – and can hence be safely ignored
– this means that all smaller distresses can also be ignored.



So, considering more than m distresses also does not make
sense.

Thus, in all possible cases, the largest number of distresses
to be continued is the smallest m for which

s(1) + s0 · (m− 1) ≥ S0.

In terms of m, this inequality can be reformulated in the
equivalent form

m ≥ 1 +
1

s0
· (S0 − s(1)).

So, the smallest possible value m that satisfies this property
has the form

m = 1 +
1

s0
· (S0 − s(1)). (4)

This analysis explains the formula for the number m of
considered deduct values. Indeed, (4) is exactly the formula
used to estimate how many deduct values we need to take into
account.
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