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Abstract—One of the main reasons for the current interest in
quantum computing is that, in principle, quantum algorithms
can break the RSA encoding, the encoding that is used for the
majority secure communications — in particular, the majority
of e-commerce transactions are based on this encoding. This
does not mean, of course, that with the emergence of quantum
computers, there will no more ways to secretly communicate:
while the existing non-quantum schemes will be compromised,
there exist a quantum cryptographic scheme that will enables us
to secretly exchange information. In this scheme, however, there is
a certain probability that an eavesdropper will not be detected.
A natural question is: can we decrease this probability by an
appropriate modification of the current quantum cryptography
algorithm? In this paper, we show that such a decrease is not
possible: the current quantum cryptography algorithm is, in some
reasonable sense, optimal.

Index Terms—quantum cryptography, quantum computing,
optimality

I. FORMULATION OF THE PROBLEM

Why quantum computing. In many practical problems, we
need to process large amounts of data in a limited time.
To be able to do it, we need computations to be as fast
as possible. While computations are already fast, there are
many important problems for which we still cannot get the
results on time. For example, it has been shown that, in
principle, we can predict with a reasonable accuracy where
the tornado will go in the next 15 minutes, but at present, the
corresponding computations take days on the fastest existing
high performance computer.

One of the main limitations on the speed of modern com-
puters is the fact that, according to modern physics, the speed
of all the processes is limited by the speed of light ¢ ~ 3-10°
km/sec; see, e.g., [1], [5]. As a result, for example, for a typical

laptop of size ~ 3% gm, the fastest we can send a signal across
cm

3105 km/sec
a usual few-Gigaflop laptop performs quite a few operations.
To further speed up computations, we thus need to further
decrease the size of the processors. To be able to fit Gigabytes
of data — i.e., billions of cells — within a small area, we need to

the laptop is ~ 107? sec — during this time,
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attain a very small cell size. At present, a typical cell consists
of several dozen molecules. As we decrease the size further,
we get to a few-molecule size, at which stage we need to take
into account the fact that for molecules and atoms, physics
is different: quantum effects become dominant; see, e.g., [1],
[5].

At first, quantum effects were mainly viewed as a nuisance.
For example, one of the features of quantum world is that its
results are usually probabilistic. So, if we simply decrease the
cell size but use the same computer engineering techniques,
then, instead of getting the desired results all the time, we
will start getting other results with some probability — and
this probability of undesired results increases as we decrease
the size of the computing cells.

However, researchers found out that by appropriately mod-
ifying the corresponding algorithms, we can often not only
avoid the probability-related problem but, even better, make
computations faster. The resulting algorithms are known as
algorithms of quantum computing; see, e.g., [2], [6].

Quantum computing will enable us to decode all tradition-
ally encoded messages. One of the spectacular algorithms of
quantum computing is Shor’s algorithm for fast factorization
of large integers; see, e.g., [2]-[4].

The importance of this algorithm comes from the fact that in
the modern world, most encryption schemes — e.g., schemes
that underlie https, the backbone of the online commerce —
as based on the RSA algorithm, the algorithm whose crypto
applications are based on the difficulty of factorizing large
integers. To form an at-present-unbreakable code, the user
selects two large prime numbers P; and P» — that will form
his private code — and transmits to everyone their product
n = Py - P, that everyone can use to encrypt their messages.
At present, the only way to decode this message is to know
the values P;.

Shor’s algorithm allows quantum computers to effectively
find P; based on n and thus, to read practically all the secret
messages that have been sent so far. This algorithm is one of
the main reasons why governments throughout the world are
investing in the design of quantum computers.

Quantum cryptography: an unbreakable alternative to the



current cryptographic schemes. The fact that RSA-based
cryptographic schemes can be broken by quantum computing
does not mean that there will be no secrets: researchers have
invented a quantum-based encryption scheme that cannot be
thus broken. This scheme, by the way, is already used for
secret communications.

Remaining problems and what we do in this paper. In
addition to the current cryptographic scheme, one can propose
its modifications which also serve the same purpose. This
possibility raises a natural question: which of these scheme
is the best?

In this paper, we show that the current cryptographic scheme
is, in some reasonable sense, optimal.

II. QUANTUM CRYPTOGRAPHY: MAIN IDEA

Quantum physics: main ideas. One of the main ideas behind
quantum physics is that in the quantum world, in addition to
the regular states, we can also have linear combinations of
these states, with complex coefficients; such combinations are
known as superpositions [1], [S].

For example, for a single 1-bit memory cell, which in the
classical physics can only have states O and 1 — these states
are denoted by |0) and |1) — we can also have superpositions
¢+ |0) +¢cq - 1), where ¢ and ¢; are complex numbers. If we
try to measure the bit in this state, we get 0 with probability
|co|? and 1 with probability |c;|?. After the measurement, not
only we get the measurement result, but the state also turns,
correspondingly, into either |0) or |1).

Since we can get either 0 or 1, these probabilities should
add up to 1, so we get the condition |co|? + |c;|? = 1 for the
above expression to be a physically meaningful state.

In addition to usual operations with bits, we can also
perform unitary operations, i.e., linear transformations that
preserve the property |co|? + |c1|?> = 1. One such transforma-
tion is Walsh-Hadamard (WH) transformation that transforms
|0) into

0) d:ef%\ow%-m
and |1) into
) dﬁ%-m—%m;

see, e.g., [2], [6]. In geometric terms — if we represent each
pair (cp,c1) as a point in a 2-D plane — this transformation,
crudely speaking, corresponds to rotation by 45 degrees.

According to the above description of the measurement
process, if we measure the bit O or 1 in each of the states
|0") or |1’), then we will get O or 1 with equal probability
1/2. So, if we measure 0 or 1, then:

« if we are in the state |0), then the state does not change
and we get the measurement result O with probability 1;
o if we are in the state |1), then the state does not change
and we get the measurement result 1 with probability 1;
« if we are in one of the states |0') or |1’), then:

— with probability 1/2, we get the measurement result
0 and the state changes into |0); and

— with probability 1/2, we get the measurement result
1 and the state changes into |1).

In addition to measuring whether we are in the state |0) or
in the state |1), we can also measure whether we have |0’) or
[17). In this case, similarly:

o if we are in the state |0’), then the state does not change
and we get measurement result 0’ with probability 1;

o if we are in the state |1'), then the state does not change
and we get measurement result 1’ with probability 1;

o if we are in one of the states |0) or |1), then:

— with probability 1/2, we get the measurement result
0’ and the state changes into |0’); and

— with probability 1/2, we get the measurement result
1’ and the state changes into |1).

Comment. One can check that if we apply WH transformation
twice, then we get the same state as before. Indeed, due to

linearity,
1 1
m) -

ﬁ.|0>+7.

WH(0') = WH ( NG

1 1
%-WH(|0>)+*2-WH(\1>)=
1 1 1 1 1 1
Ao s (mo-mm)-

and similarly, WH(|1")) = |1).

Resulting idea of quantum cryptography. The sender — who,
in cryptography, is usually called Alice — sends each bit

o ecither as |0) or |1) (this orientation is usually denoted

by +)

o oras |0) or |1") (this orientation is usually denoted by x).
The eavesdropper — who, in cryptography, is usually called
Eve — does not know in which orientation each bit is sent.

The only way for Eve to eavesdrop is to measure the
message bit by bit. If accidentally, Eve selects the same
orientation as Alice, then, as we have mentioned earlier, this
measurement does not change the transmitted signal.

However, if Eve’s orientation is different from Alice’s, then
no matter what was the original signal, Eve gets 0 or 1 with
probability 1/2 — and, moreover, the signal changes into 0 or
1 with probability 1/2. Thus, the signal is lost. As a result,
with probability 1/2, the receiver — who, in cryptography, is
usually called Bob — after his measurement, gets a random bit.

By comparing what Alice sent with what Bob measured,
we can see that something was interfering — and this, we will
be able to detect the presence of the eavesdropper.

Let us describe how this idea is implemented in the current
quantum cryptography algorithm.



III. CURRENT QUANTUM CRYPTOGRAPHY ALGORITHM:
REMINDER

Sending a preliminary message. Before Alice sends the
actual message, she needs to check that the communication
channel is secure, that there is no eavesdropping.

For this purpose, Alice uses a random number generator to
select n random bits by, ..., b, — each of which is equal to 0
or 1 with probability 1/2. These bits will be sent to Bob.

Alice also selects n more random bits 7y, ..., 7,. Based on
these bits, Alice sends the bits b; as follows:

« if ; = 0, then the bit b; is sent by using the + orientation,

i.e., Alice sends |0) if b, =0 and |1) if b; = 1;
o if r; = 1, then the bit b; is sent by using the x orientation,
i.e., Alice sends |0’) if b; = 0 and |1’) if b; = 1.

Receiving the preliminary message. Independently, Bob se-
lects n random bits s, ..., s, that determine how he measures
the signal that he receives from Alice:

o if s; = 0, then Bob measures whether the i-th received
signal is |0) or |1);

o if 5; = 1, then Bob measures whether the ¢-th received
signal is |0') or |17).

Checking for eavesdroppers. After this, for k out of n bits,
Alice openly sends to Bob her bits b; and her orientations r;,
and Bob sends to Alice his orientations s; and the signals ¥/
that he measured.

In half of the cases, the orientations 7; and s; should
coincide, in which case, if there is no eavesdropper, the signal
b; measured by Bob should coincide with the signal b; that
Alice sent. So, if b, # b; for some i, this means that there is
an eavesdropper.

If there is an eavesdropper, then with probability 1/2, Eve
will select a different orientation. In half of such cases, the
eavesdropping with change the original signal. So, for each
bit, the probability that we will have b, # b; (and thus, that
the eavesdropper will be detected) is equal to 1/4. Thus, the
probability that the eavesdropper will not be detected by this
bit is 1 — 1/4 = 3/4. The probability that Eve will not be
detected in all k/2 cases is thus equal to the product of k/2
such probabilities, i.e., to (3/4)*/2. For a sufficiently large &,
this probability of not-detecting-eavesdropping is very small.

Thus, if b, = b; for all k bits ¢, this means that with
high confidence, there is no eavesdropping: the communication
channel between Alice and Bob is secure.

Preparing to send a message. Now, for each of the remaining
(n — k) bits, Alice and Bob openly exchange orientations r;
and s;. For half of these bits, these orientations must coincide.
For these bits, since there is no eavesdropping, Alice and Bob
know that the signal b, measured by Bob is the same as the

signal b; sent to Alice. So, there are B Lof (n — k)/2 bits
b; = b/ that they both know but no one else knows.

Sending the actual message. Now, Alice takes the B-bit mes-
sage mz, ..., mp that she wants to send, forms the encoded

def ..
message m, = m,; @ b;, where @ means addition modulo 2

(or, equivalently, exclusive or), and openly sends the encoded
message m..

Receiving the actual message. Upon receiving the message
m, Bob reconstructs the original message as m; = m; @ b;.

IV. A GENERAL FAMILY OF QUANTUM CRYPTOGRAPHY
ALGORITHMS: DESCRIPTION

In the current quantum cryptography algorithm, Alice se-
lects one of the possible two orientations + and x with
probability 0.5. Similarly, Bob selects one of the two possible
orientations + and x with probability 0.5.

It is therefore reasonable to consider a more general scheme,
in which:

o Alice selects the orientation + with some probability
a4 (which is not necessarily equal to 0.5) and, corre-
spondingly, the other orientation x with the remaining
probability ax =1 — a4 ; and

o Bob select the orientation 4+ with some probability b
(which is not necessarily equal to 0.5) and, correspond-
ingly, the other orientation x with the remaining proba-
bility by =1 — b

A natural question is: which probabilities a and b should
they choose to make the connection maximally secure, i.e., to
maximize the probability of detecting the eavesdropper?

V. PROVING THAT THE CURRENT QUANTUM
CRYPTOGRAPHY ALGORITHM IS OPTIMAL

What do we want to maximize? We want to maximize the
probability of detecting an eavesdropper. The eavesdropper
also selects one of the two orientations + or X. Let e,
be the probability with which the eavesdropper (Eve) select
the orientation 4, then Eve will select x with the remaining
probability ex =1 —eq.

As we have seen from the description of the current al-
gorithms, Alice and Bob can only use bits for which their
selected orientations coincide, because in this case, the mes-
sage bit remains unchanged. If in this case, it so happens that
Eve selects the same orientation, then her observation will also
not change this bit, and thus, we will not be able to detect the
eavesdropping.

The only case when we can detect the eavesdropping is
when Alice and Bob have the same orientation, but Eve has a
different one. There are two such cases:

o the first case is when Alice and Bob select + and Eve

selects x;
o the second case is when Alice and Bob select x and Eve
selects +.
Alice, Bob, and Eve act independently, thus, the probability p;
of the first case is equal to the product of the probabilities that
Alice selects +, that Bob selects +, and that Eve selects x:

pr=ay by -ex.

Similarly, the probability ps of the second case is equal to
the product of the probabilities that Alice selects x, that Bob
selects x, and that Eve selects +:

P2 = ax - by -eq.



These two cases are incompatible, so the overall probability p
of detecting the eavesdropper is equal to the sum of the above
two probabilities:

p=ay-by-ex+ax-bx-ey.

Taking into account that ay = 1 — a4, bx = 1 — by, and
ex = 1 —e,, we conclude that this detection probability takes
the form

p=at by-(I—ep)+(I—ay) - (1—by)-eqr. (1)

This probability depends on Eve’s selection e. As typical
in game-theoretic situations, we would like to maximize the
probability of detection in the worst case for us, when Eve uses
her best strategy. Eve’s strategy is to minimize the detection
probability (1). So, we want to find the values a4 and b, for
which the minimum of the expression (1) over all possible
values e is the largest possible. In other words, we want to
maximize the following expression:

J = eflel%&l](mr'b+'(1—€+)+(1—a+)'(1—b+)'€+)~ (2)

Let us analyze the resulting optimization problem. One
can easily see that, once the values a; and by are fixed, the
expression (1) that Eve wants to minimize is a linear function
of e, : namely, it can be described as

p=ay-by—ap-birep+(l—ag) (1-by)-ep =
ay by +ep-(L—aq) (1=0by)—aq-by).

We want to minimize this expression over all possible values
of e from the interval [0, 1]. It is known that a linear function
on an interval always attains its smallest possible value at
one of the endpoints. Thus, to find the minimum of the
above expression over e, it is sufficient to consider the two
endpoints ey = 0 and e = 1 of this interval, and takes the
smallest of the resulting two values.

For ey = 0, the expression (1) becomes ay - bi. For
e+ = 1, the expression (1) becomes (1 —a)-(1—by). Thus,
the minimum (2) of the expression (1) can be equivalently
described as:

ay) - (L=by)). (3)

We need to find the values a and b, for which this quantity
attains its largest possible value.

Let us first, for each a4, find the value b, for which
the expression (3) attains its maximum possible value. In
the formula (3), the first of the two expressions, namely, the
expression a4 - b, is increasing from O to a4 as by goes from
0 to 1. The second expression (1 — a4 ) - (1 — by ) decreases
from 1 — a4 to 0 as by goes from O to 1. Thus:

J =min(ay - by, (1 —

o for small b, the first of the two expressions is smaller,
thus for these by, the function (3) is equal to the first
expression J = ay - by and is, thus, increasing with b, ;

o for larger b, the second of the two expressions is smaller,
thus for these b, the function (3) is equal to the second

expression J = (1—a)-(1—b,) and is, thus, decreasing
with b
Since the expression (3) first increases and then decreases,
its maximum is attained at a point when the expression (3)
switches from increasing to decreasing, i.e., at a point by at
which the two products that form the expression (3) are equal:

ag by =(1—by) (1 —aq).
If we open the parentheses, we conclude that
a+-b+ :1—a+—b++a+-b+.

Subtracting a4 - by from both sides of this equality, we get
0:1*a+*b+, thus b+:17a+.

Substituting this expression for b into the formula (3), we
conclude that

J =min(ay - (1 -ay),(1 -aq)-ay),

i.e., that J = a4 - (1 —ay). We want to find the value a that
maximizes this expression. To find this value, we differentiate
this expression with respect to a4 and equate the resulting
derivative to 0. As a result, we get the equation 1 —2a, =0,
hence a; = 0.5. Since by =1 —ay, we get

by =1-05=05.

Thus, the current quantum cryptography algorithm is indeed
optimal.

Comment. Similar arguments show that the best is to use 45
degrees rotation, and that the best is to have Os and 1s in b;
with probability 0.5.
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