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Estimates Improves Their Accuracy and Their
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Abstract—In many applications areas, including pavement
engineering, experts are used to estimate the values of the
corresponding quantities. Expert estimates are often imprecise.
As a result, it is difficult to find experts whose estimates will be
sufficiently accurate, and for the selected experts, the accuracy
is often barely within the desired accuracy. A similar situations
sometimes happens with measuring instruments, but usually, if a
measuring instrument stops being accurate, we do not dismiss it
right away, we first try to re-calibrate it — and this re-calibration
often makes it more accurate. We propose to do the same for
experts — calibrate their estimates. On the example of pavement
engineering, we show that this calibration enables us to select
more qualified experts, and make estimates of the current experts
more accurate.

Index Terms—expert estimates, calibration, pavement engi-
neering

I. INTRODUCTION

Expert are often used for estimation. In many real-life
problems, experts are used to estimate the values of different
quantities.

Sometimes, experts are used because no measuring instru-
ments has yet been invented to replace these experts.

For example, in medicine, while many measurements are
possible, in some areas (e.g., in dermatology), an estimate of
a skilled expert still leads to more accurate results than any
known algorithm. This is one of the main reasons why, in spite
of numerous expert systems, human doctors are still needed
and still valued.

In other cases, in principle, we can use automatic systems,
but experts are still much cheaper to use.

An example of such situation is pavement engineering,
where, in principle, we can use an expensive automatic vision-
based system to gauge the condition of the pavement, but it
is much cheaper — and faster — to use human raters.
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Expert estimates are often very imprecise. Humans rarely
have a skill of accurately evaluating the values of different
quantities.

For example, it is well known that humans drastically
overestimate small probabilities — and, correspondingly, un-
derestimate the probabilities which are close to 1; see, e.g.,
[2] and references therein.

As a result, it is difficult to find good experts. Since most
people’s estimates are very inaccurate, it is difficult to find
good expert estimators.

It is well known that there is a high competition to get into
medical schools, but even in pavement engineering, finding a
good rater is difficult.

It is difficult to find good experts: example from pavement
engineering. According to a current standard [1], the condition
of a pavement is evaluated by using a special Pavement Con-
dition Index (PCI), a numerical characteristic that combines
different possible pavement faults.

To gauge the accuracy of a rate candidate, many locations
across the US use criteria developed by the Metropolitan
Transportation Commission (MTC) of California [13]. A cru-
cial part of the rater certification is a field survey exam, in
which a rater evaluates 24 test sites that have been previously
evaluated by expert raters.

Candidate’s PCI values are then compared with the PCI
values of the expert rater — which are taken as the ground
truth (GT). To certify, the rater must satisfy the following two
criteria:

e at least for 50% of the evaluated sites, the difference
between the rater’s estimate and the ground truth should
not exceed 8 points, and

o at least for 88% of the evaluated sites, the difference
between the rater’s estimate and the ground truth should
not exceed 18 points.



MTC provided a sample of 18 typical candidates. Out of these
candidates, only 5 (28%) satisfy both criteria and thus, pass
the exam and can be used as raters.

Problems.

o« What can we do to increase the number of available
experts?

o And for those who have been selected as experts — and
whose accuracy is barely tolerable — can we improve the
accuracy of their estimates?

II. OUR MAIN IDEA: LET US CALIBRATE EXPERTS THE
SAME WAY WE CALIBRATE MEASURING INSTRUMENTS

Measuring instruments are also sometimes not very ac-
curate. We are interested in situations when expert serve, in
effect, as measuring instruments.

Measuring instruments are usually much more accurate then
human experts, but still, they are sometimes not very accurate
— and even when they are originally reasonably accurate, in
time, their accuracy decreases.

When a measuring instrument is not very accurate, we
do not throw it away, we calibrate it. When the measuring
instrument becomes not very accurate, we do not necessarily
throw it away.

For example, when we try to use the scales to find our
weight, and before we step on the scales, they already show
10 pounds, we do not necessarily throw away these scales:
instead, we adjust the starting point.

When a household device for measuring blood pressure
starts producing weird results, the manufacturers do not advise
the customers to throw it away and to buy a new one — instead,
they advise the customers to come to a doctor’s office and to
calibrate the customer’s instrument by using the doctor’s more
accurate instrument as the ground truth.

In general, calibration is a routine procedure for measuring
instruments; see, e.g., [14]. In this procedure, we measure the
same quantities:

e by using our measuring instruments — resulting in the
values x1,...,x,, and

o by using a much more accurate (“standard”) measuring
instrument — resulting in the values s1, ..., Sy,.

Then, we find the values a and b for which the re-scaled values
a - x; + b are the closest to the ground truth s;.

This is usually done by using the Least Squares method,
when we find the values a and b for which the sum of the
squares of the differences attains the smallest possible value
[14], [15]:

n
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After that, instead of using the original measurement result x
produced by the measuring instrument, we calibrate it into a
more accurate value ' = a - x + b.
In addition to such a linear calibration, it is sometimes
beneficial to use non-linear calibration. For example, in many

practical situations, it is beneficial to use fractional-linear re-
scaling
, _a-T+b

T +c-z’
see, e.g., [3]-[5], [10]-[12].

Qur idea: let us calibrate experts. A natural idea is, instead
of dismissing inaccurate potential experts, calibrate them — and
even for current experts, we can calibrate them and thus, in
principle, improve their accuracy.

Such calibration is indeed helpful. A good example of the
efficiency of such calibration is expert’s estimations of small
probabilities. As we have mentioned earlier, these estimates e;
are way off, they are very different from the actual probabili-
ties p; [2]. However, it turns out that if we apply an appropriate
non-linear transformation, and use the values ¢; = a-sin?(b-¢;)
instead of the original estimates e;, we get much more accurate
fit; see, e.g., [6]-[9]. Namely, for probability below 20%:

« the worst-case difference between the original estimates
e; and the actual probabilities was 8.6% — more than 40%
of the original probability value — while

« the worst-case difference between the re-scaled estimates
e} and the probabilities p; is 0.7% — 3.5% of the original
probability value, an order of magnitude more accurate.

III. RESULTS OF APPLYING OUR IDEA TO PAVEMENT
ENGINEERING: MORE EXPERTS ARE SELECTED, AND
THEIR ESTIMATES ARE MORE ACCURATE

What we did. We started with the same 18 rater candidates.
In the original test, only five of these candidates passed the
exam: rater candidates R6, R8, R9, R14, and R15.

For each rater, instead of directly comparing this rater’s
ratings r; with the 24 corresponding ground truth values g;,
we first found the values a and b that minimize the sum of

the squares
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and then used the re-scaled values r; = a - r; + b to compare
with the ground truth.

As a result, more experts are selected. Based on the re-scaled
ratings, four more candidates passed the test: candidates R1,
R3, RS, and R11.

This means that these four folks can now be used for rating
pavement conditions — provided that instead of using their
original ratings r;, we first re-scale them to v, = a - r; + b,
where the coefficients a and b have been determined for each
of these raters.

As a result, we can accept 9 raters. Thus, the acceptance
rate is now no longer 5/18 & 28%, it is 9/18 = 50%.

For most originally selected experts, re-scaling leads to
more accurate estimates. After re-scaling, one of the origi-
nally accepted candidates — R9 — no longer fits, which means
that for this rater, we cannot re-scale, we have to use his
original ratings.



For the remaining four originally selected raters, re-scaling
improves the accuracy of their estimates:

« for rater R6, the mean square rating error decreases from
11.21 points to 10.01 points — a decrease of 9.9%;

« for rater R8, the mean square rating error decreases from
10.00 points to 8.66 points — a decrease of 6.4%;

o for rater R14, the mean square rating error decreases from
8.62 points to 6.95 points — an impressive decrease of
19.4%:; and

« for rater R15, the mean square rating error decreases from
6.47 points to 6.21 points — a decrease of 4.0%.

IV. AUXILIARY RESULTS: WHY 50%? WHY 88%?

Why 50%? In the MTC procedure, as the first threshold, we
consider the accuracy with which we should have at least
50% of the measurements. In other words, we compare the
median (corresponding to 50%) of the empirical distribution
with some threshold. But why 50%? Why not select a value
corresponding to, say, 40% or 60% and compare this value
with the appropriate threshold?

The only explanation that MTC provides is that selecting
50% leads to empirically the best results. But why?

Here is our explanation. We want to find a parameter
describing how distribution of expert’s approximation errors.
This may be the standard deviation, this may be some other
appropriate parameter. We want the relative accuracy with
which we determine this parameters to be as good as possible.

We estimate this parameter based on a frequency f that
corresponds to some to-be-determined probability p. It is
known (see, e.g., [15]) that, after n observations, the difference
f — p between the observed frequency f and the actual
(unknown) probability p is approximately normally distributed,
with 0 means and standard deviation

p-(1-p)

olp] =
We can measure the relative accuracy both:
« with respect to the probability p of the original event and
« with respect to the probability 1 —p of the opposite event.

We want both relative accuracies to be as small as possible.
The relative accuracy with which we can find the desired
probability p is equal to

alp]

p n-p

1—p_

Similarly, the relative accuracy with which we can find the
probability 1 — p is equal to

- et ()

To get the most accurate estimate of the desired parameters,
we need to make sure that the largest of these two values is
as small as possible.

One can check that the largest of these two values is equal
to
1 1
pl-p

:L'(moo,ll—m‘l)'

This expression is a decreasing function of min(p, 1—p). Thus,
for the relative standard deviation to be as small as possible,
the expression min(p, 1 — p) must be as large as possible.

This expression grows from 0 to 0.5 when p increases from
0 to 0.5, then decreases to 0 as p continues to grow. Thus, its
maximum is attained when p = 0.5 — and this is exactly what
MTC recommends.

Thus, we have a theoretical explanation for this empirically
successful recommendation.

SRS

Why 88%. There are many different independent reasons why
an expert estimate may differ from the actual value. As a result,
the expert uncertainty can be represented as a sum of a large
number of small independent random variables.

It is known — see, e.g., [15] — that, under reasonable
condition, the distribution of such a sum is close to normal.
This result is known as the Central Limit Theorem. Thus, we
can safely assume that the distribution of expert uncertainty is
normal. For a normal distribution with O mean,

« if the probability for the value to be within £8 is 50%),

o then the probability for the value to be within £18 is

indeed close to 88%.
This explains the second part of the MTC test.
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