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Abstract. In many practical situations, we do not know the exact re-
lation between different quantities; this relation needs to be determined
based on the empirical data. This determination is not easy — especially
in the presence of different types of uncertainty. When the data comes in
the form of time series and images, many efficient techniques for such de-
termination use algorithms for training convolutional neural network. As
part of this training, such networks “pool” several values corresponding
to nearby temporal or spatial points into a single value. Empirically, the
most efficient pooling algorithm consists of taking the maximum of the
pooled values; the next optimal is taking the arithmetic mean. In this
paper, we provide a theoretical explanation for this empirical optimality.
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1 Formulation of the Problem

Need for data processing. The main objectives of science and engineering
are to describe the world, to predict the future behavior of the world’s systems,
and to find the best way to improve this behavior.

The current state of the world is described by numerical values of different
physical quantities. Some of these values can be directly measured — e.g., we
can measure the distance to a nearby city, the temperature, humidity, and wind
speed at different Earth locations. Other quantities are difficult (or even impos-
sible) to measure directly. For example, it is difficult to directly measure the
distance to a nearby star, the temperature on the surface of the Sun, etc. Since
we cannot measure these quantities y directly, we have to determine them indi-
rectly: namely, we measure the values of easier-to-measure quantities x1,...,x,
which are related to the desired quantity y, and then use the measurement results
Z1,- .., T, to compute an estimate y for the desired quantity y. The correspond-
ing computations form an important case of data processing.

* This work was partially supported by the US National Science Foundation via grant
HRD-1242122 (Cyber-ShARE Center of Excellence).
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Similar computations are needed to estimate the future values of the quan-
tities of interest and the values of necessary control based on the known current
value of related quantities.

Need for machine learning. In some cases, we know the exact relation y =
f(z1,...,z,) between the desired quantity y and the measured quantities z1,
..., T,. For example, we know the exact equations of celestial mechanics, so we
can predict the future locations of planets, the time of solar and lunar eclipses,
etc.

In many other cases, however, we do not know this relation. In such cases, we
need to determine the corresponding relation from the available data. Namely, in

several situations k = 1,..., K, we measure (or otherwise estimate) the values
acgk), ey a:%k), y*) of all the quantities, and then use this data to find a de-

pendence f(21,...,2,) for which y*) ~ f (xgk), e ,x%k)) for all k. Algorithms
for reconstructing the dependence from empirical data are known as machine
learning.

At present, the most efficient machine learning algorithms are the algorithms
of deep neural networks; see, e.g., [1-3].

It is important to take uncertainty into account. In the ideal situation,
when all the values are known exactly, it is often relative easy to find the desired
dependence. For example, if it turns out that all the values corresponding to the
dependence y = f(z1) fit a straight line, we conclude that the dependence is
linear.

In reality, measurements are never absolutely accurate. There is always mea-
surement uncertainty, because of which the measurement results are, in general,
somewhat different from the actual values of the corresponding quantities. This
uncertainty makes machine learning much more complicated. For example, even

if the actual dependence is linear, we corresponding pairs (Egk),@'(k)> do not
exactly lie on the same straight line.

Need for convolutional neural networks. In many practical situations, the
available data comes in terms of time series — when we have values measured at
equally spaced time moments — on in terms of an image — when we have data
corresponding to a grid of spatial locations. Neural networks for processing such
data are known as convolutional neural networks.

Need for pooling. It is possible to decrease the distortions caused by mea-
surement errors if we take into account that usually, the actual values at nearby
points in time or space are close to each other. As a result, instead of using the
measurement-distorted value at each point, we can take into account that values
at nearby points are also results of measuring practically the same quantity —
and combine (“pool together”) these values into a single more accurate estimate.

Which pooling techniques work better: empirical results. In principle,
we can have many different pooling algorithms. It turns out that empirically,
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in general, the most efficient pooling algorithm is maz-pooling, when we take
the maximum max(ay, ..., any,) of m neighboring values aq, ..., an, [3]. The next
efficient is average pooling [3], when we take the arithmetic average

a4+ ... +am
—

What we do in this paper. In this paper, we provide a theoretical explanation
for this empirical observation: namely, we prove that max and average poolings
are indeed optimal.

2 Analysis of the Problem

What is pooling: towards a precise definition. We start with m values
ai,--.,0;,, and we want to generate a single value a that represents all these
values.

In the case of arithmetic average, pooling means that we select a value a for
which a1 + ...+ am =a+ ...+ a (m times). In general, pooling means that we
select some combination operation * and we then select the value a for which
a1 %...%a, = ax*...xa (m times). For example, if, as a combination operation,
we select max(a,b), then the corresponding condition

max(ay,...,a,) = max(a,...,a) =a

describes the max-pooling.

From this viewpoint, selecting pooling means selecting an appropriate com-
bination operation. Thus, selecting the optimal pooling means selecting the op-
timal combination operation.

Natural properties of a combination operation. The combination opera-
tion transforms two non-negative values — such as intensity of an image at a given
location — into a single non-negative value. The result of applying this operation
should not depend on the order in which we combine the values. Thus, we should
have a * b = b * a (commutativity) and a * (b* ¢) = (a * b) * ¢ (associativity).

What does it mean to have an optimal pooling? Optimality means that
on the set of all possible combination operations, we have a preference relation
=, so that A < B means that the operation B is better than (or of the same
quality as) the operation A.

This relation should be transitive: if C' is better than B and B is better than
A, then C should be better than A.

An operation A is optimal if it is better than (or of the same quality as) any
other operation B: B < A.

For some preference relations, we may have several different optimal combi-
nation operations. We can then use this non-uniqueness to optimize something
else. For example, if there are several different combination operations with the
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best average-case accuracy of machine learning results, we can select, among
them, the one for which the average computation time is the smallest possible.
If after this, we still get several optimal operations, we can use the remaining
non-uniqueness to optimize yet another criterion — until we get a final criterion,
for which there is only one optimal combination operation.

Scale-invariance. Numerical values of a physical quantity depend on the choice
of a measuring unit — and on the choice of a starting point. For example, if we
replace meters with centimeters, for the same physical quantity, the numerical
quantity is multiplied by 100. In general, if we replace the original unit with a
unit which is A times smaller, then all numerical values get multiplied by 100.

It is reasonable to require that the preference relation should not change if
we simply change the measuring unit. Let us describe this requirement in precise
terms. If, in the original units, we had the operation a*b, then, in the new units,
the operation will take the following form:

— first, we transform the value a and b into the new units, so we get @’ = A-a
and b’ = X\ - b;

— then, we combine the new numerical values, getting (A - a) * (A - b);

— finally, we re-scale the result to the original units, getting Ry () defined as

aRA()b A1 (X -a) * (A b).
It therefore makes sense to require that is * < %, then for every A\ > 0, we get
R(x) 2 Ra(+).

Shift-invariance. The numerical values also change if we change the starting
point for measurements. For example, when measuring intensity, we can measure
the actual intensity of an image, or we can take into account that there is always
some noise ag > 0, and use the noise-only level ag as the new starting point.
In this case, instead of each original value a, we get a new numerical value
a’ = a — ag for describing the same physical quantity.

If we apply the combination operation in the new units, then in the old units,
we get a slightly different result; namely,

— first, we transform the value a and b into the new units, so we get a’ = a—ag
and b’ = b — ag;

— then, we combine the new numerical values, getting (a — ag) * (b — ag);

— finally, we re-scale the result to the original units, getting S,,(*) defined as

aSq, ()b Lf (a —ag) * (b—ag) + aop-

It makes sense to require that the preference relation not change if we simply
change the starting point: so if * < %/, then for every ag, we get S, (%) = Sq, (/).

‘Weak version of shift-invariance. Alternatively, we can have a weaker version
of this “shift-invariance” if we require that shifts in a¢ and b imply a possibly
different shift in a x b, i.e., if we shift both a and b by ag, then the value a * b is
shifted by some value f(ag) which is, in general, different from ag.

Now, we are ready to formulation our results.
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3 Definitions and Results

Definition 1. By a combination operation, we mean a commutative, associative
operation axb that transforms two non-negative real numbers a and b into a non-
negative real number a x b.

Definition 2. By an optimality criterion, we need a transitive reflexive relation
=< on the set of all possible combination operations.

— We say that a combination operation *.p; is optimal with respect to the
optimality criterion = if x < xop for all combination operations *.

— We say that the optimality criterion is final if there exists exactly one com-
bination operation which is optimal with respect to this criterion.

Definition 3.

— We say that an optimality criterion is scale-invariant if for all X > 0, * <
implies Rx(x) = Rx(x"), where aR(x)b L1, ((M-a)* (X-D)).

— We say that an optimality criterion is shift-invariant if for all ag, * <

implies Sgy (%) = Sqo(x'), where aSg, (*)b = ((a —ag) * (b—ap)) + ao-

— We say that an optimality criterion is weakly shift-invariant if for every ag,
there exists a value f(sg) such that x < x" implies W, (%) =X We, (+"), where

aWao ()b € ((a — ag) * (b — ag)) + f(ao).

Proposition 1. For every final, scale- and shift-invariant optimality criterion,
the optimal combination operation has one of the following two forms: a b =
min(a,b) or a * b = max(a,b).

Since the max combination operation corresponds to max-pooling, this result
explains why max-pooling is empirically the best combination operation.

Proposition 2. For every final, scale-invariant and weakly shift-invariant opti-
mality criterion, the optimal combination operation has one of the following four
forms: axb =0, axb=min(a,b), a xb=max(a,b), oraxb=a+0b.

Since the addition combination operation corresponds to average-based pooling,
this result explains why max-pooling and average-pooling are empirically the
best combination operations.

4 Proofs

General part of the two proofs. Let us first prove that in Proposition 1,
the optimal combination operation *gp¢ is itself scale- and shift-invariant, i.e.,
R (*opt) = *opt for all A > 0 and Sq, (*opt) = *opt for all ay.

Let us prove this for scale-invariance; for shift-invariance, the proof is sim-
ilar. The fact that *.p¢ is optimal means that * < *.p¢ for all *. In particular,
Ry-1(*) = #opy for all . Due to scale-invariance of the optimality criterion, this
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implies that * < Ry (%opt) for all . Thus, the combination operation Ry (*opt)
is also optimal. But since the optimality criterion is final, there is only one op-
timal combination operation, hence Ry (*opt) = %opt. Scale-invariance is proven.
Shift-invariance is proven similarly.

For Proposition 2, we can similarly prove that the optimal combination op-
eration is scale-invariant and weakly shift-invariant, i.e., that Rx(%opt) = *opt
for all A > 0 and Wy, (*opt) = *ops for all ay.

Proof of Proposition 1.

1°. Let a % b be the optimal combination operation. We have shown that this
operation is scale-invariant and shift-invariant. Let us prove that it has one of
the above two forms.

For every pair (a,b), we can have three different cases: a = b, a < b, and
a > b. Let us consider them one by one.

2°. Let us first consider the case when a = b.

Let us denote v % 1 # 1. From scale-invariance with \ = 2, from 1% 1 = v,
we get 2 % 2 = 2v. From shift-invariance with s = 1, from 1 %1 = v, we get
2x2=wv+1. Thus,2v=v+1, hencev=1,and 1«1 =1.

For a > 0, by applying scale-invariance with A = a to the formula 1 %1 =1,
we get a xa = a.

For a = 0, if we denote ¢ 2f 0 4 0, then, by applying shift-invariance with
s=1to0%x0=c, we get 1 x1 = ¢+ 1. Since we already know that 1«1 =1,
this means that ¢4+ 1 = 1 and thus, that ¢ =0, i.e., that 0% 0 = 0.

So, for all @ > 0, we have a * a = a. In this case, min(a,a) = max(a,a) = a,
so we have a * a = min(a, a) and a * a = max(a, a).

3°. Let us first consider the case when a < b. In this case, b — a > 0.

Let us denote ¢ 2 0 1. By applying scale-invariance with A =b —a > 0 to
the formula 0 * 1 = ¢, we conclude that

0x(b—a)=(b—a)-t. (1)

Now, by applying shift-invariance with s = a to the formula (1), we conclude
that

axb=(b—a) -t+a. (2)

To find possible values of ¢, let us take into account that the combination
operation should be associative. This means, in particular, that for all possible
triples a, b, and ¢ for which we have a < b < ¢, we must have

ax(bxc)=(axb)xc. (3)
Since b < ¢, by the formula (2), we have

bxc=(c—b)xt+b.
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Since t > 0, we have b* ¢ > b and thus, a < b * c. So, to compute a * (b * ¢), we
can also use the formula (2), and get

ax(bxc)=(bxc—a)-t+a=((c=b)-t+b)-t+a=c-t>+b-(t—1t*)+a. (4)

Let us restrict ourselves to the case when a * b < c. In this case, the general
formula (2) implies that

(axb)yxc=(c—axb)-t+axb=(c—((b—a)-t+a))-t+(b—a) t+a,

” (axb)yxc=c-t+b-(t—t*)+a-(1—1)>2 (5)

Due to associativity, formulas (4) and (5) must coincide for all a, b, and ¢ for
which a < b < ¢ and ¢ > a * b. Since these two linear expressions must be equal
for all sufficiently large values of ¢, the coefficients at ¢ must be equal, i.e., we
must have ¢ = 2. From t = t?, we conclude that ¢t —¢*> = ¢- (1 —t) = 0, so either
t=0or 1—t=0 (in which case t = 1).

If ¢ = 0, then the formula (2) has the form a * b = a, i.e., since a < b, the
form a * b = min(a, b).

If t = 1, then the formula (2) has the form a*b = (b —a) + a = b, i.e., since
a < b, the form a * b = max(a, b).

4°. If @ > b, then, by commutativity, we have a * b = b * a, where now b < a. So:

— if t = 0, then, due to Part 3 of this proof, we have b * a = min(b, a); since
axb = bxa and since clearly min(a,b) = min(b,a), we can conclude that
a* b= min(a,b) for a > b as well;

— if ¢ = 1, then, due to Part 3 of this proof, we have b * a = max(b, a); since
axb = bxa and since clearly max(a,b) = max(b,a), we can conclude that
a *b=max(a,b) for a > b as well.

So, either we have a*b = min(a, b) for all a and b, or we have axb = max(a, b)
for all @ and b. The proposition is proven.

Proof of Proposition 2.

1°. Let a * b be the optimal combination operation. We have proven that this
operation is scale-invariant and weakly shift-invariant — which means that axb =
¢ implies (a + s) * (b+ s) = ¢+ f(s). Let us prove that the optimal operation
has one of the above four forms.

1°. Let us first prove that 0«0 = 0.

Indeed, let s denote 0 * 0. Due to scale-invariance, 0 * 0 = s implies that
(2-0) % (2-0) = 2s, i.e., that 0% 0 = 2s. So, we have s = 2s, hence s = 0 and
0%x0=0.

2°. Similarly, if we denote v def 1 4 1, then, due to scale-invariance with A = a,

1% 1 = v implies that a xa = v - a for all a.
On the other hand, due to weak shift-invariance with ag = a, 0x0 = 0 implies
that a x a = f(a). Thus, we conclude that f(a) =v-a.
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2°. Let us now consider the case when a < b and, thus, b —a > 0.

Let us denote t % 0 % 1. From scale-invariance with A = b — a, from 01 =
t >0, weget 0x(b—a)=t-(b—a). From weak shift-invariance with ag = a, we
getaxb=1t-(b—a)+v-a,ie.,

axb=t-b+(v—t)-a. (6)

Similarly to the proof of Proposition 1, to find possible values of ¢, let us take
into account that the combination operation should be associative. This means,
in particular, that for all possible triples a, b, and ¢ for which we have a < b < ¢,
we must have

ax(bxc)=(axb)xc.

Since b < ¢, by the formula (6), we have

bxc=t-c+ (v—t)-0.

3°. We know that ¢ > 0. This means that we have either ¢ > 0 and ¢ = 0.

4°. Let us first consider the case when ¢ > 0. In this case, for sufficiently large
¢, we have b * ¢ > a. So, by applying the formula (6) to a and b x ¢, we conclude
that

ax(bxc)=t-(bxc)+w—t)-a=t>c+t-(v—1t)-b+(v—1)-a. (7)

For sufficient large ¢, we also have a b < c. In this case, the general formula
(6) implies that

(axb)xc=(t-b+(v—t)-a)xc=t-c+t-(v—1t)-b+(v—1)7?-a. (8)

Due to associativity, formulas (7) and (8) must coincide for all a, b, and ¢ for
which a < b < ¢, ¢ > ax*xb, and bxc > a. Since these two linear expressions must
be equal for all sufficiently large values of ¢, the coefficients at ¢ must be equal,
i.e., we must have t = ¢2.

From ¢ = t2, we conclude that t —t2 = ¢- (1 —t) = 0. Since we assumed that
t >0, we must havet —1 =0, i.e., t = 1.

The coefficients at a must also coincide, so we must have v —t = (v — t)?,
hence either v — ¢t = 0 or v — ¢t = 1. In the first case, the formula (6) becomes
axb=b,i.e., axb =max(a,b) for all a < b. Since the operation * is commutative,
this equality is also true for b < a and is, thus, true for all a and b.

In the second case, the formula (6) becomes a b = a + b for all a < b. Due
to commutativity, this formula holds for all a and b.

5°. Let us now consider the case when ¢ = 0. In this case, the formula (6) takes
the form ax b= (v —t) - a.

Here, ax b > 0, thus v — ¢t > 0. If v — ¢t = 0, this implies that a * b = 0 for all
a < b and thus, due to commutativity, for all a and b.
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Let us now consider the remaining case when v — ¢ > 0. In this case, if
a < b < ¢, then for sufficiently large ¢, we have a * b < ¢, hence

(axb)yxc=(w—1t)-(axb)=@w—1t)-(v—1t)-a)=(v—1)?-a.

On the other hand, here b * ¢ = (v — t) - b. So, for sufficiently large b, we have
(v—1t)-b> a, thus
ax(bxc)=(v—1t)-a.

Due to associativity, we have (v —t)? -a = (v —t) - a, hence (v —#)? = v — ¢
and, since v — ¢t > 0, we have v — ¢t = 1. In this case, the formula (6) takes the
form a *x b = a = min(a, b) for all a < b. Thus, due to commutativity, we have
a* b= min(a,b) for all a and b.

We have thus shown that the combination operation indeed has one of the four
forms. Proposition 2 is therefore proven.
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