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Abstract. In many practical problems, the computation speed of mod-
ern computers is not sufficient. Due to the fact that all speeds are
bounded by the speed of light, the only way to speed up computations is
to further decrease the size of the memory and processing cells that form
a computational device. At the resulting size level, each cell will consist
of a few atoms – thus, we need to take quantum effects into account. For
traditional computational devices, quantum effects are largely a distract-
ing noise, but new quantum computing algorithms have been developed
that use quantum effects to speed up computations. In some problems,
however, this expected speed-up may not be sufficient. To achieve fur-
ther speed-up, we need to parallelize quantum computing. For this, we
need to be able to transmit a quantum state from the location of one
processor to the location of another one; in quantum computing, this
process is known as teleportation. A teleportation algorithm is known,
but it is not clear how efficient it is: maybe there are other more efficient
algorithms for teleportation? In this paper, we show that the existing
teleportation algorithm is, in some reasonable sense, unique – and thus,
optimal.
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1 Need for Parallel Quantum Computing

Need for fast data processing. In many practical problems, there is a need
for fast data processing – way beyond the current data processing speeds. For
example, it is known that, in principle, computational models can predict, with
high probability, where a tornado will turn in the next hour. However, at present,
even on modern high performance computers, the corresponding computations
take significantly longer than an hour, which defeats the whole purpose of pre-
diction.

⋆ This work was partially supported by the US National Science Foundation via grant
HRD-1242122 (Cyber-ShARE Center of Excellence).
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In many such practical problems, the need for computation speed is enhanced
by the need to take uncertainty into account. From this viewpoint, tornado pre-
diction is a good example: if we had full information about the state of the
atmosphere, we could simply solve the corresponding system of partial differ-
ential equations. However, in practice, we have only partial information, we
have uncertainty – and thus, to make reasonable predictions, we need to gener-
ate many different solutions, corresponding to several different situations – and
make predictions based on the frequency of solutions corresponding to different
directions.

This is a general phenomenon: taking uncertainty into account drastically
increases the computation time, because, crudely speaking, under uncertainty,
we need to process several alternative scenarios instead of a single one.

Faster processing means smaller memory and computation cells. One
of the main limits on the computation speed comes from the fact that, according
to modern physics, all velocities are limited by the speed of light. The light is
fast – it travels at 300 000 km/sec, but for a current computer of size 30 cm, this
means that the fastest we can move information from one side of the computer
to another is 1 nanosecond – and even the simplest current computers have
processing speed of several Gigahertz, which means that several computation
cycles take place while the information is transmitted.

To speed up computations, we therefore need to make computers much
smaller – and this means that we must have much smaller memory cells and
computation cells.

Need to take quantum effects into account. Already in the existing com-
puters, a memory cell sometimes consists of several dozen atoms. For such small
objects, we need to take into account the laws of quantum physics; see, e.g., [1,
5].

The main difference between traditional physics – that describes macro-size
objects consisting of many molecules and atoms – and quantum physics (that
describes few-atom objects) comes from the difference in our ability to measure
things. Indeed, the only way to measure a physical quantity is to interact with the
corresponding object. For example, to measure a distance to a faraway object,
we can send a laser beam to this object and measure the time that it takes for
this beam to come back – this is how we measure, e.g., the distance to the Moon.

For macro-size objects, the corresponding probe can be very small, much
smaller than the object itself. Thus, we can safely ignore the effect of this probe
on our object and conclude that after the measurement, the object remains the
same. For example, we do not expect the distance to the Moon to change just
because we hit the Moon with a laser beam. We can thus measure the Moon’s
location, velocity, and other characteristics with very high accuracy.

On the other hand, when we try to similarly measure the location of a micro-
particle – e.g., of a proton – we can still send a photon and measure its bouncing
back, but this photon is already of approximately the same size as the particle
whose location we measure. As a result, every measurement changes the state
of the particle – so, even if we get the particle’s location, its speed changes, and
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if we afterwards measure its speed, it will be different from the speed of the
original particle.

Because of this, for a micro-object, we cannot uniquely determine its state –
we can only describe the probability of different measurement results.

Computer scientists managed to transform this lemon into lemonade.
At first glance, this makes computations more complicated: as we decrease the
size of the cells, because of the quantum effects, the resulting states become only
probabilistically predictable – in other words, we have a lot of noise added to
our computations, noise that makes computations difficult.

However, researchers managed to use quantum effects to speed up computa-
tions – namely, they showed that by re-arranging the corresponding computation
schemes, we can reach even faster computations; see, e.g., [2, 6]. For example,
while in non-quantum computing, finding an element in an unsorted database
with n entries may require time n – since we may need to look at each record – in
quantum computing, it is possible to find this element in much smaller time

√
n.

An even larger speed-up is achieved in the problem of factorizing large in-
tegers – traditional algorithms require time which is exponential in terms of
the number’s length (and thus, not feasible for large lengths), while quantum
computing can do it in polynomial time; see, e.g., [2–4]. This application is
important, since most current online encryption algorithms are based on the dif-
ficulty of factoring large integers – so once quantum computers become a reality,
we will be able to read all the encrypted messages that have been sent so far.

Need for parallel quantum computing. While quantum computing is fast,
its speeds are also limited. To further speed up computations, a natural idea is
to have several quantum computers working in parallel, so that each of them
solves a part of the problem.

This idea is similar to how we humans solve complex problems: if a task is
too difficult for one person to solve – be it building a big house or proving a
complex theorem – several people team up and together solve the task.

Need for teleportation. To successfully collaborate, quantum computers need
to exchange intermediate states of their computations. Here lies a problem: for
complex problems, we would like to use computers located in different geographic
areas, but a quantum state gets changed when it is sent far away.

Researchers have come up with a way to avoid this sending, called teleporta-
tion. There exists a scheme for teleportation.

Problem. It is not clear how good is the current teleportation scheme: maybe
there are other schemes which are faster (or better in some other sense)?

What we do in this paper. In this paper, we show that the existing telepor-
tation scheme is, in some reasonable sense, unique – and, in this sense, is the
best.

The structure of the paper. We start by a brief reminder of the basics of
quantum physics – specifically, the basics that are needed for the describing the
quantum teleportation algorithm. After that, we describe, in detail, the existing
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teleportation scheme. Finally, we describe our main result – namely, we show
that this scheme is, in some reasonable sense, unique.

2 Quantum Physics and Quantum Computing: A Brief
Reminder

Basic states in quantum physics. In quantum physics, in addition to the
usual (non-quantum) states s1, s2, . . . , we also have superpositions of these
states, i.e., states of the type

α1 · s1 + α2 · s2 + . . . ,

where α1, α2, . . . are complex numbers for which

|α1|2 + |α2|2 + . . . = 1.

The complex numbers αi are known as amplitudes.
For example, a computer is formed from devices representing binary digits

(bits, for short), i.e., devices that can be in two possible states: 0 and 1. In
quantum physics, in addition to these two states – which is quantum physics,
are denoted by |0⟩ and |1⟩, we also have superpositions of these states, i.e., states
of the type

α0 · |0⟩+ α1 · |1⟩,

where α0 and α1 are complex numbers for which |α0|2 + |α1|2 = 1. The corre-
sponding quantum system is known as a quantum bit, or qubit, for short.

Composite states in quantum physics. In classical (pre-quantum) physics,
there is a straightforward way to describe a composite system consisting of two
independent subsystems. Due to independence, to describe the set of the system
as a whole, it is sufficient to describe the state s of the first subsystem and the
state s′ of the second subsystem. Thus, a state of the system as a whole is an
ordered pair ⟨s, s′⟩ of the two states.

Let us denote possible states of the first subsystem by s1, s2, . . . , and possible
states of the second subsystem by s′1, s

′
2, . . . Since the subsystems are indepen-

dent, the possible states of the first subsystem do not depend on the state of the
second subsystem. Thus, the set of all states of the system as a whole is the set
of all possible pairs ⟨si, s′j⟩. The set of all such pairs is known as the Cartesian
product; it is denoted by {s1, s2, . . .} × {s′1, s′2, . . .}.

When the subsystems are binary, the corresponding notations are usually
simplified, so that e.g., the pair ⟨0, 1⟩ is denoted simply as 01.

In quantum physics, we can also have superpositions of such states, i.e., the
states of the type

α11 · ⟨s1, s′1⟩+ α12 · ⟨s1, s′2⟩+ . . .+ α21 · ⟨s2, s′1⟩+ α22 · ⟨s2, s′2⟩+ . . . ,

where
|α11|2 + |α12|2 + . . .+ |α21|2 + |α22|2 + . . . = 1.
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To describe such a state, we need to known all the values αij . These values form
a matrix – i.e., in mathematical terms, a tensor. Because of this fact, the set of
all such states is known as the tensor product S ⊗ S′, where S is the set of all
possible quantum states of the first subsystem and S′ is the set of all possible
quantum states of the second subsystem. Accordingly, in quantum physics the
pair ⟨s, s′⟩ is denoted as s⊗ s′ and called a tensor product of the states s and s′.
So, if the first subsystem is in the state si and the second subsystem is in the
state s′j , then the state of the system as a whole is ⟨si, s′j⟩ = si ⊗ s′j .

Just like in the non-quantum case, for binary states, we can use a simplified
notation: e.g., instead of |0⟩ ⊗ |1⟩, we can simply write |01⟩.

If the state of the first subsystem is a superposition

s = α1 · s1 + α2 · s2 + . . . ,

and the state of the second subsystem is s′ = sj , then the state of the system as
a whole can also be described as the superposition of the corresponding pairs,
i.e., as

s⊗ s′j = α1 · (s1 ⊗ s′j) + α2 · (s2 ⊗ s′j) + . . .

If the state s′ of the second subsystem is also a superposition, i.e., has the form

s′ = α′
1 · s′1 + α′

2 · s′2 + . . . ,

then the joint state s⊗s′ can be described as a superposition of the states s⊗s′j ,
i.e., as

α′
1 · (s⊗ s′1) + α′

2 · (s⊗ s′2) + . . .

Substituting the known expressions for s⊗s′j into this formula, we conclude that

(α1 · s1 + α2 · s2 + . . .)⊗ (α′
1 · s′1 + α′

2 · s′2 + . . .) =

α′
1 ·(α1 ·(s1⊗s′1)+α2 ·(s2⊗s′1)+. . .)+α′

2 ·(α1 ·(s1⊗s′2)+α2 ·(s2⊗s′2)+. . .)+. . . =

α1 ·α′
1 · (s1⊗s′1)+α1 ·α′

2 · (s1⊗s′2)+ . . .+α2 ·α′
1 · (s2⊗s′1)+α2 ·α′

2 ·(s2⊗s′2)+ . . .

One can see that this formula is similar to the formula for the product of two
linear combinations, with the tensor product playing the role of the product.

Transformations. In quantum physics, physically possible transformation are
the mappings from state to state that satisfy the following two properties:

– superpositions get transformed into similar superpositions:

T (α1 · s1 + α2 · · · s2 + . . .) = α1 · T (s1) + α2 · T (s1) + . . . ,

and

– the property
∑

|αi|2 = 1 is preserved, i.e., if
∑

|αi|2 = 1, then, for
T (

∑
αi · si) =

∑
βi · si, we have

∑
|βi|2 = 1.
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Because of the first property, transformations are linear:
∑

αi · si →
∑

βi · si,
with βi =

∑
j

tij · αj . Because of the second property, the matrix T = (tij) is

unitary, i.e., TT † = 1, where 1 is a unit matrix and T † def
= (t∗ji), with z∗ denoting

the complex conjugate number (a+ b · i)∗ def
= a− b · i.

Measurement process in quantum physics. For binary states α0·|0⟩+α1·|1⟩,
if we want to measure whether the state is 0 or 1, then:

– with probability |α0|2, we get the result 0 – and the state turns into |0⟩; and
– with probability |α1|2, we get the result 1 – and the state turns into |1⟩.

Since the result is either 0 or 1, the probabilities should add up to 1; this explains
why physically possible states should satisfy the condition |α0|2 + |α1|2 = 1.

In general, if we have n classical states s1, . . . , sn, and we want to detect, in
a quantum state

∑
αi · si, which of these states we are in, we get each si with

probability |αi|2 – and once the measurement process detects the state si, the
actual state turns into si.

Instead of the classical states, we can use any other sequence of states s′i =∑
j

tij · sj , as long as they are orthonormal (= orthogonal and normal) in the

sense that:

– for each i, we have ∥s′i∥2 = 1, where ∥s′i∥2
def
=

∑
j

|tij |2 (normal), and

– for each i and i′, we have s′i ⊥ s′i′ , i.e., ⟨s′i|s′i′⟩ = 0, where ⟨s′i|s′i′⟩
def
=

∑
j

tij ·t∗i′j
(orthogonal).

In this case, if we have a state
∑

α′
i · s′i, then with probability |α′

i|2, the mea-
surement result is s′i and the state turns into s′i.

In general, instead of a sequence of orthogonal vectors, we can have a sequence
of orthogonal linear spaces L1, L2, . . . – where Li ⊥ Lj means that si ∈ Li and
sj ∈ Lj implies si ⊥ sj . In this case, every state s can be represented as a sum
s =

∑
si of the vectors si ∈ Li. As a result of the measurement, with probability

∥si∥2, we conclude that the state is in the space Li, and the original state turns
into a new state si/∥si∥.

3 Standard Quantum Teleportation Algorithm: Reminder

Need for communication. At one location, we have a particle in a certain
state; we want to send this state to some other location.

Usually, the sender is denoted by A and the receiver by B. In communica-
tions, it is common to call the sender Alice, and to call the receiver Bob. States
corresponding to Alice are usually described by using a subscript A, and states
corresponding to Bob are usually described by using a subscript B.

Communication is straightforward is classical physics but a challenge
in quantum physics. In classical (pre-quantum) physics, the communication



Towards Parallel Quantum Computing 7

problem has a straightforward solution: if we want to communicate a state, we
measure all possible characteristics of this state, send these values to Bob, and let
Bob reproduce the object with these characteristics. This is how, e.g., 3D printing
works. This solution is based on the fact that in classical (non-quantum) physics
we can, in principle, measure all characteristic of a system without changing it.

The problem is that in quantum physics, such a straightforward approach
is not possible: as we have mentioned, in quantum physics, every measurement
changes the state – and moreover, irreversibly deletes some information about
the state. For example, if we start with a state α0 · |0⟩ + α1 · |1⟩, all we get
after the measurement is either 0 or 1, with no way to reconstruct the values
α0 and α1 that characterize the original state. Since we cannot use the usual
straightforward approach for communicating a state, we need to use an indirect
approach. This approach is known as teleportation.

What we consider in this section. In this section, we consider the simplest
possible quantum state – namely, the quantum analogue of the simplest possible
non-quantum state. In the non-quantum case, a system can be in several different
states. The state passing problem makes sense only when the system can be in at
least two different states – otherwise, if we know beforehand what state we want
to send, there is no need to send any information, Bob can simply reproduce
the known state. The simplest case when communication is needed is when the
number of possible states is as small as possible but still larger than 1 – i.e.,
the case when the system can be in two different states. In the computer, such
situation can be naturally described if we associate these two possible states
with 0 and 1.

In these terms, the problem is as follows:

– Alice has a state
α0 · |0⟩+ α1 · |1⟩ (1)

that she wants to communicate to Bob – a person at a different location.
– As a result of this process, Bob should have the same state.

Notations. Let us indicate states corresponding to Alice with a subscript A, and
states corresponding to Bob with a subscript B. The state (1) is not exclusively
Alice’s and it is not exclusively Bob’s, so to describe this state, we will use the
next letter – letter C. In these terms, Alice has a state

α0 · |0⟩C + α1 · |1⟩C (2)

that she wants to communicate to Bob.

Preparing for teleportation: an entangled state. To make teleportation
possible, Alice and Bob prepare a special entangled state:

1√
2
· |0A1B⟩+

1√
2
· |1A0B⟩. (3)

This state is a superposition of two classical states:
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– the state 0A1B in which A is in state 0 and B is in state 1, and
– the state 1A0B in which A is in state 1 and B is in state 0.

What is the joint state of A, B, and C at the beginning of the proce-
dure. In the beginning, the state C is independent of A and B. So, the joint
state is a tensor product of the AB-state (3) and the C-state (2):

α0√
2
· |0A1B0C⟩+

α1√
2
· |0A1B1C⟩+

α0√
2
· |1A0B0C⟩+

α1√
2
· |1A0B1C⟩. (4)

First stage: measurement. In the first stage of the standard teleportation
algorithm, Alice performs a measurement procedure on the parts A and C which
are available to her. In general, to describe the possible results of measuring a
state s with respect to linear spaces Li, we need to represent s as the sum

s =
∑

si, (5)

with si ∈ Li.
In the standard teleportation algorithm, we perform the measurement with

respect to the following four linear spaces Li = LB ⊗ ti, where LB is the set
of all possible linear combinations of |0⟩B and |1⟩B, and the states ti have the
following form:

t1 =
1√
2
· |0A0C⟩+

1√
2
· |1A1C⟩;

t2 =
1√
2
· |0A0C⟩ −

1√
2
· |1A1C⟩; (6)

t3 =
1√
2
· |0A1C⟩+

1√
2
· |1A0C⟩;

t4 =
1√
2
· |0A1C⟩ −

1√
2
· |1A0C⟩.

One can easily check that the states ti are orthonormal, hence the spaces Li are
orthogonal.

To describe the result of measuring the state (4) with respect to these linear
spaces, we must first represent the state (4) in the form s =

∑
si, with si ∈ Li.

For this purpose, we can use the fact that, due to the formulas (6), we have

|0A0C⟩ =
1√
2
· t1 +

1√
2
· t2;

|1A1C⟩ =
1√
2
· t1 −

1√
2
· t2; (7)

|0A1C⟩ =
1√
2
· t3 +

1√
2
· t4;
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|1A0C⟩ =
1√
2
· t3 −

1√
2
· t4.

Substituting the expressions (7) into the formula (4), we get

α0√
2
· |1⟩B ⊗

(
1√
2
· t1 +

1√
2
· t2

)
+

α1√
2
· |1⟩B ⊗

(
1√
2
· t3 +

1√
2
· t4

)
+

α0√
2
· |0⟩B ⊗

(
1√
2
· t3 −

1√
2
· t4

)
+

α1√
2
· |0⟩B ⊗

(
1√
2
· t1 −

1√
2
· t2

)
,

thus (α0

2
|1B⟩+

α1

2
|0B⟩

)
⊗ t1 +

(α0

2
|1B⟩ −

α1

2
|0B⟩

)
⊗ t2+(α1

2
|1B⟩+

α0

2
|0B⟩

)
⊗ t3 +

(α1

2
|1B⟩ −

α0

2
|0B⟩

)
⊗ t4.

So, we get a representation of the type (5), with

s1 =
(α0

2
· |1B⟩+

α1

2
|0B⟩

)
⊗ t1, s2 =

(α0

2
· |1B⟩ −

α1

2
· |0B⟩

)
⊗ t2,

s3 =
(α1

2
· |1B⟩+

α0

2
· |0B⟩

)
⊗ t3, s4 =

(α1

2
· |1B⟩ −

α0

2
· |0B⟩

)
⊗ t4.

Here, for each i, we have

∥si∥2 =
∣∣∣α0

2

∣∣∣2 + ∣∣∣α1

2

∣∣∣2 =
1

4
· (|α0|2 + |α1|2) =

1

4
,

thus ∥si∥ =
1

2
.

So, with equal probability of
1

4
, we get one of the following four states – and

Alice knows which one it is:

(α0 · |1B⟩+ α1 · |0B⟩)⊗ t1;

(α0 · |1B⟩ − α1 · |0B⟩)⊗ t2; (8)

(α1 · |1B⟩+ α0 · |0B⟩)⊗ t3;

(α1 · |1B⟩ − α0 · |0B⟩)⊗ t4.

Second stage: communication. On the second stage, Alice sends to Bob the
measurement result. As a result, Bob knows in which the four states (8) the
system is.

Final stage: Bob “rotates” his state and thus, get the original state
teleported to him. On the final stage, Bob performs an appropriate transfor-
mation of his state B.

– In the first case, he uses a unitary transformation that swaps |0⟩B and |1⟩B,
for which t01 = t10 = 1 and t00 = t11 = 0.
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– In the second case, he uses a unitary transformation for which t01 = 1,
t10 = −1 and t00 = t11 = 0.

– In the third case, he already has the desired state.
– In the fourth case, he uses a unitary transformation for which t00 = −1,

t11 = 1, and t01 = t10 = 0.

As a result, in all fours cases, he gets the original state α0 · |0⟩B + α1 · |1⟩B.

4 Our Main Result: Standard Quantum Teleportation
Algorithm Is, in Some Reasonable Sense, Unique

Formulation of the problem. Teleportation is possible because we have pre-
pared an entangled state (3), i.e., a state sAB in which the states of Alice and Bob
are not independent, i.e., a state that does not have a form sA ⊗ sB . However,
(3) is not the only possible entangled state. Let us consider, instead, a general
joint state of two qubits:

a00 · |0A0B⟩+ a01 · |0A1B⟩+ a10 · |1A0B⟩+ a11 · |1A1B⟩. (3a)

What will happen if we use this more general entangled state instead of the one
that is used in the known teleportation algorithm?

Analysis of the problem. For the state (3a), the joint state of all three sub-
systems has the form

α0 · a00 · |0A0B0C⟩+ α1 · a00 · |0A0B1C⟩+

α0 · a01 · |0A1B0C⟩+ α1 · a01 · |0A1B1C⟩+

α0 · a10 · |1A0B0C⟩+ α1 · a10 · |1A0B1C⟩+ (4a)

α0 · a11 · |1A1B0C⟩+ α1 · a11 · |1A1B1C⟩.

Substituting expressions (7) into this formula, we get

α0√
2
· a00 · |0⟩B ⊗ (t1 + t2) +

α1√
2
· a00 · |0⟩B ⊗ (t3 + t4)+

α0√
2
· a01 · |1⟩B ⊗ (t1 + t2) +

α1√
2
· a01 · |1⟩B ⊗ (t3 + t4)+

α0√
2
· a10 · |0⟩B ⊗ (t3 − t4) +

α1√
2
· a10 · |0⟩B ⊗ (t1 − t2)+

α0√
2
· a11 · |1⟩B ⊗ (t3 − t4) +

α1√
2
· a11 · |1⟩B ⊗ (t1 − t2),

thus s = S1 ⊗ t1 + S2 ⊗ t2 + . . ., where

S1 =

(
α0 · a00√

2
+

α1 · a10√
2

)
· |0⟩B +

(
α0 · a01√

2
+

α1 · a11√
2

)
· |1⟩B,
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and S2, . . . are described by similar expressions.
This means that after the measurement, Bob will have the normalized state

S1/∥S1∥. To perform teleportation, we need to transform this state into the orig-
inal state α0 · |0⟩B +α1 · |1⟩B. Thus, the transformation from the resulting state
S1/∥S1∥ to the original state must be unitary. It is known that the inverse trans-
formation to a unitary one is also unitary. In general, a unitary transformation
transforms orthonormal states into orthonormal ones.

So, the inverse transformation that:

– maps the state |0⟩B (corresponding to α0 = 1 and α1 = 0) into a new state

|1′⟩B
def
= const · (a00 · |0⟩B + a01 · |1⟩B , and

– maps the state |1⟩B (corresponding to α0 = 0 and α1 = 1) into a new state

|0′⟩B
def
= const · (a00 · |0⟩B + a01 · |1⟩B ,

transforms two original orthonormal vectors |0⟩B and |1⟩B into two new or-
thonormal ones |0′⟩B and |1′⟩B.

In terms of these new states, the entangled state (3a) takes the form

const · (|0⟩A ⊗ |1′⟩B + |1⟩B ⊗ |0′⟩B).

From the requirement that the sum of the squares of absolute values of al the

coefficients add up to 0, we conclude that 2 · const2 = 1. Then const =
1√
2
and

the entangled state takes the familiar form

1√
2
· (|0⟩A ⊗ |1′⟩B + |1⟩B ⊗ |0′⟩B). (3)

This is exactly the entangled state used in the standard teleportation algorithm.
So, we can make the following conclusion.

Conclusion. The only entangled state that leads to a successful teleportation
is the state (3) corresponding to the standard quantum teleportation algorithm
– for some orthornomal states |0′⟩B and |1′⟩B. In this sense, the existing tele-
portation algorithm is unique.
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