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Abstract In many practical situations, the quantity of interest is difficult
to measure directly. In such situations, to estimate this quantity, we measure
easier-to-measure quantities which are related to the desired one by a known
relation, and we use the results of these measurement to estimate the desired
quantity. How accurate is this estimate?

Traditional engineering approach assumes that we know the probability
distributions of measurement errors; however, in practice, we often only have
partial information about these distributions. In some cases, we only know the
upper bounds on the measurement errors; in such cases, the only thing we know
about the actual value of each measured quantity is that it is somewhere in the
corresponding interval. Interval computation estimates the range of possible
values of the desired quantity under such interval uncertainty.

In other situations, in addition to the intervals, we also have partial infor-
mation about the probabilities. In this paper, we describe how to solve this
problem in the linearized case, what is computable and what is feasibly com-
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putable in the general case, and, somewhat surprisingly, how physics ideas —
that initial conditions are not abnormal, that every theory is only approximate
— can help with the corresponding computations.

Keywords Interval uncertainty - Probabilistic uncertainty - Feasible
algorithms - Physics helps computing

1 Need to Combine Interval and Probabilistic Uncertainty:
Linearized Case

Need to take uncertainty into account when processing data. In prac-
tice, we are often interested in a quantity y which is difficult to measure di-
rectly. Examples are distance to a star, amount of oil in the well, tomorrow’s
weather.

A solution to this problem is to find easier-to-measure quantities x1,...,z,
related to y by a known dependence y = f(z1,...,z,). Then, we measure x;
and use measurement results Z; to compute an estimate § = f(Z1,...,Z,) for
the desired quantity y. Such computations are usually called data processing.

Measurements are never absolutely accurate, so even if the model f is

exact, T; # x; leads to Ay e y —y # 0. It is important to use information

def ~ .
about measurement errors Az; = T; — x; to estimate the accuracy Ay; see,

e.g., [23].

We often have imprecise probabilities. The usual assumption is that we
know the probabilities of different values of measurement errors Az;. How can
we find these probabilities?

To find them, we measure the same quantities:

— with our measuring instrument (MI) and
— with a much more accurate MI, with 75" ~ x;.

However, in two important cases, this does not work: in the case of state-of-the
art-measurements, and in the case of measurements on the shop floor. In the
first case, when we use state-of-the-art measuring instruments, so more accu-
rate instruments are available. In the second case, it is, in principle, possible
to accurately calibrate each sensor, but that would cost too much.

In both cases, we have partial information about probabilities. Often, all
we know is an upper bound |Az;| < A;. Then, the only thing that we know
about the actual (unknown) values z; of the measured quantities is that x; €
[Z; — A;, T; + A;]. Then, the only thing that we know about y = f(z1,...,2,)
is that

Yy € [y,y] déf {f(.’tl, - ,I'n) LT € [El — Al,’l'vl + Al]}

Computing this interval [y,7] is known as interval computation; see, e.g., [4,
17,19].

Data processing: example. Let us provide an example of data processing.
Suppose that we want to measure coordinates X; of an object. To find these
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coordinates, we measure the distance Y; between this object and objects with
accurately known coordinates X J(z):

Y=, |3 (Xj . X}“)z.

j=1

After the measurements, we know the results 571 of measuring Y;. We want to
estimate the desired quantities X;.

Usually linearization is possible. In most practical situations, we know the
approximate values X ](O) of the desired quantities X ;. These approximation are

usually reasonably good, in the sense that the difference x; dof x ;=X j(p) are
small.

In terms of x;, we have Y; = f(XfO) + xq,... ,XT(LO) + 2,,). When the dif-
ferences x; are small, we can safely ignore terms quadratic in z;. Indeed, even
if the estimation accuracy is 10% (0.1), its square is 1% < 10%. We can thus
expand the dependence of Y; on z; in Taylor series and keep only linear terms:

0 - 0) def 0 def Of;
=Y 4 i wg, YOS A X0), 0 g

3 n
Jj=1

Least squares. Thus, to find the unknowns z;, we need to solve a system of
n ~

approximate linear equations > a;;-z; =~ y;, where y; def Y; —Yi(o). Usually, it
=1

is assumed that each measurejment error is normally distributed with 0 mean

and known standard deviation o;.

The distribution is indeed often normal: the measurement error is a joint
result of many independent factors, and the distribution of the sum of many
small independent errors is close to Gaussian; this result is known as the
Central Limit Theorem; see, e.g., [24].

0 mean also makes sense: we calibrate the measuring instrument by com-
paring it with a more accurate one, so if there was a bias (non-zero mean), we
delete it by re-calibrating the scale.

It is also usually assumed that measurement errors of different measure-
ments are independent. In this case, for each possible combination x =
(z1,...,2y), the probability of observing yi,...,¥ym is equal to the product
of the corresponding probabilities:

n 2

exp | —
el IRVOL 207

K3
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It is reasonable to select z; for which this probability is the largest, i.e.,
equivalently, for which

2
n (yi — > ay '%‘)
>

2
o;
i=1 g

— min.

For every confidence level 7y, the confidence set S, i.e., the set off all combi-
nations x which are possible with this degree of confidence, can be determined
by the formula

2
n (yi - Zl @ij '%’)
Sy=4qx: Z =
i=1

2
< Xr,_
0_Z2 — m—mn,y

Sometimes this set is empty; this means that some measurements are outliers.

Need to take into account systematic error. In the traditional approach,
n

we assume that y; = ) a;j - ©; + €;, where the measurement error e; has 0
i=1

r def

mean. However, sometimes, in addition to the random error €] = e; — Ele]

. . def
with 0 mean, we also have a systematic error ef = Ele,]:

n
— I s
Yi = g aij - T; +e; +e;.
J=1

Sometimes, we know the upper bound A;: |ef]| < A;.
What can we then say about z;7

Comment. In other cases, we have different bounds A;(p) corresponding to
different degree of confidence p; this is known as the fuzzy case; see, e.g., see,
e.g., [1,18,5,20,21,29].

Combining probabilistic and interval uncertainty: main idea. If we

s
79

n
knew the values €], then we would conclude that for €] =y; — >~ a;;-z; —e
j=1

we have

n 2
R s —ed
m (6:)2 m Yi ng Qij - Tj €

2
2 2 = Xm—n,y-
= i 0;

i=1
In practice, we do not know the values ef, we only know that these values are
in the interval [—A;, A;]. Thus, we know that the above inequality holds for

some e; € [—A;, A;].
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The above condition is equivalent to v(z) < X?n—n,w where

2
S
m Yi — Qij - Tj— €
Y

def .
v(r) £  min 5
efe[fAi,Ai] i—1 O’i

3

So, the set S, of all combinations X = (x1,...,,) which are possible with
confidence 1 — v is: Sy = {z : v(z) < x7,_,,,}. The range of possible val-
ues of z; can be obtained by maximizing and minimizing z; under the con-
straint v(z) < x2,_, -

Comment. In the fuzzy case, we have to repeat the computations for every p.

How to check consistency. We want to make sure that the measurements
are consistent — i.e., that there are no outliers. This means that we want to
check that there exists some x = (z1,...,x,) for which v(x) < x2,_,, . This
condition is equivalent to ([25]):

2
n
PR— .. s — S
m | Yi Z Qg - Tj — €
def j=1

. . . 2
vV = Imin 'U(x = min min E S X — .
x ) x Gfe[—A,,A7] 1 O-,Lz memY
i=

This is indeed a generalization of probabilistic and interval ap-
proaches. In the case when A; = 0 for all 4, i.e., when there is no interval
uncertainty, we get the usual Least Squares.

Vice versa, for very small o;, we get the case of pure interval uncertainty.
In this case, the above formulas tend to the set of all the values for which

< A;. For example, for m repeated measurements of the

n
Yi — 20 aij - T
i=1

same quantity, we get the intersection of the corresponding intervals.
So, the new idea is indeed a generalization of the known probabilistic and
interval approaches.

2
n
From formulas to computations. The expression | y; — > a;; - xj — €
j=1
is a convex function of z;. The domain of possible values of e® = (ej,...,e5))
is also convex: it is a box [—A, Aj] X ... X [=A,, A There exist efficient

algorithms for computing minima of convex functions over convex domains;
these algorithms also compute locations where these minima are attained; see,
e.g., [13] and references therein. Thus, for every x, we can efficiently compute
v(z) and thus, efficiently check whether v(z) < x2, ,, .-

Similarly, we can efficiently compute v and thus, check whether v < X,Qn_,m
—i.e., whether we have outliers.

The set Sy is convex. We can approximate the set S, by
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— taking a grid G,
— checking, for each « € G, whether v(z) < x7,_,, ., and
— taking the convex hull of “possible” points.

We can also efficiently find the minimum z; of z; over x € S,. By computing
the min of —z;, we can also find the maximum 7;.

2 General Case: What Can Be Computed?

How do we describe imprecise probabilities? The ultimate goal of most
estimates is to make decisions. It is known that a rational decision-maker
maximizes expected utility E|u(y)].

— For smooth u(y), y ~ ¥ implies that

uly) = u(@) + (v~ ) W@ + 5 (-5 @)

So, to find E[u(y)], we must know moments E[(y — 7)*].
— Often, u(y) abruptly changes: e.g., when pollution level exceeds o, the
plant has to pay a huge fine; then E[u(y)] is proportional to the cdf:

Elu(y)] ~ F(y) % Prob(y < yo).

So, it is enough to know moments and cdf. From the cdf F(y), we can estimate
moments, so F'(y) is enough.

Imprecise probabilities mean that we don’t know F(y) exactly, we only
know bounds (p-boz) F(y) < F(y) < F(y).

What is computable? Computations with p-boxes are practically impor-
tant. It is thus desirable to come up with efficient algorithms which are as
general as possible.

It is known that too general problems are often not computable. To avoid
wasting time, it is therefore important to find out what can be computed.

At first glance, this question sounds straightforward:

— to describe a cdf, we can consider a computable function F'(z);
— to describe a p-box, we consider a computable function inter-
val [F(2), F(x).

Often, we can do that, but we will show that sometimes, we need to go
beyond computable function intervals. To explain all this, let us recall what
computable means in general; see, e.g., [13,22,28].

Reminder: what is computable? A real number x corresponds to a value
of a physical quantity. We can measure x with higher and higher accuracy. So,
we arrive at the following definition:

Definition 2.1. A real number x is called computable if there is an algorithm,
that, given k, produces a rational vy, s.t. |x —ry| < 27F,
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A computable function computes f(x) from x. We can only use approxi-
mations to x. So, an algorithm for computing a function can, given k, request
a 2 F-approximation to . Most usual functions are thus computable.

Not all functions are computable, an exception is a step-function f(z) =0
for < 0 and f(x) =1 for z > 0. Indeed, no matter how accurately we know
x ~ 0, from 7, = 0, we cannot tell whether 2 < 0 or z > 0 [13,22,28].

Consequences for representing a cdf F(z). We would like to represent a
general probability distribution by its cdf F(z). From the purely mathematical
viewpoint, this is indeed the most general representation.

At first glance, it makes sense to consider computable functions F'(z). For
many distributions, e.g., for Gaussian, F(z) is computable.

However, when z = 0 with probability 1, the cdf F'(x) is exactly the step-
function. And we already know that the step-function is not computable. Thus,
we need to find an alternative way to represent cdf’s — beyond computable
functions.

Back to the drawing board. Each value F(x) is the probability that X <
x. We cannot empirically find exact probabilities p. We can only estimate
frequencies f based on a sample of size N.

For large N, the difference d ef p— f is asymptotically normal, with g =0

p-(1-p)
N
conclude that |f — p| < 60.

For large N, we can get 60 < ¢ for any accuracy > 0. We get a sample
X1,...,Xn. We don’t know the exact values X;, only measured values X
such that |X; — X;| < e for some accuracy e.

So, what we have is a frequency f = Freq()?i <uz).

and 0 = . Situations when |d — p| < 60 are negligibly rare, so we

Resulting definition. Here, X; < x — ¢ implies that )?l <z=X; <zxz+e,
o)
Freq(X; <z —¢) < f = Freq(X; < 2) < Freq(X; <z +¢).

Frequencies are §-close to probabilities, so we arrive at the following defini-
tion [15]:

Definition 2.2. A cdf F(x) is called computable if there is an algorithm that,
gwven x, € >0, and § > 0, computes a rational number f such that

Flx—e)—0< f<F(x+e)+0.

In the computer, to describe a distribution on an interval [T, T]: we select
agridae; =T, 20 =T +¢, ..., and we store the corresponding frequencies f;
with accuracy . A class of possible distribution is represented, for each ¢ and
d, by a finite list of such approximations.

First equivalent definition. It turns out that our definition is equivalent to
the following one:
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Definition 2.3. A cdf F(x) is called computable if there exists an algorithm
that, given x, varepsilon > 0, and 6 > 0, computes a rational number f which
is d-close to F (') for some x’ such that |z’ — x| < e.

Indeed, here is a proof of equivalence. We know that F'(z+¢)—F(z+¢/3) —
0ase—0.So, fore =27% k=1,2,..., we take f and f’ such that
Flx+¢e/3)—6/4< f<F(x+(2/3)-¢)+4/4
F(z+(2/3)-¢)—6/4< f' < F(x+¢)+6/4

We stop when f and f’ are sufficiently close, i.e., when |f — f’| < . Thus, we
get the desired f.

Second equivalent definition. We start with pairs (z1, f1), (22, f2),
...When f;11 — f; > 9, we add intermediate pairs

(xiv f’L + 5)) (xia f’L + 26)) LR (miv fi+1)'
The resulting set of pairs is (e, §)-close to the graph
{(z,y) : F(z —0) <y < F(x)}
in Hausdorfl metric dy. This metric can be defined as follows.

Definition 2.4. (z,y) and (2',y') are (¢, d)-close if |x—2'| < e and |y—y'| < 6.

Definition 2.5. The sets S and S’ are (g, d)-close if for every s € S, there is
a (e,6)-close point s’ € S’; for every s' € S', there is a (g,8)-close point s € S.

Compact sets with metric dg form a computable compact. So, F(z) is a
monotonic computable object in this compact.

What can be computed: a positive result for the 1D case. We are
interested in computing the expected value Ep(,)[u(x)] for smooth u(x). Our
result is as follows:

Proposition 2.1. There is an algorithm that given a computable cdf F(x),
a computable function u(x), and accuracy 6 > 0, computes Ep g [u(x)] with
accuracy 0.

Comment. For computable classes F of cdfs, a similar algorithm computes the
range of possible values [u, ] def {Ep@lu(z)] : F(x) € F}.

Proof: main idea. Computable functions are computably continuous: for
every 0 > 0, we can compute € > 0 such that |z—2a'| < e implies |f(z)—f(2')] <
5. We select e corresponding to §/4, and take a grid with step e/4.

For each x;, the value f; is (6/4)-close to F(z}) for some x} which is (¢/4)-
close to z;.

The function u(x) is (6/2)-close to a piece-wise constant function u'(x) =
u(x;) for = € [x], xj ]
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Thus, |Eu(x)] — Elu/(z)]| < 6/2. Here,

Eld(@)] = ) u(wi) - (Flafy) — F(al).

i

Here, F(z}) is close to f; and F(zj,;) is close to fj11. Thus, E[u/(z)] (and
hence, Efu(z)]) is computably close to a computable sum

> ul@i) - (firn = fi)-

%

What to do in a multi-D case? For each g(z), y, ¢ > 0, and § > 0, we
can find a frequency f such that: |P(g(z) <3') — f| < e for some gy’ such that
ly — ¢'| < 4. We select an e-net z1,...,xz, for X. Then, X = J B.(z;), where

B.(z) oo {2/ : d(x,2") < e}. We select f1 which is close to P(B./ (1)) for all
¢’ from some interval [g, ] which is close to e.

We then select fo which is close to P(Ber(21) U Ber(x2)) for all & from
some subinterval of [g, €], etc.

Then, we get approximations to probabilities of the sets

BE(SCZ) - (Bs(scl) U...u BE(IEi_l)).

This lets us compute the desired values Efu(x)].

3 Taking Into Account That We Process Physical Data

Computations with real numbers: reminder. From the physical view-
point, real numbers z describe values of different quantities. We get values of
real numbers by measurements. Measurements are never 100% accurate, so
after a measurement, we get an approximate value ry of z. In principle, we
can measure z with higher and higher accuracy.

So, from the computational viewpoint, a real number is a sequence of ra-
tional numbers 7, for which, e.g., |z — 7| < 27%.

By an algorithm processing real numbers, we mean an algorithm using r,
as an “oracle” (subroutine). This is how computations with real numbers are
defined in computable analysis [13,22,28].

Known negative results. The first known negative result that we will use
is that no algorithm is possible that, given two numbers x and y, would check
whether x = y.

Similarly, we can define a computable function f(x) from real numbers to
real numbers as a mapping that,

— given an integer n, a rational number z,,, and its accuracy 27,
— produces y,, which is 27 "-close to all values f(x) with d(z,z,) < 27™ (or
produces nothing)
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— so that for every x and for each desired accuracy n, there is an m for which
a Yy is produced.

We can similarly define a computable function f(z) on a computable compact
set K.

The second negative result that we will use is that no algorithm is possible
that, given f, returns x such that f(z) = E/ne%){( f(y). (The maximum itself is

computable.)

From the physicists’ viewpoint, these negative results seem rather
theoretical. In mathematics, if two numbers coincide up to 13 digits, they
may still turn to be different. For example, they may be 1 and 1 + 1071%9,
In physics, if two quantities coincide up to a very high accuracy, it is a good
indication that they are equal: if an experimentally value is very close to the
theoretical prediction, this means that this theory is (triumphantly) true.

This is how General Relativity was confirmed. This is how physicists real-
ized that light is formed of electromagnetic waves: their speeds are very close;
see, e.g., [2,26].

How physicists argue. In math, if two numbers coincide up to 13 digits,
they may still turn to be different: e.g., 1 and 1 + 1071%. In physics, if two
quantities coincide up to a very high accuracy, it is a good indication that they
are equal. A typical physicist argument is that: while numbers like 1 4+ 107100
(or ¢- (1+10719)) are, in principle, possible, they are abnormal (not typical).

In physics, second order terms like a - Az? of the Taylor series can be
ignored if Az is small, since:

— while abnormally high values of a (e.g., a = 10%Y) are mathematically
possible,

— typical (= not abnormal) values appearing in physical equations are usually
of reasonable size.

How to formalize the physicist’s intuition of physically meaningful
values: main idea. To some physicists, all the values of a coefficient a above
10 are abnormal. To another one, who is more cautious, all the values above
10,000 are abnormal. For every physicist, there is a value n such that all value
above n are abnormal.

This argument can be generalized as a following property of the set T
of all physically meaningful elements. Suppose that we have a monotonically
decreasing sequence of sets A1 2 Ay D ... for which (| 4, = 0. In the above

example, A,, is the set of all numbers > n. Then, there exists an integer N for
which TN Ay = 0; see, e.g., [8,3,7,9-12,14].

How to formalize the physicist’s intuition: resulting definition.
Definition 3.1. We say that T is a set of physically meaningful elements if:
— for every definable decreasing sequence {An} for which (A, =0,

n
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— there exists an N for which T N Ay = 0.

Comment. Of course, to make this definition precise, we must restrict defin-
ability to a subset of properties, so that the resulting notion of definability will
be defined in formal set theory (ZFC) itself.

Checking equality of real numbers. It is known equality of real numbers
is undecidable. For physically meaningful real numbers, however, a deciding
algorithm s possible.

Proposition 3.1. For every set T C R? which consists of physically meaning-

ful pairs (z,y) of real numbers, there exists an algorithm deciding whether x =

Y.

Proof: We can take A, = {(z,y) : 0 < |x —y| < 27"}. The intersection of all
Na

these sets is empty. Hence, T has no elements from (] A, = An,. Thus, for
n=1

each (z,y) € T,z =y or [z —y| > 27N,

Indeed, we can decide which of the two alternatives is true by comparing
2~ (Na+3)_approximations #’ and 3’ to z and y. Q.E.D.

Finding roots. In general, it is not possible, given a function f(x) attaining
negative and positive values, to compute its root. This becomes possible if we
restrict ourselves to physically meaningful functions.

Proposition 3.2. Let K be a computable compact. Let X be the set of all
functions f : K — R that attain 0 value somewhere on K. Then

— for every set T C X consisting of physically meaningful functions and for
every € > 0,
— there is an algorithm that, given a f-n f € T, computes an e-approximation

to the set of roots R 2o {z: f(x) = 0}.
In particular, we can compute an e-approximation to one of the roots.

Optimization. In general, it is not algorithmically possible to find x where
f(z) attains maximum. For physically reasonable cases, it is possible:

Proposition 3.3. Let K be a computable compact. Let X be the set of all
functions f : K — R. Then, for every set T C X consisting of physically
meaningful functions and for every e > 0, there is an algorithm that,

— given a function f € T,

— computes an e-approzimation to S = {1’ : f(x) = max f(y)}
Y

In particular, we can compute an approximation to an individual x € S.

Proof: by reduction to the roots problem, since f(z) = max f(y) if and only
y

if g(x) = 0, where g(z) e f(z) — max f(y).
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Computing fixed points. In general, it is not possible to compute all the
fixed points of a given computable function f(x). Let K be a computable
compact. Let X be the set of all functions f : K — K. Then:

Proposition 3.4. For every set T C X consisting of physically meaningful
functions and for every € > 0, there is an algorithm that,

— gwen a function f €T,
— computes an e-approximation to the set {x : f(x) = x}.

In particular, we can compute an approximation to an individual fixed
point.

Proof: reduction to roots, since f(x) = z if and only if g(x) = 0, where g(z) =

d(f(z),z).
Computing limits. In general, it is not algorithmically possible to find a
limit lim a,, of a convergent computable sequence.

Let K be a computable compact. Let X be the set of all convergent se-
quences a = {an}, a, € K. Then:

Proposition 3.5. For every set T C X consisting of physically meaningful
functions and for every € > 0, there exists an algorithm that,

— given a sequence a € T,
— computes its limit with accuracy €.

Comment. This result enables us to compute limits of iterations and sums of
Taylor series (frequent in physics).

Proof (main idea): for every € > 0 there exists ¢ > 0 such that when
lan, — an—1| < 4, then |a, —lima,| <e.
Intuitively: we stop when two consequent iterations are close to each other.

4 How to Take into Account that We Can Use Non-Standard
Physical Phenomena to Process Data

Solving NP-complete problems is important. In practice, we often need
to find a solution that satisfies a given set of constraints. At a minimum, we
need to check whether such a solution is possible. Once we have a candidate,
we can feasibly check whether this candidate satisfies all the constraints.

In theoretical computer science, “feasibly” is usually interpreted as com-
putable in polynomial time.

The class of all such problems is called NP; see, e.g., [13]. A typical example
of such a problem is satisfiability — checking whether a propositional formula
like (v1 V —wg Vu3) & (v4 V —wa V —w5) & ... can be true.

Each problem from the class NP can be algorithmically solved by trying
all possible candidates. For example, we can try all 2™ possible combinations
of true-or-false values vy,...,v,.
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For medium-size inputs, e.g., for n =~ 300, the resulting time 2" is larger
than the lifetime of the Universe. So, these exhaustive search algorithms are
not practically feasible.

It is not known whether problems from the class NP can be solved feasibly

(i.e., in polynomial time). This is the famous open problem PENP.

What we do know is that some problems are NP-complete: every problem
from NP can be reduced to it. So, it is very important to be able to efficiently
solve even one NP-hard problem.

Can non-standard physics speed up the solution of np-complete
problems? NP-complete means difficult to solve on computers based on the
usual physical techniques. A natural question is: can the use of non-standard
physics speed up the solution of these problems?

This question has been analyzed for several specific physical theories, e.g.:
for quantum field theory, for cosmological solutions with wormholes and/or
casual anomalies.

No physical theory is perfect. If a speed-up is possible within a given
theory, is this a satisfactory answer? In the history of physics, always new
observations appear which are not fully consistent with the original theory. For
example, Newton’s physics was replaced by quantum and relativistic theories.

Many physicists believe that every physical theory is approximate. For each
theory T', inevitably new observations will surface which require a modification
of T'. Let us analyze how this idea affects computations.

No physical theory is perfect: how to formalize this idea. We want to
formalize a statement that for every theory, eventually there will be observa-
tions which violate this theory.

To formalize this statement, we need to formalize what are observations
and what is a theory.

Most sensors already produce observations in the computer-readable form,
as a sequence of 0Os and 1s. Let w; be the bit result of an experiment whose
description is . Thus, all past and future observations form a (potentially)
infinite sequence w = wiws ... of Os and 1s.

A physical theory may be very complex. All we care about is which se-
quences of observations w are consistent with this theory and which are not.

What is a physical theory? So, a physical theory T can be defined as the
set of all sequences w which are consistent with this theory.

A physical theory must have at least one possible sequence of observa-
tions: T # 0.

A theory must be described by a finite sequence of symbols: the set T must
be definable.

How can we check that an infinite sequence w = wyws ... is consistent with
the theory? The only way is check that for every n, the sequence ws ...w, is
consistent with T'; so:

if Vn3w™ € T ('™ .. w( =w;...w,) then w € T.
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In mathematical terms, this means that T is closed in the Baire metric
d(w,w’) def 27N(w,w’)’

where

N(w,w') ¥ max{k :w;...wp =) .. .w}}.

A theory must predict something new. So, for every sequence ws ...ws,
consistent with 7', there is a continuation which does not belong to T'.

In mathematical terms, T is nowhere dense. So, we arrive at the following
definition.

What is a physical theory: definition.

Definition 4.1. By a physical theory, we mean a non-empty closed nowhere
dense definable set T'.

Definition 4.2. A sequence w is consistent with the no-perfect-theory princi-
ple if it does not belong to any physical theory.

In precise terms, w does not belong to the union of all definable closed
nowhere dense set. There are countably many definable set, so this union is
meager (= Baire first category). Thus, due to Baire Theorem, such sequences
w exist.

How to represent instances of an NP-complete problem. For each NP-
complete problem P, its instances are sequences of symbols. In the computer,
each such sequence is represented as a sequence of Os and 1s. We can append
1 in front and interpret this sequence as a binary code of a natural number <.

In principle, not all natural numbers 4 correspond to instances of a problem
P. We will denote the set of all natural numbers which correspond to such
instances by Sp. For each i € Sp, we denote the correct answer (true or false)
to the i-th instance of the problem P by sp ;.

What we mean by using physical observations in computations. In
addition to performing computations, our computational device can produce
a scheme i for an experiment, and then use the result w; of this experiment in
future computations.

In other words, given an integer i, we can produce w;.

In precise terms, the use of physical observations in computations means
corresponds to using w as an oracle.

Main result of this section.

Definition 4.3. A ph-algorithm A is an algorithm that uses an oracle w
consistent with the no-perfect-theory principle.

The result of applying an algorithm A using w to an input ¢ will be denoted
by A(w,1).
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Definition 4.4. We say that a feasible ph-algorithm A solves almost all in-
stances of an NP-complete problem P if:

#li<N:icSpleAwi)=spi} | )
#i<N:ieSp} )

V€>0 Vn ElNZn <

Restriction to sufficiently long inputs N > n makes sense: for short inputs, we
can do exhaustive search.

Proposition 4.1. For every NP-complete problem P, there is a feasible ph-
algorithm A solving almost all instances of P.

This result is the best possible. Our result is the best possible, in the
sense that the use of physical observations cannot solve all instances:

Proposition 4.2. If P£ANP, then no feasible ph-algorithm A can solve all
instances of P.

Can we prove the result for all N starting with some Ny? We say that a
feasible ph-algorithm A §-solves P if

#{i<N:ieSp&Aw,i)=sp,} >5>
A{i<N:icSp} '

IN, VYN > Ny (

Proposition 4.3. For every NP-complete problem P and for every § > 0,

— if there exists a feasible ph-algorithm A that §-solves P,
— then there is a feasible algorithm A’ that also §-solves P.

5 Physical and Computational Consequences

Justification of physical induction. What is physical induction? It means
that if a property P is satisfied in the first N experiments, then it is satisfied
always.

Comment: N should be sufficiently large.

Proposition 5.1. For every set T of physically meaningful sequences s =
5182 ..., and for every definable property P, there exists a natural number N

such that if P(s;) holds for alli < N, then P(s;) holds for alli.
Proof: Let us take
An X (s P(s1) & ... & P(sy), & Im—P(sm)}.

Then A, 2 Ap41 and UA, =0 so IN (AxNT = 0).
The meaning of Ay N7 = () is that if P(s;) holds for all 4+ < N, then this
property holds for all . Q.E.D.

Ill-posed problem: brief reminder. The main objectives of science are to
produce:
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— guaranteed estimates for physical quantities; and
— guaranteed predictions for these quantities.

The problem is that estimation and prediction are ill-posed problems, i.e.,
small changes in the measurement result can lead to drastic changes in the
resulting estimates.

Example: measurement devices are inertial, hence they suppress high fre-
quencies w. So, the signals ¢(z) and ¢(z) + sin(w - t) are indistinguishable.

There exist many approaches to solve ill-posed problems: statistical regu-
larization (filtering); Tikhonov regularization (e.g., assuming that || < A);
expert-based regularization, etc.; see, e.g., [27]. The main problem of all these
approaches is that they provide no guaranteed bounds.

On physically meaningful solutions, problems become well-posed.
Indeed, let us consider state estimation — an ill-posed problem.

A measurement process is a function f that maps state s € S into obser-
vation r = f(s) € R.

In principle, we can reconstruct s from r as s = f~!(r). The problem is
that small changes in r can lead to huge changes in s, i.e., the inverse function
f~1 not continuous.

Proposition 5.2. Let S be a definably separable metric space. Let T be a set
of physically meaningful elements of S. Let f : S — R be a continuous 1-1
function. Then, the inverse mapping f~' : R — S is continuous for every r €

().

Everything is related: EPR paradox. Due to Relativity Theory, two spa-
tially separated simultaneous events cannot influence each other. By their
paradox (see, e.g., [2,26]) Einstein, Podolsky, and Rosen (EPR) intended to
show that in quantum physics, such influence is possible.

In formal terms, let x and 2’ be measured values at these two events.
Independence means that possible values of x do not depend on 2/, ie., T =
X x X' for some X and X'.

Physical induction implies that the pair (z,z’) belongs to a set S of phys-
ically meaningful pairs.

Proposition 5.3. A set T of physically meaningful pairs cannot be represented
as X x X'.

Thus, everything s related — but we probably can’t use this relation to pass
information (since the set 7 isn’t computable).

When to stop an iterative algorithm? The following situation is typical
in numerical mathematics:

— we know an iterative process whose results zj are known to converge to
the desired solution z, but
— we do not know when to stop to guarantee that dx (xg,z) < €.

A usual heuristic approach is to stop when dx (zy, xx+1) < d for some § > 0.
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For example, in physics, if 2nd order terms are small, we use the linear
expression as an approximation.

When to stop an iterative algorithm: result.

Definition 5.1. Let {zx} € T, k be an integer, and € > 0 a real number. We
say that xy, is e-accurate if dx (xg,limz,) < e.

Definition 5.2. Let d > 1 be an integer. By a stopping criterion, we mean a
function ¢ : X% — Ra' that satisfies the following two properties:

— If{zr} €T, then c(xg, ..., Tptda—1) — 0.
— If for some {z,} € T and k, c(xk, ..., Tptd—1) = 0, then

Tk =...= Tptd—1 = limz,.

Proposition 5.4. Let ¢ be a stopping criterion. Then, for every e > 0, there
exists a § > 0 such that if c(xg, ..., Trra—1) < 06, and the sequence {x,} is
physically meaningful, then xjy is e-accurate.

6 Relation with Randomness

Towards relation with randomness. Intuitively, if a sequence s is random,
it satisfies all the probability laws such as the law of large numbers. Vice versa,
if a sequence satisfies all probability laws, then for all practical purposes we
can consider it random. Thus, we can define a sequence to be random if it
satisfies all probability laws.

Definition 6.1. A probability law is a statement S which is true with proba-
bility 1: P(S) = 1.

So, we arrive at the following definition:

Definition 6.2. A sequence is random if it belongs to all definable sets of
measure 1.

A sequence belongs to a set of measure 1 if and only if it does not belong
to its complement C' = —S with P(C') = 0. So, we arrive at the following
equivalent definition:

Definition 6.3. A sequence is random if it does not belong to any definable
set of measure 0.

Randomness and Kolmogorov complexity. Different definabilities lead to
different randomness. When definable means computable, the corresponding
Kolmogorov-Martin-Lo6f randomness can be described in terms of Kolmogorov
complexity [16], the smallest length of a program that generates a given string:

K(z) def min{len(p) : p generates z}.
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Crudely speaking, an infinite string s = s1s5... is random if, for some
constant C' > 0, we have Vn (K(s1...s,) > n—C).

Indeed, if a sequence s ... s, is truly random, then the only way to gen-
erate it is to explicitly print it: print(s;...s,). In contrast, a sequence like
0101...01 generated by a short program is clearly not random.

From Kolmogorov-Martin-L6f theoretical randomness to a more
physical one. The above definition means that (definable) events with prob-
ability 0 cannot happen. In practice, physicists also assume that events with
a very small probability cannot happen.

For example, a kettle on a cold stove will not boil by itself — but the
probability is non-zero. If a coin falls head 100 times in a row, any reasonable
person will conclude that this coin is not fair.

It is not possible to formalize this idea by simply setting a threshold py > 0
below which events are not possible. Indeed, then, for N for which 2=V < py,
no sequence of N heads or tails would be possible at all. We cannot have a
universal threshold py such that events with probability < py cannot happen.

However, we know that for each decreasing (A,, O A,,+1) sequence of prop-
erties A, with limp(A4,,) = 0, there exists an N above which a truly random
sequence cannot belong to Ay. Here is a resulting definition:

Definition 6.4. We say that R is a set of random elements if for every
definable decreasing sequence {Ay} for which lim P(A,,) = 0, there exists an
N for which RN Ax = 0.

Random sequences and physically meaningful sequences. Let R de-
note the set of all elements which are random in Kolmorogov-Martin-Lof sense.
Then, the following two results hold:

Proposition 6.1. Every set of random elements consists of physically mean-
ingful elements.

Proposition 6.2. For every set T of physically meaningful elements, the in-
tersection T N Ry is a set of random elements.

Proof: When A,, is definable, for D,, def N A; —
i=1

2

?

N Ai, we have D,, D D, 14
=1

o0

and (| D, = 0, so P(D,) — 0. Therefore, there exists an N for which the
n=1

set of random elements does not contain any elements from Dpy. Thus, every

set of random elements indeed consists of physically meaningful elements.

7 Proofs of Results Not Proven in the Main Text

A formal definition of definable sets.

Definition 7.1. Let L be a theory. Let P(x) be a formula from L for which
the set {x| P(x)} exists. We will then call the set {x | P(x)} L-definable.

Crudely speaking, a set is L-definable if we can explicitly define it in L.
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All usual sets are definable: the set of natural numbers N, the set of real
numbers R, etc.
Not every set is L-definable: indeed,

— every L-definable set is uniquely determined by a text P(z) in the language
of set theory;

— there are only countably many texts and therefore,

— there are only countably many L-definable sets; so,

— some sets of natural numbers are not definable.

How to prove results about definable sets. Our objective is to be able to
make mathematical statements about L-definable sets. Therefore, in addition
to the theory £, we must have a stronger theory M in which the class of all
L-definable sets is a countable set.

For every formula F' from the theory L, we denote its Gédel number by
| F'|. We say that a theory M is stronger than L if:

— M contains all formulas, all axioms, and all deduction rules from £, and
— M contains a predicate def(n, ) such that for every formula P(z) from £
with one free variable,

M EVy (def([P(z)],y) + P(y)).

Existence of a stronger theory. As M, we take £ plus all above equivalence
formulas.

Is M consistent? Due to compactness property of first order logic, it is
sufficient to prove that for any Pi(z),...,Pn(x), £ is consistent with the
equivalences corresponding to P;(z). Indeed, we can take

def(n,y) < (n = |Pi(2)| & P (y)) V...V (n = |Pn(@)] & Pu(y)).

This formula is definable in £ and satisfies all m equivalence properties.
Thus, the existence of a stronger theory is proven.
The notion of an L-definable set can be expressed in M: S is L-definable
if and only if
dn € NVy (def(n,y) < y € 9).

So, all the statements involving definability become statements from the M
itself, not from metalanguage.

Consistency proof.

Proposition 7.1. Ve > 0, there exists a set T of physically meaningful ele-
ments for which P(T) > 1 —e.

Proof. Indeed, there are countably many definable sequences {A,, }: {A%l)},
{Ag)}, ...For each k, P (Aslk)) — 0 as n — oo. Hence, there exists IVy, for

which P (A§)) < 27",
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We take 7 % — U AS\’,? Since P (AS\]/?) <¢e-27% we have
k=1

p<['j Ag@g> S (af) <Y o=
k=1

k=1 k=1
_1_P( (] a®
Hence, P(T)=1-P | U Ay, | >1—¢.
k=1

Proof of Proposition 3.2. To compute the set R = {x : f(z) = 0} with
accuracy € > 0, let us take an (£/2)-net {z1,...,2,} C K.

For each i, we can compute €’ € (¢/2,¢) for which B; def {z:d(z,z;) <}
is a computable compact set.

It is possible to algorithmically compute the minimum of a function on a
computable compact set. Thus, we can compute m; def min{|f(x)| : x € B;}.

Since f € T, similarly to the proof that equality of typical real numbers is
decidable, we can prove that

INVYf € TVi(m; =0Vm; >277).

Computing m; with accuracy 2~ (V+2) | we can check whether m; = 0 or m; >
0.
Let’s prove that dg (R, {z; : m; = 0}) < ¢, i.e., that

Vi(m; =0= 3z (f(z) =0&d(x,z;) <¢))

and
Ve (f(x) =0= 3i(m; =0&d(z,z;) <e¢)).

Indeed, m; = 0 means that min{|f(z)|: x € B; def B./(x;)} =0.

Since the set K is compact, this value 0 is attained, i.e., there exists a value
x € B; for which f(x) = 0. From z € B;, we conclude that d(z,z;) < &’ and,
since &’ < ¢, that d(z, ;) < . Thus, z; is e-close to the root z.

Vice versa, let « be a root, i.e., let f(z) = 0. Since the points x; form an
(€/2)-net, there exists an index ¢ for which d(x, ;) < &/2. Since £/2 < &', this
means that d(z, ;) < &’ and thus, € B;. Therefore,

m; = min{|f(z)| : x € B;} = 0.

So, the root x is e-close to a point z; for which m; = 0.

Proof of Proposition 4.1. As A, given an instance i, we simply produce the
result w; of the i-th experiment.

Let us prove, by contradiction, that for every £ > 0 and for every n, there
exists an integer N > n for which

#{iSN:iESP&wZ‘ZS'pJ}>(1—€)'#{i§N:iES7>}.
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The assumption that this property is not satisfied means that for some ¢ > 0
and for some integer n, we have

VNEH#{Z'SNIZ'ESP&wiZSpJ}S(l—&)-#{iSN:iESp}.

Let
Tdéf{x:#{iSN:iESp&mi:37>,i}§

(1—¢e)-#{i<N:ieSp}forall N>n}.

We will prove that this set T" is a physical theory (in the sense of the above
definition); then w ¢ T.

By definition, a physical theory is a set which is non-empty, closed, nowhere
dense, and definable.

— Non-emptiness is easy: the sequence x; = ~sp; for i € Sp belongs to T'.
— One can prove that T is closed, i.e., if (™ € T for which z(™ — w,
then z € T.

Nowhere dense means that for every finite sequence x; ... x,,, there exists
a continuation x € T'. Indeed, for such an extension, we can take z; = sp;
if 1 € Sp.

— Finally, we have an explicit definition of 7', so T is definable.

Proof of Proposition 4.2. Let us assume that P#£NP; we want to prove that
for every feasible ph-algorithm A, it is not possible to have

YN (#{i < N i€ Sp& Aw,i) = sp} = #{i < N :i € Sp}).

Let us consider, for each feasible ph-algorithm A, T(A) e

{z: #{i<N:iecSp&Alz,i)=sp,} =#{i <N :ie Sp} forall N}.

Similarly to the proof of the main result, we can show that this set T'(A) is
closed and definable.

To prove that T'(A) is nowhere dense, we extend z1 ... x,, by Os; thenz € T
would mean P=NP.

If T(A) # 0, then T(A) is a theory, so w ¢ T(A).

If T(A) = 0, this also means that A does not solve all instances of the
problem P — no matter what w we use.

Proof of Proposition 4.3. Let us assume that no non-oracle feasible algo-
rithm d-solves the problem P. Let’s consider, for each Ny and feasible ph-
algorithm A,
T(ANy) € {aw: #{i < N:ieSp&Ala,i)=sp;} >
§-#{i<N:ieSp}foral N> Ny}
We want to prove that VNy (w & T'(A, No)).

— Similarly to the proof of the Main Result, we can show that T'(A4, Ny) is
closed and definable.
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— To prove that T'(A, Np) is nowhere dense, we extend 1 ...z, by Os.
If T(A, Ng) # 0, then T(A, Ny) is a theory hence w & T(A, Ng).
— If T(A, Ny) = 0, then also w & T'(A, Np).

Proof of Proposition 5.2. It is known that if a f is continuous and 1-1 on
a compact, then the inverse function f~! is also continuous.

Let us recall that S is compact if and only if it is closed and for every ¢,
it has a finite e-net, i.e., a finite set such that each element of S is e-close to
one of the elements from the set S.

We assume that the set X is definably separable, i.e., that there exists a
definable sequence s1, ..., Sy, ... which is everywhere dense in X.

n
The solution is to take A, def _ U B.(s;). Since s; are everywhere dense,
i=1
we have NA, = 0. Hence, there exists N for which Ay N7 = (). Since

N
AN = — U BE(Si),
i=1

N

this means T C U B.(s;). Hence {s1,...,sn} is an e-net for 7. So, the set
i=1

T is pre-compact. Q.E.D.

Proof of Proposition 6.1. Let T consist of physically meaningful elements.
Let us prove that T N'Rk is a set of random elements.

def

IfA, DA,y and P ( N An> =0, then for B,, = A, — [ An, we have
n=1

n=1
B,, 2 B,,+1 and () B, =10.

n=1
Thus, by definition of a set consisting of physically meaningful elements,
we conclude that By N'T = 0.

Since P < N An> = 0, we also know that (ﬂ An> NRg = 0. Thus,
n=1 n=1

Ay = By U ( N An) has no common elements with the intersection TNR k.
n=1
Q.E.D.
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