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Abstract. Fuzzy techniques have been successfully used in many ap-
plications. However, often, formulas for processing fuzzy information are
often heuristic: they lack a convincing justification, and thus, users are
sometimes reluctant to use them. In this paper, we show that we can jus-
tify (and sometimes even improve) these methods if we use a probability-
based approach.

Keywords: Defuzzification · Probabilistic approach · Heuristic algo-
rithms · Optimality

1 Formulation of the Problem

Need for fuzzy knowledge. In many practical situations, ranging from
medicine to driving, we rely on expert knowledge of how to cure diseases, how
to drive in a complex city environment, etc. Some medical doctors are more
qualified than others, some drivers are more skilled than others. It is therefore
desirable to incorporate their skills and their knowledge in a computer-based
system that will help other experts perform better – and ideally, make expert-
quality decisions on its own, without the need for the experts.

One of the main obstacles to designing such a system is the fact that experts
usually formulate their knowledge by using imprecise (“fuzzy”) words from nat-
ural language like “close”, “fast”, “small”, etc., and computers are not efficient
in processing words, they are much more efficient in processing numbers. It is
therefore desirable to represent the natural-language fuzzy knowledge in numer-
ical terms.

A technique for such a representation was proposed in the 1960s by Lotfi
Zadeh from Berkeley under the name of fuzzy logic. In fuzzy logic, to represent
each word like “small” in numerical terms, we assign, to each possible value x
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of the corresponding quantity, a degree µ(x) ∈ [0, 1] to which, in the expert’s
option, the value x can be described by this word (e.g., to what extent x is
small); see, e.g., [1, 4, 7, 9, 10, 13].

Where fuzzy degrees come from. There are many different ways to elicit
the desired degrees.

If we are just starting the analysis and we do not have any records, then we
can ask an expert to mark, on a scale, say, from 0 to 10, to what extent x is
small. If the expert marks 7, we take 7/10 as the desired degree.

Usually, however, we already have a reasonably large database of records in
which the experts used the corresponding word to describe different values of
the corresponding quantity x. For values x which are really small, we will have
a large number of such records; for values x which are not too small, we will
have a few such records. Based on the available records, we can estimate the
probability density function (pdf) ρ(x) that describes the frequency with which
different values x appear in our records.

When x is really small, the value ρ(x) is big; when x is not so small – so
that fewer experts will consider this value to be small – the value ρ(x) is much
smaller. Thus, in principle, we could use the values ρ(x) as the desired degrees.
However, we want values from the interval [0, 1], while the pdf can take values
larger than 1. To make all the value smaller than or equal to 1, we can normalize
these values, i.e., divide by the largest of them. As a result, we get

µ(x) =
ρ(x)

max
y

ρ(y)
.

Need for defuzzification. By using expert knowledge transformed into the
numerical form, we can determine, for each possible value u of the control, the
degree µ(u) to which this value is reasonable.

These degrees can help an expert make better decisions. However, if we want
to make an automatic system, we must select a single value u that the system
will apply. Selecting such a value is known as defuzzification.

Centroid defuzzification: description, successes, and limitations. The
most widely used defuzzification procedure is centroid defuzzification, in which
we select the value

x =

∫
x · µ(x) dx∫
µ(x) dx

.

It has led to many successful applications of fuzzy control; see, e.g., [1, 4, 7, 9,
10]. However, it has two related limitations:

– First, it is heuristic, it is not justified by a precise argument and therefore,
we are not sure whether it will always work well.

– Second, it sometimes leads to disastrous results. For example, when a car
encounters an obstacle on an empty road, it can go around it by veering to
the left or by veering to the right. The situation is completely symmetric
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with respect to the direction to the obstacle. As a result, the centroid will
lead exactly to the center – i.e., smack into the obstacle. The actual fuzzy
control algorithms use some techniques to avoid such as a situation, but
these techniques are also heuristic – and thus, not guaranteed to produce
good results.

Optimization under fuzzy constraints. Another class of situations in which
fuzzy knowledge is important is optimization.

Traditional optimization techniques allows us to find the values of the pa-
rameters x for which the objective function attains its optimal value – largest
or smallest depending on the problem. These techniques assume – explicitly or
implicitly – that all possible combinations x are possible.

In practice, there are usually constraints restricting possible combinations.
In some cases, constraints are formulated in precise terms – for example, there
are regulations limiting noise level and pollution level from a plant. There are
well-known techniques for dealing with such constraints – e.g., the Lagrange
multiplier method that reduced the problem of optimizing an objective function
f(x) under constraint g(x) = 0 to the unconstrained optimization problem of
optimizing the auxiliary objective function f(x) + λ · g(x), for an appropriate
parameter λ.

Often, however, we also have imprecise (fuzzy) constraints. For example, a
company that designs a plant in a city usually wants not just to satisfy all the
legal requirements, but also to keep good relation with the city, and one way to
do it is to make sure that the noise level is not high. This “not high” is clearly
an example of an imprecise constraint.

Another case when fuzzy constraints are important is when one of the objec-
tives is to make customers happy. For example, an elevator must be reasonable
fast but also reasonably smooth.

We can describe the fuzzy constraint by a membership function µ(x), so
that for each possible combination x of the corresponding parameters, µ(x) is a
degree to which the alternative corresponding to these parameter values satisfies
the constraint. How can we optimize an objective function f(x) under such fuzzy
constraints?

A well-known heuristic solution to this problem was proposed in a joint paper
[2] by Lotfi Zadeh (the father of fuzzy logic) and Richard Bellman (the famous
specialist in optimization): namely, to maximize an objective function f(x) under
fuzzy constraints, they proposed to maximize an auxiliary function

f&

(
µ(x),

f(x)−m

M −m

)
,

where f&(a, b) is usually either the minimum min(a, b) or the product a · b, and
m and M are, correspondingly, the minimum and the maximum of f(x) over the
set X of all theoretically possible combinations x:

m
def
= min

x∈X
f(x), M

def
= max

x∈X
f(x).
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The above formula is used when we want to maximize f(x); when we want
to minimize f(x), then we maximize a slightly different auxiliary expression –
which comes from the fact that minimizing f(x) is equivalent to maximizing an

auxiliary function f ′(x)
def
= −f(x):

f&

(
µ(x),

M − f(x)

M −m

)
.

Similarly to defuzzification:

– on the one hand, these heuristic formulas have led to many useful application,
but

– on the other hand, the fact that these formulas are heuristic – and thus,
lack a convincing justification – makes users often somewhat reluctant to
use them.

What we do in this paper. In this paper, we show that if we take into ac-
count the widely spread probability-based origin of fuzzy techniques, then many
heuristic techniques – including techniques related to defuzzification and opti-
mization – become justified. Moreover, this use of probabilistic ideas sometimes
enables us to improve the existing heuristic fuzzy techniques.

Comment. In our opinion, the above justification is a good example of the need
for integrated uncertainty: in a situation where pure probabilistic methods are
not natural, and where pure fuzzy techniques lack a convincing justification, a
combination of probabilistic and fuzzy approaches helps.

2 Probability-Based Approach Explains Heuristic
Formulas of Defuzzification

Let us start by showing that probability-based approach explains the main for-
mula of centroid justification.

Crudely speaking, the membership function µ(x) describes the degree to
which x corresponds to the optimal control. If the membership function comes
from a probability distribution ρ(x), this means that we do not know exactly
which value x is optimal: different values x may turn out to be optimal, and
the corresponding values ρ(x) describes the probability of different values to be
optimal.

Based on this information, we want to select a single value x̄. Because of the
probabilistic character of available information, no matter what value we select,
there is a probability that this value which be not optimal. So, no matter what
value we select, there will be a loss caused by this non-optimality. It is reasonable
to select the value x̄ for which the expected value of this loss is the smallest.

The loss happens if the optimal value x is different from the selected value
x′. In other words, the loss L(x, x′) is caused by the fact that difference x − x′
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is different from 0. The loss can thus be viewed as a function of this difference
L(x, x′) = F (x− x′) for some function F (z).

The difference z = x− x′ is usually reasonable small, so we can expand the
function F (z) in Taylor series and keep only the first few terms in this expansion:

F (z) = a0 + a1 · z + a2 · z2.

When the selected value x′ is exactly the optimal value x, i.e., when z = 0, then
there is no loss: F (0) = 0. Substituting z = 0 into the above quadratic formula,
we conclude that a0 = 0. Also, when z = 0, the loss is the smallest; thus, for
z = 0, the derivative F ′(0) is equal to 0 – which implies that a1 = 0 – and the
second derivative is non-negative – so a2 > 0.

So, F (z) = a2 · z2, so the loss is equal to L(x, x′) = a2 · (x − x′)2, and the
expected value of this loss is equal to∫

L(x, x′) · ρ(x) dx =

∫
a2 · (x− x′)2 · ρ(x) dx.

We want to find the value x′ that minimizes this loss. To find this value, we
differentiate the above expression by x′ and equate the resulting derivative to 0.
As a result, we get ∫

2 · a2 · (x− x′) · ρ(x) dx = 0.

Dividing both sides by 2a2 and representing the integral of the difference as the
difference between the two integrals, we conclude that∫

x · ρ(x) dx− x′ ·
∫

ρ(x) dx = 0.

The second integral in this formula is simply the total probability, i.e., 1, so the
optimal value x̄ of the control x is equal to the mean

x̄ =

∫
x · ρ(x) dx.

As we have mentioned earlier, the membership function µ(x) and the corre-
sponding probability density function µ(x) differ only by a multiplicative con-
stant:

µ(x) = c · ρ(x)

for an appropriate constant c – so that ρ(x) =
µ(x)

c
. To find the constant

c, we can integrate both sides of the equality µ(x) = c · ρ(x). We thus get∫
µ(x) dx = c ·

∫
ρ(x) dx. If we take into account that, as we have recently men-

tioned,
∫
ρ(x) dx = 1, we conclude that c =

∫
µ(x) dx. Thus, ρ(x) =

µ(x)∫
µ(y) dy

.

Substituting this expression for ρ(x) into the above formula for x̄, we get
exactly the usual formula for centroid defuzzification.
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3 Let Us Use the Probability-Based Justification to
Improve the Heuristic Formulas for Defuzzification

Formulas for defuzzification need improvement: reminder. As we have
mentioned earlier, the problem with the existing defuzzification formulas is not
only that they are heuristic and thus need justification, but also that these
formulas sometimes lead to disastrous (or at least suboptimal) results.

It is therefore desirable to improve these formulas.

Idea. A reasonable idea is to take into account that we are not just interested
in finding the values x that minimize the total loss; ideally, the selected value
x should also be optimal in relation to the original control problem. The cor-
responding degree of optimality is described by the membership function µ(x).
Thus, in effect, we have a problem of optimization under fuzzy constraint: min-
imize the expression∫

(x− x̄)2 · ρ(x) dx =

∫
(x− x̄)2 · µ(x) dx∫

µ(x) dx

under the fuzzy constraint described by the original membership function µ(x).
The denominator of the minimized expression does not depend on the selec-

tion of the control parameter x̄; so, minimizing the above ratio is equivalent to
minimizing the numerator

∫
(x− x̄)2 · µ(x) dx.

To solve this problem, we can therefore use the Bellman-Zadeh approach.
Let us see what we get.

Towards the resulting modification. Instead of the centroid defuzzification,
we should select the value x̄ = x′ for which the following expression attains the
smallest possible value

f&

(
µ(x′),

M −
∫
(x− x′)2 · µ(x) dx
M −m

)
,

where

m
def
= min

x′

∫
(x− x′)2 · µ(x) dx

and

M
def
= max

x′

∫
(x− x′)2 · µ(x) dx.

Let us show how this formula can be simplified. To find m and M , we,
correspondingly, minimize or maximize the expression

∫
(x − x′)2 · µ(x) dx. If

we open parentheses, we can conclude that this expression is quadratic in terms
of x′: ∫

(x− x′)2 · µ(x) dx = M2 − 2M1 · x′ +M0 · (x′)2,

where we denotedM2
def
=

∫
x2 ·µ(x) dx,M1

def
=

∫
x·µ(x) dx, andM0

def
=

∫
µ(x) dx.

We know that the minimum of this expression is attained at the centroid value,
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x0 =
M1

M0
. Substituting this value x0 into the above expression for the integral∫

(x− x′)2 · µ(x) dx, we conclude that

m = M2 − 2M1 ·
M1

M0
+M0 ·

(
M1

M0

)2

= M2 −
M2

1

M0
.

For the quadratic function which attains its minimum, its maximum on any
interval is attained at one the interval’s endpoints.

Thus, we arrive at the following modified version of the centroid defuzzifica-
tion.

The resulting modification of centroid defuzzification. Once we know the
membership function µ(x) on an interval [x−, x+], then, to find the best value
x̄, we do the following:

– first, we compute the values M0 =
∫
µ(x) dx, M1 =

∫
x · µ(x) dx, and M2 =∫

x2 · µ(x) dx;

– then, we compute the values m = M2 −
M2

1

M0
and

M = max(M2 − 2M1 · x− +M0 · x2
−,M2 − 2M1 · x+ +M0 · x2

+);

– finally, we find the value x̄ = x′ that maximizes the expression

f&

(
µ(x′),

M − (M2 − 2M1 · x′ +M0 · (x′)2)

M −m

)
.

This is indeed better than centroid. As we have mentioned earlier, the
main problem of centroid defuzzification is that it sometimes leads to very bad
decisions, i.e., decisions x̄ for which the value µ(x̄) is 0 (or close to 0). This is
possible for centroid defuzzification – since its algorithm does not take the value
µ(x̄) into account at all.

However, for our new method, this is not possible. Indeed, for both f&(a, b) =
min(a, b) and f&(a, b) = a · b, we have f&(0, a) = 0 for all a ∈ [0, 1]. Thus, if
µ(x̄) = 0, then the corresponding objective function is equal to 0 – i.e., to its
smallest possible value – and thus, will never be selected under the new approach.

What if we have two equally possible solutions? In the case of a symmetric
obstacle, we will no longer go straight into this obstacle, so the corresponding
angle x = 0 is not possible. Hence we select a value x̄ ̸= 0.

Due to symmetry, if x̄ ̸= 0 is a solution, then −x̄ is a solution as well. Thus,
we have at least two different solutions. Which one should we choose?

The situation is symmetric, so our decision should be symmetric as well.
However, if we select one of the two possible solutions x̄ or −x̄, we violate
x ↔ −x symmetry. So what should we do?

The only way to preserve symmetry is to make a probabilistic decision, i.e.,
in this case, to select either x̄ or −x̄ with equal probability 1/2.
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Comment. Thus again, probabilistic ideas help: namely, they help to retain a
natural symmetry of the situation.

Discussion. In fuzzy control, this may be a new idea, but in general, that
symmetry sometimes naturally leads to randomness is a known fact.

The first such example is game theory; see, e.g., [6, 8, 12]. The fact that the
optimal strategies are probabilistic has been known since the beginning of game
theory. Indeed, suppose that we want to protect two equally valuable locations
from a terrorist attack, but we only have resources for a single protection team.
If we select a deterministic decision – i.e., send the team to one of the two
locations – we will lose no matter which location we select, since the terrorists
will successfully attack the remaining location. The best strategy is to each time
send a team to one of the locations at random.

A more relaxed example is the rock-paper-scissors game, in which each of the
two players selects either rock, or paper, or scissors. Paper beats rock, rock beats
scissors, and scissors beat paper. If one side selects a deterministic strategy – i.e.,
selects the same choice every time – the opponent will always win by selecting
the choice that beats this selection. The only way to avoid this defeat is to select
each of the three choices with equal probability.

Another example is physics, for example, the radioactivity phenomenon,
when some atoms spontaneously decay; see, e.g., [3, 11]. Let us show that ra-
dioactivity cannot be deterministic, i.e., at the present moment t0, we cannot
predict the moment of time t at which the atom will decay (i.e., equivalently,
the time period t− t0 until the decay). Indeed, the laws of physics do not change
if we simply change the starting point for measuring time. Thus, if the decay
process was deterministic, then we will be able to conclude that when we observe
the not-yet-decayed atom at a moment t0 + ε for some ε > 0, then we should
also predict decay t− t0 seconds in the future – but this cannot be, since there
is only t − t0 − ε second to the deterministic decay. Thus, the decay cannot be
deterministic, it has to be probabilistic.

Comment. This example shows, by the way, that the probabilistic character of
quantum physics is not some counter-intuitive feature, it is a natural consequence
of simple symmetries.

Remaining problem. Our idea seems reasonable. However, there is still a
problem: to come up with an improved defuzzification method, we used Bellman-
Zadeh formulas – and, as we have mentioned earlier, these formulas are heuristic.
It is thus desirable to come up with a justification for these formulas. Let us show
that the probability-based approach provides exactly such a justification.

Comment. The main ideas behind this justification first appeared in [5].
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4 Probability-Based Approach Explains Heuristic
Formulas of Optimization under Fuzzy Constraints

Let us consider the maximization case: we want to maximize the value objective
function f(x) under the fuzzy constraint described by the membership function
µ(x). (The minimization case can be treated similarly.)

If we select a value x, and this value is possible, then we get the gain f(x).
On the other hand, if we select x, and this value x is not possible, then we will
have to go back to the worst-case scenario m. Let us denote the probability of
the value x to be possible by p(x). Then:

– with probability p(x), we get f(x), and
– with the remaining probability 1− p(x) we get m.

The expected gain is this equal to p(x) · f(x) + (1 − p(x)) ·m. This expression
can be reformulated as

p(x) · f(x) +m− p(x) ·m = m+ p(x) · (f(x)−m).

Adding a constant to all the values of an objective function (in this case,
the constant m) does not change which values are larger and which values are
smaller. Thus, maximizing the above objective function is equivalent to maxi-
mizing a simpler expression p(x) · (f(x)−m).

We consider the cases when the probabilities are proportional to the corre-
sponding values of the membership function: p(x) = c · µ(x). In this case, the
above maximized expression takes the form c · µ(x) · (f(x) − m). Multiplying
all the values of an objective function by the same constant does not change
which values are larger and which are smaller – e.g., the richest person in Mex-
ico remains the richest whether we count his net worth in US dollars or in Euros
or in Mexican pesos. Thus, maximizing the above expression is equivalent to
maximizing the product µ(x) · (f(x)−m). Similarly, since the difference M −m
is also a constant not depending on x, the above maximization is equivalent to
maximizing the expression

µ(x) · f(x)−m

M −m
.

This is exactly Bellman-Zadeh formula for f&(a.b) = a · b. Thus, the
probability-based approach indeed explains this heuristic formula.

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A His-
torical Perspective, Oxford University Press, New York, 2017.

2. R. E. Bellman and L. A. Zadeh, “Decision making in a fuzzy environment”, Man-
agement Science, 1970, Vol. 17, No. 4, pp. B 141–B 164.

3. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Ad-
dison Wesley, Boston, Massachusetts, 2005.



10 C. Servin et al.

4. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle
River, New Jersey, 1995.

5. O. Kosheleva and V. Kreinovich, “Why Bellman-Zadeh Approach to Fuzzy Opti-
mization”, Applied Mathematical Sciences, 2018, Vol. 12, No. 11, pp. 517–522.

6. R. D. Luce and H. Raiffa, Games and Decisions: Introduction and Critical Survey,
Dover, New York, 1989.

7. J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Direc-
tions, Springer, Cham, Switzerland, 2017.

8. R. B. Myerson, Game Theory: Analysis of Conflict, Harvard University Press,
Harvard, Massachusetts, 1997.

9. H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman and
Hall/CRC, Boca Raton, Florida, 2006.
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