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Abstract

In this paper, we show that special relativity phenomenon can be used
to reduce computation time of any algorithm from T to /T. For this
purpose, we keep computers where they are, but the whole civilization
starts moving around the computer — at an increasing speed, reaching
speeds close to the speed of light. A similar square-root speedup can be
achieved if we place ourselves near a growing black hole. Combining the
two schemes can lead to an even faster speedup: from time T to the 4-th
order root v/T.

1 Formulation of the Problem

Need for fast computations. At first glance, the situation with computing
speed is very good. The number of computational operations per second has
grown exponentially fast, and continues to grow. Faster and faser high perfor-
mance computers are being designed and built all the time, and the only reason
why they are not built even faster is the cost limitations.

However, while, because of this progress, it has indeed become possible to
solve many computational problems which were difficult to solve in the past,
there are still some challenging practical problems that cannot yet been solved
now. An example of such a problem is predicting where a tornado will go in the
next 15 minutes. At present, this tornado prediction problem can be solved in
a few hours on a high performance computer, but by then, it will be too late.
As a result, during the tornado season, broad warning are often so frequent
that people often ignore them — and fall victims when the tornado hits their
homes.There are many other problems like this.

What can we do — in addition to what is being done. Computer engineers
and computer scientists are well aware of the need for faster computations,



so computer engineers are working on new hardware that will enable faster
computations, and computer scientists are developing new faster algorithms for
solving different problems. Some of the hardware efforts are based on the same
physical and engineering principles on which the current computers operate,
some efforts aim to involve different physical phenomena — such as quantum
computing (see, e.g., [1]).

Can we use other physical phenomena as well? We are talking about speeding
up computations, i.e., about time, so a natural place to look for such physical
phenomena is to look for physical effects that change the rate of different physical
processes, i.e., make them run faster or slower.

What we do in this paper. This is what we will do in this paper: we will
show how physical phenomena can be used to further speed up computations.

2 Physical Phenomena That Change the Rate of
Physical Processes — and How to Use Them
to Speed Up Computations

Physical phenomena that change the rate of physical processes: a
brief reminder. Unfortunately for computations, there are no physical pro-
cesses that speed up all physical processes, but there are two physical processes
that slow down all physical processes; see, e.g., [2, 5].

First, according to Special Relativity Theory, if we travel with some speed
v, then all the processes slow down. The proper time interval s — i.e., the time
interval registered by the observer moving with the speed v — is related to the
time interval ¢ measured by the immobile observer by the formula
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s=t-4/1— = (1)
where ¢ denotes the speed of light. The closer the observer’s speed v to the
speed to the speed of light ¢, the larger this slow-down.

Second, according to General Relativity Theory, in the gravitational field,
time also slows down. For immobile observer, the proper time interval s is
equal to s = ,/goo - t, where ggg is the 00-component of the metric tensor
gi; that describes the geometry of space-time. In the spherically symmetric

Te
(Schwarzschild) solution, we have ggg = 1 — —, where 7 is the distance from the

2G - M
center of the gravitating body and r, def —5—, where G is the gravitational
c
constant and M is the mass of the central body.
Both slow-down effects have been experimentally confirmed with high accu-

racy.

How we can use these phenomena to speed up computations. If these
phenomena would speed up all the processes, then it would be easy to speed up



computations: we would simply place the computers in a body moving with a
high speed and/or located in a strong gravitational field, and we would this get
computations faster.

In reality, these phenomena slow down all the processes, not speed them
up. So, if we place computers in such a slowed-time environment, we will only
slow down the computations. However, we can speed up computations if we
do the opposite: namely, keep computers in a relatively immobile place with
a reasonably low gravitational field, and place our whole civilization in a fast
moving body and/or in a strong gravitational field. In this case, in terms of
the computers themselves, computations will continue at the same speed as
before, but since our time will be slowed down, we will observe much more
computational steps in the same interval of proper time (i.e., time as measured
by our slowed-down civilization).

In this paper, we analyze what speed up we can obtain in this way — by
analyzing the above slowing-down physical phenomena one by one.

3 Possible Special-Relativity Speed-Up: Analy-
sis of the Problem and Resulting Formulas

How to use special relativistic effects for a speed-up: reminder. To
get a speed-up, we can place the computer at the center, and start moving
around this computer at a speed close to the speed of light. Since we cannot
immediately reach the speed of light or the desired trajectory radius, we need
to gradually increase our speed and the radius. Let v(t) denote our speed at
time ¢, and let R(t) denote the radius of our trajectory at moment ¢.

Analysis of the problem. According to the above formula (1), a change ds in
proper time is related to the change dt in coordinate time (as measured by the
v*(t)
2
FEy move with this speed, we need the energy

computer clock) as ds =dt - /1 — . To make civilization with rest energy

Thus, we can say that ds = dt - ﬂ.
E(t)

The possibility to travel is limited by the need to keep acceleration experi-
enced by all moving persons at the usual Earth level gg. When a body follows
a circular orbit with velocity v(t) and radius R(t), it experiences acceleration
d*r V(1)
dt2  R(t)

. Since the velocity v(t) is close to the speed of light v(t) ~ ¢, we

d? 2 E(t
conclude that Hf = P::(t) Substituting dt = ds - E(o)

into this formula, we



conclude that
I
E2(t) ds?  R(t)
2
Here, the experienced acceleration d—;r should be equal to the usual Earth
S

acceleration gg, thus

E? s
E2(t) * 7 Rty
E(t) .
Thus, the speed-up z can be determined as
0

B0 [R0
Eq go

The larger R(t), the larger the speed-up. All the speeds are limited by the
speed of light, thus, we have R(t) < vg - t, where vy < ¢ is the speed with which
we increase the radius. To increase the speed-up effect, let us consider the case
when R(t) = vp - t. In this case, the speedup has the form

E(t) _
TO—Cﬁv

def C* /U

where we denoted C' = 0. Thus, we get
9o

@ = ﬂ = C_l .t_1/2
dt  E(t) ’
hence ds = C~'-dt-t~ /2. Integrating both sides, we conclude that s = 20~ 1-/.
Thus, we arrive at the following speed-up scheme.

Resulting speedup scheme. To speed up computations, we place computers
where they are now, and start moving the whole civilization. At any given
moment of time ¢, we move the civilization at a circle of radius R(t) = vy - t, for
some pre-determined radial speed vy < c.

The speed v(t) is determined by the formula

E? _ vty
B2(t) ¢t R(t)-g0 wo-go-t’
hence
c2
v(t)=c- 4/l — ———.
Vo - go-t

In this scheme, the coordinate time ¢ is related to the proper time s by the
¢ +/v
formula s = 20! - \/t, where C= 0

V90

. Thus, we indeed get a square-root

speedup.



This is all we can get. Please note that this square root speedup is all we can
gain: a further speedup would require having accelerations much higher than
our usual level gp.

How realistic is this scheme? How big a radius do we need to reach a reason-
able speedup? As we will show, the corresponding radius is — by astronomical
standards — quite reasonable. Indeed, for E(t) ~ Ey, the above formulas relating
E(t) and R(t) leads to

2 108 2
R(t):g% (3-10° m/sec)

5 =9-10" m.
9o 10 m/sec

This radius can be compared with a light year — the distance that the light
travels in 1 year — which is equal to

~ (3-10% m/sec) - (3-107 sec/year) - (1 year) = 9- 10 m,

so for E(t) = Ey, the radius should be about 1 light year. With a speed-up
E(t)/Ey, the radius grows as the square of this speed-up. So:

e to get an order of magnitude (10 times) speedup, we need an orbit of
radius 102 = 100 light years — reaching to the nearest stars;

e to get a two orders of magnitude (100 times) speedup, we need an orbit
of radius 1002 = 10* light years — almost bringing us to the edge of our
Milky Way Galaxy;

e to get a three orders of magnitude (1000 times) speedup, we need an orbit
of radius 1000% = 106 light years;

e with an orbit of the same radius as the radius of the Universe R(t) ~ 20
billion = 2 - 101° light years, we can get v2- 1010 ~ 1.5 - 10° speedup —
more than hundred thousand times speedup.

This is similar to a quantum speedup. The above square root speedup is
similar to the speedup of Grover’s quantum algorithm for search in an unsorted
array [3, 4, 1]; the difference is that:

e in quantum computing, the speedup is limited to search in an unsorted
array, while

e in the above special-relativity scheme, we get the same speedup for all
possible computations.

Comment. In Russia — where we are from — to ring the church bells, the monks
move the bell’s “tongue”. In Western Europe, they move the bell itself. This
example is often used in Russian papers on algorithm efficiency, with an empha-
sis on the fact that, in principle, it is possible to use a third way to ring the bell:
by shaking the whole bell tower. In these papers, this third way is mentioned



simply as a joke, but, as the above computations show, this is exactly what we
are proposing here: since we cannot reach a speedup by making the computer
move, we instead leave the computers intact and move the whole civilization.

Speculation. How can we check whether an advanced civilization is already
using this scheme? In this scheme, a civilization rotates around a center, in-
creasing its radius as it goes — i.e., follows a spiral trajectory. In this process,
to remaining accelerating, the civilization needs to gain more and more kinetic
energy E(t). The only way to get this energy is to burn all the burnable matter
that it encounters along its trajectory. As a result, along the trajectory, where
the matter has been burned, we have low-density areas.

Thus, as a trace of such a civilization, we are left with a shape in which
there are spiral-shaped low-density areas starting from some central point. But
this is exactly how our Galaxy — and many other spiral galaxies — look like. So
maybe this is how spiral galaxies acquired their current shape?

4 Possible General-Relativity Speed-Up: Anal-
ysis of the Problem and Resulting Formulas

Idea. If we keep the computers were they are now, and place the whole civiliza-
tion in a strong gravitational field, then our proper time will slow down. Thus,
the computations that take the same coordinate time ¢ will require, in terms of
our proper time s, much fewer seconds.

Analysis of the problem. According to the Schwarzschild’s formula for the
gravitational field of a symmetric body of mass M (t) at a distance R(t) from

the center, for an immobile body, we have ds?> = gqo - dt?, where goo(t) =
2G - M(t of d
- ¢:2R(7(f)) So, the slow-down &(t) o £ is equal to
2G - M(t)
t) = t)y=4/1— ————.
6( ) 900( ) c2 . R(t)
. - R(t)
We want a good speedup, with e(¢) = 0, so we should have M (t) ~ g
G-M(t
The coordinate acceleration is equal to 0 ; ).
£2_Gar0)
2 R2(t)

Substituting the above expression for M (t) into this formula, we conclude that

dar T 2R2(t)  2R(t)

d*x 2 R(t) c?
t



The observed acceleration thus takes the form

Fr_Po (@Y 2
ds?2  dt2 \ds)  2R(t) &2(t)

This acceleration should be equal to the usual Earth’s acceleration go:

2 I
2R(t) e2(t) I

c
thus €(f) = ———==—=. So, to get faster and faster computations, we need to

2R(t) - go
constantly increase R(t) — and thus, increase the mass M (¢) which is propor-
tional to R(t).
Similarly to the special relativity case, R(t) cannot grow faster than linearly,
so we have R(t) = vo-t. In this case, the speed-up is proportional to e(t) ~ t~1/2,
and, similarly to the special relativity case, we get a square-root speedup.

Resulting speedup scheme. To speed up computations, we place computers
where they are now, and move at a distance R(t) = vp - ¢ from a body of

- R(t)

a constantly increasing mass M (t) = , where GG is the gravitational

constant — and we ourselves need to continually increase the corresponding mass.
In this scheme, we also get a square-root speedup.

This is all we can get. Please note that, similarly to the special relativity
scheme, this square root speedup is all we can gain: a further speedup would
require having accelerations much higher than our usual level gg.

Astrophysical comment. It is known that there is a threshold of masses after
which a body with a sufficiently large mass becomes a black hole. Thus, in this
scheme, after some time, the civilization is close to a black hole.

5 Ideally, We Should Use Both Speedups

Moving at a speed close to the speed of light decreases the proper time from the
original value ¢ to a much smaller amount s ~ /£. Similarly, a location near a
black hole also decreases the observable computation time to a square root of
its original value.

Thus, if we combine these two schemes — i.e., place ourselves near an ever-
increasing black hole and move (together with this black hole) at a speed close to
the speed of light, we will get both speedups, i.e., we will replace the perceived

computation time from 7" to vV VT = V/T.
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