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Abstract. In this paper, we show that special relativity phenomenon
can be used to reduce computation time of any algorithm from T to

√
T .

For this purpose, we keep computers where they are, but the whole civ-
ilization starts moving around the computers – at an increasing speed,
reaching speeds close to the speed of light. A similar square-root speedup
can be achieved if we place ourselves near a growing black hole. Com-
bining the two schemes can lead to an even faster speedup: from time T
to the 4-th order root 4

√
T .

1 Formulation of the Problem

Need for fast computations. At first glance, the situation with computing
speed is very good. The number of computational operations per second has
grown exponentially fast, and continues to grow. Faster and faser high perfor-
mance computers are being designed and built all the time, and the only reason
why they are not built even faster is the cost limitations.

However, while, because of this progress, it has indeed become possible to
solve many computational problems which were difficult to solve in the past,
there are still some challenging practical problems that cannot yet been solved
now. An example of such a problem is predicting where a tornado will go in the
next 15 minutes. At present, this tornado prediction problem can be solved in
a few hours on a high performance computer, but by then, it will be too late.
As a result, during the tornado season, broad warning are often so frequent that
people often ignore them – and fall victims when the tornado hits their homes.
There are many other problems like this.

What can we do – in addition to what is being done. Computer engineers
and computer scientists are well aware of the need for faster computations, so
computer engineers are working on new hardware that will enable faster compu-
tations, and computer scientists are developing new faster algorithms for solving
different problems. Some of the hardware efforts are based on the same physical
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and engineering principles on which the current computers operate, some efforts
aim to involve different physical phenomena – such as quantum computing (see,
e.g., [5]).

Can we use other physical phenomena as well? We are talking about speeding
up computations, i.e., about time, so a natural place to look for such physical
phenomena is to look for physical effects that change the rate of different physical
processes, i.e., make them run faster or slower.

What we do in this paper. This is what we will do in this paper: we will show
how physical phenomena can be used to further speed up computations. Specif-
ically, for this speed-up, in line with the general idea of relativistic computation
(see, e.g., [1]), we will be using relativistic effects.

2 Physical Phenomena That Change the Rate of Physical
Processes – and How to Use Them to Speed Up
Computations

Physical phenomena that change the rate of physical processes: a brief
reminder. Unfortunately for computations, there are no physical processes that
speed up all physical phenomena, but there are two physical processes that slow
down all physical phenomena; see, e.g., [2], Vol. I, Chapters 15–17, and Vol. II,
Chapter 42, and [6], Chapters 2, 24, and 25.

First, according to Special Relativity Theory, if we travel with some speed
v, then all the processes slow down. The proper time interval s – i.e., the time
interval registered by the observer moving with the speed v – is related to the
time interval t measured by the immobile observer by the formula

s = t ·
√

1− v2

c2
, (1)

where c denotes the speed of light. The closer the observer’s speed v to the speed
of light c, the larger this slow-down.

Second, according to General Relativity Theory, in the gravitational field,
time also slows down. For immobile observer in a gravitational field, the proper
time interval s is equal to s =

√
g00 · t, where t is the time as measured by a

distant observer – who is so far away that this observer is not affected by the
gravitational field – and g00 is the 00-component of the metric tensor gij that de-
scribes the geometry of space-time. In the spherically symmetric (Schwarzschild)

solution, we have g00 = 1 − rs
r

, where r is the distance from the center of the

gravitating body and rs
def
=

2G ·M
c2

, where G is the gravitational constant and

M is the mass of the central body.
Both slow-down effects have been experimentally confirmed with high accu-

racy.

How we can use these phenomena to speed up computations. If these
phenomena would speed up all the processes, then it would be easy to speed up
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computations: we would simply place the computers in a body moving with a
high speed and/or located in a strong gravitational field, and we would thus get
computations faster.

In reality, these phenomena slow down all the processes, not speed them
up. So, if we place computers in such a slowed-time environment, we will only
slow down the computations. However, we can speed up computations if we
do the opposite: namely, keep computers in a relatively immobile place with
a reasonably low gravitational field, and place our whole civilization in a fast
moving body and/or in a strong gravitational field. In this case, in terms of the
computers themselves, computations will continue at the same speed as before,
but since our time will be slowed down, we will observe much more computational
steps in the same interval of proper time (i.e., time as measured by our slowed-
down civilization).

In this paper, we analyze what speed up we can obtain in this way – by
analyzing the above slowing-down physical phenomena one by one.

3 Possible Special-Relativity Speed-Up: Analysis of the
Problem and Resulting Formulas

How to use special relativistic effects for a computational speed-up:
reminder. To get a computational speed-up, we can place the computer at the
center, and start moving around this computer at a speed close to the speed
of light. Since we cannot immediately reach the speed of light or the desired
trajectory radius, we need to gradually increase our speed and the radius. Let
v(t) denote our speed at time t, and let R(t) denote the radius of our trajectory
at moment t.

Preliminary analysis of the problem: simplified computations. Accord-
ing to the above formula (1), a change ds in proper time is related to the change
dt in coordinate time (as measured by the computer clock) as ds = dt · S(t),

where S(t)
def
=

√
1− v2(t)

c2
.

The possibility to travel is limited by the need to keep acceleration experi-
enced by all moving persons below or at the usual Earth level g0. The faster we
go, the larger the slow-down effect – and thus, the larger the expected computa-
tional speed-up. Thus, to achieve the largest possible computational speed-up,
we should accelerate as fast as possible. Since possible accelerations are limited
by g0, this means that, to achieve the largest possible speed-up, we should always
accelerate with the maximum possible acceleration g0.

When a body follows a circular orbit with velocity v(t) and radius R(t), it

experiences coordinate acceleration
d2x

dt2
=
v2(t)

R(t)
. As we accelerate, the velocity

gets closer and closer to the speed of light. For large t, the velocity v(t) becomes
close to the speed of light v(t) ≈ c, so we conclude that the following asymptotic
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equality holds:
d2x

dt2
≈ c2

R(t)
. Let us find out what is the value of the experienced

acceleration
d2x

ds2
.

Here,
dx

ds
=
dx

dt
· dt
ds

=
dx

dt
· 1

S(t)
, thus,

d2x

ds2
=

d

ds

(
dx

dt
· 1

S(t)

)
=
dt

ds
· d
dt

(
dx

dt
· 1

S(t)

)
=

1

S(t)
· d
dt

(
dx

dt
· 1

S(t)

)
.

When the body follows a circular orbit with a constant speed, the value S(t) is
a constant, so we have

d

dt

(
dx

dt
· 1

S(t)

)
=

1

S(t)
· d

2x

dt2

and thus,
d2x

ds2
=

1

S2(t)
· d

2x

dt2
≈ 1

S2(t)
· c2

R(t)
.

Here, the experienced acceleration
d2x

ds2
should be equal to the usual Earth ac-

celeration g0, thus

g0 ≈
1

S2(t)
· c2

R(t)
.

In this case, the relativistic slow-down has the form S(t) =
c√

g0 ·R(t)
. The

larger R(t), the larger the slow-down effect and thus, the larger the expected
computational speed up. All the speeds are limited by the speed of light, thus,
we have R(t) ≤ v0 · t, where v0 < c is the speed with which we increase the
radius. To increase the computational speed-up effect, let us consider the case
when R(t) = v0 · t. In this case, the relativistic slow-down effect has the form

S(t) ≈ C−1 · t−1/2,

where we denoted C
def
=

√
g0 · v0
c

.

From S(t) =

√
1− v2(t)

c2
=

c√
g0 · v0 · t

, we conclude that 1 − v2(t)

c2
=

c2

g0 · v0 · t
, and thus,

v(t) = c ·

√
1− c2

g0 · v0 · t
.

At any moment of time t, we get the following relation between the increase dt
in corresponding time and the increase ds in proper time (i.e., time experienced
by us):

ds

dt
= S(t) ≈ C−1 · t−1/2,
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hence ds ≈ C−1 · dt · t−1/2. Integrating both sides of this asymptotic equality,
we conclude that s ≈ 2C−1 ·

√
t.

Once the computers finish their computations at time T , they need to send
us the results. This can be done with the speed of light. So, at each moment
t ≥ T of coordinate time, the signal reaches the distance c · (t − T ) from the
computers’ location. We receive this signal when it reaches our location, i.e., at
a moment tr for which c · (tr − T ) = R(tr) = v0 · tr. So, (c− v0) · tr = c · T and

tr =
c

c− v0
· T . At this moment, our experienced time sr is equal to

sr ≈ 2C−1 ·
√
tr = 2C−1 ·

√
c

c− v0
·
√
T .

Thus, in comparison with the usual (stationary) computations which would re-
quire time T , we indeed get a square-root computational speed-up.

This is probably all we can get. Please note that this square root speedup
is probably all we can gain: indeed, we tried to extract as much slowing down as
possible with the limitation that the acceleration does not exceed g0. A further
relativistic slow-down would probably require having accelerations much higher
than our usual level g0.

Detailed analysis and the resulting computational speed-up scheme.
In the above simplified computations, we used the formulas which are valid for
the case when the body is moving with a constant speed along the same circular
orbit. In our scheme, both the speed and the radius R(t) increase with time. Let
us now perform a more accurate analysis, that takes these changes into account
and leads to the same asymptotic speed-up. To be more precise, we will show
that it is possible, for each ε > 0, to achieve a speed-up from T to T 1/2+ε. Since
this value ε can be arbitrarily small, from the practical viewpoint, this means
that, in effect, we get the square root speed-up.

To speed up computations, we place computers where they are now, and
start moving the whole civilization. All the motion will be in a plane, with the
civilization following – after some preparation time t0 – a logarithmic spiral
trajectory, i.e., a trajectory that in polar coordinates (R,ϕ) takes the form R =
R0 · exp(k · ϕ), i.e., equivalently, ϕ = K · ln(R/R0) = K · ln(R) − K · ln(R0),

where we denoted K
def
= k−1. To show that the corresponding speedup can be

achieved, we will take K =
v0/c√
1− v20

c2

.

For the dependence of the distance R(t) on time t, we consider the following
formula

R(t) =
√
c2 − v20 · t− c0 · t2ε,

for an appropriate constant c0 (that will be determined later). We will show that

for an appropriately selected value c0, the perceived acceleration a
def
=

∥∥∥∥d2xids2

∥∥∥∥
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will not exceed the Earth’s level g0, and that this trajectory will indeed lead to
the T → T 1/2+ε speedup. Since we are considering only moments after some time
t0, it is sufficient to prove that the asymptotic expression for the acceleration a

does not exceed g′0
def
= g0 − δ for some small δ > 0; this will guarantee that the

acceleration is smaller than g0 for all moments t starting with some moment t0.
Let us first estimate the relativistic slow-down. In the usual Cartesian coor-

dinates, the trajectory has the form

x(t) = R(t) · cos(K · ln(R)−K · ln(R0)), y(t) = R(t) · sin(K · ln(R)−K · ln(R0)).

Differentiating these formulas with respect to coordinate time t, we conclude
that

dx

dt
= R′(t)·cos(K·ln(R)−K ln(R0))−R(t)·sin(K·ln(R)−K·ln(R0))· K

R(t)
·R′(t) =

R′(t) · (cos(K · ln(R)−K ln(R0))−K · sin(K · ln(R)−K ln(R0))),

where R′(t) denotes the derivative of the function R(t), and similarly

dy

dt
= R′(t) · (sin(K · ln(R)−K · ln(R0)) +K · cos(K · ln(R)−K · ln(R0))).

Substituting these expressions into the formula

v2 =

(
dx

dt

)2

+

(
dy

dt

)2

,

taking into account that terms proportional to the product of sine and cosine
cancel each other and that sin2(z) + cos2(z) = 1, we conclude that

v2 = (R′(t))2 · (1 +K2).

From the formula for R(t), we get R′(t) =
√
c2 − v20 − c0 · 2ε · t−(1−2ε), thus

(R′(t))2 = c2 − v20 − 2
√
c2 − v20 · c0 · 2ε · t−(1−2ε) + o,

where o denotes terms that are asymptotically smaller than all the terms present
in this formula. So, v2 = (c2−v20)·(1+K2)−2

√
c2 − v20 ·c0·2ε·(1+K2)·t−(1−2ε)+o.

By our selection of K, the first term in the formula for v2 is equal to c2, so

v2 = c2 − c1 · t−(1−2ε) + o, where we denoted c1
def
= 2

√
c2 − v20 · c0 · 2ε · (1 +K2).

Thus, 1− v2

c2
= c2 · t−(1−2ε) + o, where c2

def
=

c1
c2

and hence, the relativistic slow-

down is equal to S(t) = c3 · t−(1/2−ε) + o, where c3
def
=
√
c2. So, asymptotically,

dt

ds
=

1

S(t)
∼ t1/2−ε and

(
dt

ds

)2

∼ t1−2ε.

The perceived acceleration has the form a = ‖ai‖, where

ai =
d

ds

(
dxi
ds

)
=

d

ds

(
dxi
dt
· dt
ds

)
=
dt

ds
· d
dt

(
dxi
dt
· dt
ds

)
=
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dt

ds

)2

· d
2xi
dt2

+
dt

ds
· dxi
dt
· d
dt

(
dt

ds

)
.

In the second term in the expression for ai, we have
dt

ds
∼ t1/2−ε,

dxi
dt
∼ const,

and
d

dt

(
dt

ds

)
∼ t−(1/2+ε), so the product of these three factors is ∼ t−2ε and

thus, tends to 0 as t increases.

In the first term in the expression for ai, from the above formula for
dx

dt
, we

get

d2x

dt2
= R′′ · (cos(.)−K · sin(.))−R′ · (sin(.) +K · cos(.)) · K

R
·R′.

For the first term in this expression, we have R′′ ∼ t−(2−2ε), so due to the above

asymptotic for the factor

(
dt

ds

)2

, the product of term proportional to R′′ and

this factor is ∼ t−1 – and thus, also tends to 0 as t increases.
For the remaining term, since R′ ∼ t−(1−ε) and R ∼ t, the term proportional

to R′ · K
R
· R′ is ∼ t−(1−2ε) and thus, the product of this term and the factor(

dt

ds

)2

∼ t1−2ε is asymptotically a constant – and a constant proportional to c0.

A similar conclusion can be made about
d2y

dt2
. So, overall, ai is bounded by a

constant proportional to c0. Hence, by appropriately selecting c0, we can make
this term – and thus, the whole expression ai – as small as needed, in particular,
smaller than the desired acceleration bound g′0.

Let us now show that in this scheme, we indeed get the desired speed-up.

Indeed, here,
ds

dt
∼ t−(1/2−ε), so for the proper time s =

∫
ds

dt
dt we get s(t) ∼

t1/2+ε.
Suppose that the centrally located computer finishes its computations at time

T , and immediately sends the result to us. This result travels to us with the speed
of light c. Let tr denote the moment of (coordinate) time at which we receive
this result. At this moment of time, we are at the distance R(tr), so it took the

signal time
R(tr)

c
to reach us. Thus, T +

R(tr)

c
= tr. Asymptotically, R(t) ∼√

c2 − v20 ·t, so for large T , the above formula takes the following asymptotic form

T+

√
c2 − v20
c

·tr = tr, thus T = tr ·

(
1−

√
1− v20

c2

)
and tr =

T

1−
√

1− v20
c2

∼ T .

We have shown that our proper (perceived) time s depends on the coordinate
time t as s(t) ∼ t1/2+ε. Thus, by our clocks, we get the result of the computation
at the moment of time s(tr) ∼ T 1/2+ε. So, we indeed get a square root speed-up.
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How realistic is this scheme? How big a radius do we need to reach a reason-
able speedup? As we will show, the corresponding radius is – by astronomical
standards – quite reasonable. Indeed, for large t, when v ≈ c, the above formulas
relating S(t) and R(t) leads to

R(t) ≈ c2

g0
≈ (3 · 108 m/sec)2

10 m/sec
2 = 9 · 1015 m.

This radius can be compared with a light year – the distance that the light
travels in 1 year – which is equal to

≈ (3 · 108 m/sec) · (3 · 107 sec/year) · (1 year) = 9 · 1015 m,

so for v(t) ≈ c, the radius should be about 1 light year.
With time t, the radius is proportional to t, and the computational speed-up

is proportional to
√
t. Thus, the radius grows as the square of the computational

speed-up. So:

– to get an order of magnitude (10 times) speedup, we need an orbit of radius
102 = 100 light years – reaching to the nearest stars;

– to get a two orders of magnitude (100 times) speedup, we need an orbit of
radius 1002 = 104 light years – almost bringing us to the edge of our Milky
Way Galaxy;

– to get a three orders of magnitude (1000 times) speedup, we need an orbit
of radius 10002 = 106 light years;

– with an orbit of the same radius as the radius of the Universe R(t) ≈ 20

billion = 2 · 1010 light years, we can get
√

2 · 1010 ≈ 1.5 · 105 speedup – more
than hundred thousand times speedup.

This is similar to a quantum speedup. The above square root speedup is
similar to the speedup of Grover’s quantum algorithm for search in an unsorted
array [3–5]; the difference is that:

– in quantum computing, the speedup is limited to search in an unsorted array,
while

– in the above special-relativity scheme, we get the same speedup for all pos-
sible computations.

Comment. In Russia – where we are from – to ring the church bell, the bell-
ringer moves the bell’s “tongue” (clapper). In Western Europe, they move the
bell itself. This example is often used in Russian papers on algorithm efficiency,
with an emphasis on the fact that, in principle, it is possible to use a third way
to ring the bell: by shaking the whole bell tower. In these papers, this third
way is mentioned simply as a joke, but, as the above computations show, this is
exactly what we are proposing here: since we cannot reach a speedup by making
the computer move, we instead leave the computers intact and move the whole
civilization.
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Speculation. How can we check whether an advanced civilization is already us-
ing this scheme? In this scheme, a civilization rotates around a center, increasing
its radius as it goes – i.e., follows a spiral trajectory. In this process, in order to
remain accelerating, the civilization needs to gain more and more kinetic energy.
The only way to get this energy is to burn all the burnable matter that it en-
counters along its trajectory. As a result, along the trajectory, where the matter
has been burned, we have low-density areas.

Thus, as a trace of such a civilization, we are left with a shape in which there
are spiral-shaped low-density areas starting from some central point. But this is
exactly how our Galaxy – and many other spiral galaxies – look like. So maybe
this is how spiral galaxies acquired their current shape?

4 Possible General-Relativity Speed-Up: Analysis of the
Problem and Resulting Formulas

Idea. If we keep the computers where they are now, and place the whole civi-
lization (but not the computers) in a strong gravitational field, by moving the
civilization close to a far away massive body, then our proper time will slow
down. Thus, the computations that take the same coordinate time t will require,
in terms of our proper time s, much fewer seconds.

Analysis of the problem. According to the Schwarzschild’s formula for the
gravitational field of a symmetric body of mass M(t) at a distance R(t) from the
center, the change in the proper time ds (as experience by this body) is related
to the change dt in time t as measured by the distant observer by the formula

ds = ε(t) · dt, where ε(t)
def
=

√
1− rs

R(t)
and the parameter rs (known as the

Schwarzschild radius) is equal to

rs
def
=

2G ·M(t)

c2
;

see, e.g., [2], Vol. II, Chapter 42, and [6], Chapters 24 and 25.
We want to have as large computational speed-up as possible, so we need to

make sure that the corresponding slow-down is as drastic as possible, i.e., that
the slow-down factor ε(t) is as small as possible. For a given rs this means that
we should take R(t) to be as small as possible – i.e., we want to be able to get
as close to the Schwarzschild radius as possible. For usual celestial bodies, the
radius rs is well within them: e.g., for our Sun, this radius is equal to 3 km, much
smaller than the Sun’s size of 1 million km. The only bodies for which their size
is smaller than the Schwarzschild radius are black holes. Thus, in this scheme,
the civilization should move close to a black hole.

Getting too close to the black hole is dangerous: if we get to the surface
R = rs (known as the event horizon), we will never be able to get back to our
world or even send a signal back to our world. Thus, it is desirable to always keep
ourselves at a certain safe distance d0 from the event horizon, a safe distance
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that enables us to move back if some unexpected fluctuation brings us too close
to it. So, the closest we can get to the black hole is at the distance R(t) = rs+d0,
for which rs = R(t)− d0. For these values, the slow-down factor takes the form

ε(t) =

√
1− R(t)− d0

R(t)
=

√
d0
R(t)

.

Thus, to decrease this factor – and thus, to get larger and larger compu-
tational speed-up – we need to increase R(t). Since we want to keep rs to be
equal to R(t) − d0, this means that we need to also increase rs – and since rs
is proportional to the mass M(t) of the black hole, this means that we have to
continuously increase its mass.

How fast can we increase the radius? Probably we cannot grow R(t) faster
than the speed of light – since otherwise, in the coordinates of the distant ob-
server, we will have a physically impossible faster-than-light process. So, the
fastest we can grow is at some speed v0 not exceeding the speed of light. In this
case, R(t) = v0 · t, so the speed-up is proportional to ε(t) ∼ t−1/2, and, similarly
to the special relativity case, we get a square-root computational speed-up.

Resulting speedup scheme. To speed up computations, we place computers
where they are now. Then we look for a faraway massive black hole, so far away
that its gravitational effect on the computers is negligible.

Then we ourselves move close to this black hole, so that our distance from
this black hole changes with time t as R(t) = v0 · t. While we are doing that, we
are increasing the black hole’s mass, so that its mass at time t becomes equal to

M(t) =
c2 · (R(t) + d0)

2G
, where G is the gravitational constant.

Once the computers finish their computations, they send the results to us by
a direct light-speed signal.

In this scheme, we also get a square-root speedup.

This is probably all we can get. Please note that, similarly to the special
relativity scheme, this square root speedup is probably all we can gain: indeed,
we tried to extract as much slowing down as possible. A further speedup would
probably bring too dangerously close to the event horizon.

5 Ideally, We Should Use Both Speedups

Moving at a speed close to the speed of light decreases the proper time from the
original value t to a much smaller amount s ∼

√
t. Similarly, a location near a

black hole also decreases the observable computation time to a square root of
its original value.

Thus, if we combine these two schemes – i.e., place ourselves near an ever-
increasing black hole and move (together with this black hole) at a speed close to
the speed of light, we will get both speedups, i.e., we will replace the perceived

computation time from T to
√√

T = 4
√
T .
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