
In Its Usual Formulation, Fuzzy Computation Is, In
General, NP-Hard, But a More Realistic

Formulation Can Make It Feasible
1st Martine Ceberio

Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, USA

mceberio@utep.edu

2nd Olga Kosheleva
Department of Teacher Education

University of Texas at El Paso
El Paso, Texas 79968, USA

olgak@utep.edu

4th Luc Longpré
Department of Computer Science

University of Texas at El Paso
El Paso, Texas 79968, USA

longpre@utep.edu

3rd Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
El Paso, Texas 79968, USA

vladik@utep.edu

Abstract—The need for most computations comes from the fact
that in many practical situations, we cannot directly measure
or estimate the desired quantity y – e.g., we cannot directly
measure the distance to a star or the next week’s temperature.
To provide the desired estimate, we measure or estimate easier-
to-measure quantities x1, . . . , xn which are related to y, and
then use the known relation y = f(x1, . . . , xn) to transform
our estimates x̃i for xi into an estimate ỹ = f(x̃1, . . . , x̃n) for
y. In situations when xi are known with fuzzy uncertainty, we
thus need fuzzy computation. Zadeh’s extension principle provides
us with formulas for fuzzy computation. The challenge is that
the resulting computational problem is NP-hard – which means
that, unless P=NP (which most computer scientists consider to
be impossible), it is not possible to solve all fuzzy computation
problems in feasible time. To overcome this challenge, we propose
a more realistic formalization of fuzzy computation – in which
instead of an un-realistic requirement that the corresponding
properties hold for all xi, we only require that they hold for
almost all xi – in some reasonable sense. We show that under
this modification, the problem of fuzzy computation becomes
computationally feasible.

Index Terms—fuzzy computation, Zadeh extension principle,
interval computation, feasible, NP-hard, Monte-Carlo techniques

I. FORMULATION OF THE PROBLEM

Need for computations. To explain our problem, let us
recall why we need computations in the first place. The main
objectives of science and engineering are:

• to describe the world,
• to predict what will happen in the future, and,
• if necessary, to come up with recommendation of what

to do to make the future state of the world better.

This work was supported in part by the National Science Foundation grant
HRD-1242122 (Cyber-ShARE Center of Excellence).

The physical world is usually described by the values of
the corresponding physical quantities. Thus, to describe the
current state of the world, we need to describe the numerical
values of all these quantities.

Some of these values we can direct measure or estimate.
For example:

• we can directly measure the width of a room;
• by touching a baby’s forehead, we can directly estimate

the baby’s body temperature, etc.
However, there are many other quantities which are difficult
to measure or estimate directly. For example, it is not easy to
directly measure or estimate:

• the distance to a faraway star, or
• the temperature inside the car engine.
This impossibility is even more evident if we are interested

in the future values of the quantities of interest: there is no
way that we can measure them now, and it is rarely possible
to directly estimate these future values – otherwise, we would
not need high-performance computers to predict next week’s
weather.

If we cannot directly measure or estimate the value of the
desired quantity y, a natural idea is to estimate this value
indirectly. Namely:

• we find some easier-to-or-estimate auxiliary quantities
x1, . . . , xn which are related to the desired quantity y
by a known dependence y = f(x), where we denoted

x
def
= (x1, . . . , xn);

• then, we measure or estimate these auxiliary quantities;
• finally, we use the resulting estimates x̃i to compute the

estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.

For example, to predict the temperature y in El Paso in a
week, we can:

• measure the values x1, . . . , xn describing the tempera-
ture, humidity, and wind speed measurements in a wide
area, and then

• use the algorithm y = f(x1, . . . , xn) for solving the
corresponding partial differential equations to predict how
the next-week temperature in El Paso.

Such estimations are the main reason why computations are
needed in the first place.

Need for fuzzy computation. In many situations, the values
xi are estimated by experts – or measured by measuring
instruments whose uncertainty is described by experts. Experts
usually describe the accuracy of their estimates not in precise
mathematical terms, but rather by using imprecise (“fuzzy”)
words from natural language. For example, an expert can say
that the value of xi is “close to 1”, “the difference between the
actual value and 1 is small”, or, more accurately, “close to 1
with an estimation error around 0.1”. To use these imprecise
estimates, we need to translate them into precise computer-
understandable terms.

For this translation, it is reasonable to use fuzzy logic – a
technique specifically designed by Lotfi Zadeh for the purpose
of such a translation; see, e.g., [1], [2], [4], [6], [8], [15]. In
fuzzy logic, each imprecise property (like “small”) is described
by assigning, to each possible value of the corresponding
quantity q, the degree µ(q) ∈ [0, 1] to which this value satisfies
the corresponding property – e.g., is small. The corresponding
function q → µ(q) is known as the membership function.

After this translation, we have n membership functions
µ1(x1), . . . , µn(xn). Based on these functions, we would like
to come up with the membership function µ(y) describing
possible values of y = f(x1, . . . , xn). Computing this function
is a fuzzy case of the general computation problem; we will
therefore call computing µ(y) fuzzy computing.

Traditional formulas for fuzzy computing: Zadeh’s exten-
sion principle. How can we compute µ(y)? The main idea
behind this computation was proposed by Zadeh himself. This
idea is based on a fact that the number Y is a possible value
of the quantity y = f(x1 . . . , xn) if Y = f(X1, . . . , Xn) for
some possible values Xi of xi. In other words, Y is possible
if:

• either X1 is a possible value of x1 and X2 is a possible
value of x2, and . . . , for some tuple (X1, . . . , Xn) for
which Y = f(X1, . . . , Xn),

• or X ′
1 is a possible value of x1 and X ′

2 is a possible
value of x2, and . . . , for some tuple (X ′

1, . . . , X
′
n) for

which Y = f(X ′
1, . . . , X

′
n),

• etc.
For each i and for each value Xi, we know the degree to

which Xi is a possible value of xi – this value is µi(Xi), by
definition of the membership function. So, to find the expert’s
degree of confidence in the above composite statement, we
need to be able, in general, to combine the degrees of confi-

dence in two statements S and S′ into a degree of confidence
in a propositional combination “S and S′” or “S or S′”.

In fuzzy logic, such a combination is provided by, cor-
respondingly, “and”-operations (also known as t-norms) and
“or”-operations (also known as t-conorms). The simplest such
operations are min(a, b) and max(a, b). By using these op-
erations, we get the following formula for the desired degree
µ(Y):

µ(Y) = max
X1,...,Xn:Y=f(X1,...,Xn)

min {µ1(X1), µ2(X2), . . .} .

This formula, first proposed by Zadeh, is known as Zadeh’s
extension principle, since it extends the function f(x1, . . . , xn)
used in traditional numerical computations to the case when
inputs are fuzzy; see, e.g., [1], [2], [4], [6], [8], [15].

Challenge: in its usual formulation, fuzzy computation is,
in general, NP-hard. We have shown that fuzzy computation
is practically important. How difficult is it to perform the
corresponding computations?

As we will show, in general, fuzzy computations are NP-
hard; see, e.g., [3], [14]. Crudely speaking, this implies that, if
(as most computer scientists believe) P is different from NP, no
algorithm is possible that would solve all fuzzy computation
problems in feasible time [3], [9]. We will show that this is
even true if we restrict ourselves to quadratic functions

f(x1, . . . , xn) = a0 +

n∑
i=1

ai · xi +

n∑
i=1

n∑
j=1

aij · xi · xj .

For some inputs, the computation time grows exponentially
with the number of inputs n, and thus, already for values n ≈
50, becomes larger than the lifetime of the Universe – i.e.,
completely unrealistic and infeasible.

In practical problems, the number of inputs can be huge. For
example, when we estimate the quality of a road, we use the
opinion of multiple pavement experts who provide estimates
of different quality aspects of different road segments; see,
e.g., [10]–[12].

The proof of NP-hardness is very straightforward. Namely,
it is well known – and relatively easy to prove – that for the
membership function µ(y), the corresponding α-cut

y(α)
def
= {y : µ(y) ≥ α}

is equal to the range of f(x1, . . . , xn) when each xi is in the
corresponding α-cut xi(α) = {xi : µi(xi) ≥ α}:

y(α) = {f(x1, . . . , xn) : xi ∈ xi(α) for all i} .

It is known that even in the simplest case, when the sets xi(α)
are intervals, computing the range is NP-hard for quadratic
functions f(x1, . . . , xn) [3], [14].

Let us describe this result in precise terms. For simplicity,
let us consider the usual case when all α-cuts are intervals,
i.e., if xi(α) = [xi(α), xi(α)]. The bounds xi(α) and xi(α)
of these intervals must be given, i.e., must be represented in a
computer – thus, we can safely assume that these bounds are
rational numbers.

The function f(x1, . . . , xn) is continuous – as we have
mentioned earlier, it is sufficient to consider quadratic func-
tions. Similarly to the bounds of the x-intervals, we can safely
assume that the coefficients of this quadratic functions are
rational numbers.

Our goal is them to compute the range y(α) =[
y(α), y(α)

]
. In general, the endpoint of a range are not

necessarily rational numbers, so we may not be able to
represent these ranges exactly. Thus, what we want, in general,
is to generate rational numbers which are ε-close to the desired
endpoints y(α) and y(α), for some given rational number ε.

By definition of the range, we have

y(α) = min
x1∈x1(α),...,xn∈xn(α)

f(x1, . . . , xn)

and
y(α) = max

x1∈x1(α),...,xn∈xn(α)
f(x1, . . . , xn).

We are considering the same value α in all these formulas.
Thus, we can safely skip the mentioning of this value – this
will make all the notations clearer without introducing any
confusion. Thus, we arrive at the following formulation of the
problem.

Definition 1. By the fuzzy computation problem, we mean the
following problem:

• given rational numbers x1, x1, . . . , xn, xn, ε > 0, and
a quadratic function f(x1, . . . , xn) with rational coeffi-
cients,

• compute rational numbers r and r which are ε-close to,
correspondingly,

y = min
x1≤x1≤x1 & ...&xn≤xn≤xn

f(x1, . . . , xn) and

y = max
x1≤x1≤x1 & ...&xn≤xn≤xn

f(x1, . . . , xn).

Proposition 1. The fuzzy computation problem is NP-hard.

Comment. The proof is, in effect, contained in [3], [14].

What we do in this paper. In this paper, we show that by
having a more realistic formalization of fuzzy computing, we
can make fuzzy computing feasible.

II. HOW TO MAKE FORMULAS OF FUZZY COMPUTING
MORE REALISTIC

Main idea. The usual derivation of Zadeh’s extension prin-
ciple for quantum computing consider all possible tuples
(X1, . . . , Xn) for which f(X1, . . . , Xn) = Y . Similarly, in
the formulas for the α-cut, we consider all possible tuples
(x1, . . . , xn) for which µi(xi) ≥ α for every i. In both cases,
we took “all” literally: all means all, one exception makes a
statement about all the tuples false.

From the mathematical viewpoint, this is a reasonable
idea. But let us take into account that we are not proving
mathematical theorems, we are trying to formalize common
sense, we are trying to formalize expert reasoning. And in our
usual reasoning, “all” does not literally mean mathematically

all, it usually means “almost all”, meaning everyone except a
small fraction of the original population.

• When a patriotic journalist says that all the citizens of the
country support it against its enemy – real or perceived –
this all-statement is often followed by a confession that
there are a few traitors who are willing to support the
enemy.

• When we say that all pigeons can fly, we understand very
well that there may be a wounded or deformed pigeon,
but that most pigeons can fly.

• A classical AI example is a phrase “all birds fly” (see,
e.g., [7]); this phrase has known exceptions, such as
penguins, but the vast majority of the birds indeed can
fly.

Let us see how the above definitions of fuzzy computing will
change if we replace the mathematical meaning of “all” with
a more commonsense meaning of this word.

Towards a new formalization of fuzzy computing. In line
with what we have just discussed, instead of defining the
desired upper endpoint y as the exact maximum of all the
values f(x1, . . . , xn) when xi ∈ [xi, xi], it is reasonable to
define y as the maximum of “almost all” values.

If we fix the exact proportion δ > 0 of values that we can
ignore, that would mean that we are looking for a value y for
which

|{x : x1 ∈ x1 & . . . &xn ∈ xn & f(x1, . . . , xn) ≤ y}|
|{x : x1 ∈ x1 & . . . &xn ∈ xn}|

= 1−δ,

where |S| denotes the multi-D volume of a set:
• width of an interval,
• area of a planar (2-D) set,
• volume of a 3-D set, etc.
When δ tends to 0, the corresponding value tends to the

maximum of the function f(x1, . . . , xn) on the box

x
def
= x1 × . . .× xn.

Thus, for small δ, the above-defined value is very close to this
maximum.

Similarly, instead of defining the lower endpoint y as the
exact minimum of all the values f(x) when x ∈ x, it is
reasonable to define y as the value for which∣∣{x : x ∈ x& f(x) ≥ y

}∣∣
|{x : x ∈ x}|

= 1− δ.

When δ tends to 0, the corresponding value tends to the
minimum of the function f(x1, . . . , xn) on the box x. Thus,
for small δ, the above-defined value is very close to this
minimum.

What value δ should we choose? Intuitively, since we are
considering the fuzzy case, it makes no sense to fix one exact
value δ, it is more appropriate to assume that this value is also
given with some uncertainty – at least with interval uncertainty.
In other words, it makes sense to assume that we know the
interval

[
δ, δ

]
, with δ < δ, that contains the actual (unknown)

value δ. In this case, all we know about 1 − δ is that it is
somewhere between 1− δ and 1− δ:

1− δ ≤ 1− δ ≤ 1− δ.

Thus, e.g., from the above equality for y we get the double
inequality:

1− δ ≤ |{x : x ∈ x& f(x) ≤ y}|
|{x : x ∈ x}|

≤ 1− δ.

A similar inequality holds for y.

What does it mean to compute y and y? Since we relaxed
the requirement on the endpoints y and y – by allowing some
probability that these values are not mathematically universal
bounds – it makes sense to also relax the usual requirement
on the algorithm: that it always computes the desired value.
Specifically, from the practical viewpoint, it makes perfect
sense to consider algorithms that provide an answer with a
probability 1− p0, for some small positive value p0 ≪ 1.

Indeed, even the computer hardware is not 100% reliable,
once in a while computers break down. From this viewpoint,
it is perfectly OK if the algorithm also sometimes does not
produce the desired result – as long as the probability for
this is mich smaller than the probability of a hardware fault
and thus, does not significantly increase the probability of am
erroneous result.

Thus, we arrive at the following definitions.

III. DEFINITIONS OF THE MORE REALISTIC FUZZY
COMPUTATIONS AND THE MAIN RESULT: THAT THE

CORRESPONDING PROBLEM IS NOW FEASIBLE

Definition 2. Let ε > 0 be a rational number. We say that a
function f(x1, . . . , xn) is ε-feasible if there exists a feasible
algorithm that, given rational values x1, . . . , xn, produces a
rational number which is ε-close to f(x1, . . . , xn).

Definition 3. Let ε > 0, 0 < δ < δ, and p0 > 0 be
rational numbers. By realistic fuzzy computations, we mean
the following problem:

• given rational numbers x1, x1, . . . , xn, xn, and an ε-
feasible function f(x1, . . . , xn) with rational coefficients,

• compute, with probability ≥ 1 − p0, rational numbers r
and r which are ε-close to, correspondingly, values y and
y for which

1− δ ≤
∣∣{x : x ∈ x& f(x) ≥ y

}∣∣
|{x : x ∈ x}|

≤ 1− δ and

1− δ ≤ |{x : x ∈ x& f(x) ≤ y}|
|{x : x ∈ x}|

≤ 1− δ.

Proposition 2. For each tuple (ε, δ, δ, p0), there exists a
feasible algorithm that solves the corresponding realistic fuzzy
computations problem.

Proof. The desired algorithm uses the standard random num-
ber generator algorithm that generates numbers ξ uniformly
distributed on the interval [0, 1]. For each interval [xi, xi], by

using such a random number generator, we can compute the
value xi = xi + ξ · (xi − xi) which is uniformly distributed
on the interval [xi, xi]. If we repeat this procedure n times,
for n intervals xi = [xi, xi], then we get a tuple (x1, . . . , xn)
which is uniformly distributed on the box x1 × . . .× xn.

Now, we can formulate the resulting algorithm:
• first, we select an appropriate natural number N , and

compute the values

δ̃
def
=

δ + δ

2
, ∆

def
=

δ − δ

2
, and v = ⌊N · δ̃⌋;

• then, N times we use the above procedure for generating
tuples uniformly distributed on the box x1 × . . . × xn,
and get N tuples x(1), . . . , x(N);

• we apply the given feasible algorithm f to each of
these tuples, generating N values y(k) which are ε-close
to f

(
x(k)

)
: ∣∣∣y(k) − f

(
x(k)

)∣∣∣ ≤ ε;

• we sort these N values y(k) into an increasing sequence

y(1) ≤ y(2) ≤ . . . ≤ y(N);

• finally, we take r = y(v) and r = y(N−v).
Let us show that for an appropriate value N , this Monte-

Carlo-type algorithm indeed solves the corresponding realistic
fuzzy computation problem.

Indeed, each value y(k) is ε-close to the corresponding
value f

(
x(k)

)
. Thus, if we sort the values f

(
x(k)

)
into an

increasing sequence f(1) ≤ f(2) ≤ . . . ≤ f(N), then we get∣∣y(k) − f(k)
∣∣ ≤ ε for all k. In particular, we have∣∣y(v) − f(v)

∣∣ ≤ ε and
∣∣y(N−v) − f(N−v)

∣∣ ≤ ε.

We will show that the desired inequalities hold for y = f(v)
and y = f(N−v).

For each y, let us denote the probability that f(x) ≤ y
under uniform distribution – i.e., the ratio

|{x : x ∈ x& f(x) ≤ y}|
|{x : x ∈ x}|

,

by p. Then, among N randomly selecting tuples x, the mean
E = E [V] of number V of tuples for which f(x) ≤ y is equal
to N ·p. The number V is equal to the sum of N independent
identically distributed variables η1, . . . , ηN each of which is
equal:

• to 1 if f(x) ≤ y and
• to 0 if f(x) > y.

For each such variable η, the variance is equal to

E
[
(η − E [η])

2
]
= E

[
(η − p)

2
]
=

p · (1− p)2 + (1− p) · (0− p)2 = p · (1− p).

Thus, the variance of V is equal to N · p · (1− p), and thus,
the standard deviation is equal to σ [V] =

√
N · p · (1− p).

For large N , due to the Central Limit Theorem (see, e.g.,
[13]), the distribution of V is close to Gaussian. Thus, for

an appropriate k0 (whose value depend on p0 [13])), with
probability ≥ 1 − p0, the actual value of V is within the
interval

[E [V]− k0 · σ [V] , E [V] + k0 · σ [V]] .

For example:
• for p0 = 0.05, we can take k0 = 2;
• for p0 = 0.001, we can take k0 = 3, and
• for p0 = 10−8, we can take k0 = 6.
With the probability ≥ 1 − p0, the difference between the

actual value V and the value E [V] = p ·N does not exceed

k0 ·
√
N ·

√
p · (1− p).

The largest possible value of the product p · (1−p) is attained
when p = 0.5; in this case,

√
p · (1− p) = 0.5. Thus, we

always have |V − p ·N | ≤ 0.5k0 ·
√
N . Hence,∣∣∣∣p− V

N

∣∣∣∣ ≤ 0.5k0√
N

.

For y = f(v), we have V = v and thus, the actual probability
p that f(x) is smaller than or equal to this value y satisfies
the inequality ∣∣∣p− v

N

∣∣∣ ≤ 0.5k0√
N

.

Here, by definition of v, we have
∣∣∣v − δ̃ ·N

∣∣∣ ≤ 1, hence∣∣∣ v
N

− δ̃
∣∣∣ ≤ 1

N
, thus

|p− δ̃| ≤
∣∣∣p− v

N

∣∣∣+ ∣∣∣ v
N

− δ̃
∣∣∣ ≤ 0.5k0√

N
+

1

N
.

We want to make sure that p is in the interval
[
δ, δ

]
. This

is equivalent to requiring that p differs from the center δ̃

by no more than its half-width ∆, i.e., that
∣∣∣p− δ̃

∣∣∣ ≤ ∆.

Thus, to make sure that our algorithm solves the corresponding
problem, it is sufficient to find the value N for which

0.5k0√
N

+
1

N
≤ ∆.

Such a value N is easy to find. For this N , the selected value
y satisfies the first of the two desired inequalities.

Similarly, we can prove that for this same N , the selected
value y = f(N−v) satisfies the second of these inequalities.
The proposition is proven.

Comment 1. The appearance of Monte-Carlo techniques in a
paper about fuzzy computation may seem to contradict the
fact that many papers on fuzzy computations emphasize that
their results are faster to compute than more traditional Monte-
Carlo-based techniques. However, there is no contradiction;
indeed:

• the computation time of usual fuzzy computation algo-
rithms grows with n, while

• the number of iterations N needs for a Monte-Carlo
algorithm does not depend on n at all – and the above
proof is an example of this fact.

As a result, for large n, when the computation time of the
usual fuzzy computation algorithms grows very large, Monte-
Carlo-type methods become much more efficient. But, on the
other hand, when the number of inputs n is reasonably small,
the usual methods are much faster – which is exactly what
many papers have claimed.

In this paper, our main objective is to find a feasible
algorithm, i.e., an algorithm that works reasonably well even
for large n. This is exactly why we produced the above
algorithm. By no means is this algorithm optimal – especially
for small n, when clearly the usual methods are faster.

Comment 2. In this paper, we provide a feasible algorithm
for a realistic formulation of maximization and minimization
problems. However, similar ideas can be applied to come up
with feasible algorithms for solving more complex problems,
such as minimax or maximin, where we need to compute

min
x∈X

max
y∈Y

f(x, y) or max
x∈X

min
y∈Y

f(x, y);

this is important, e.g., in game theory; see, e.g., [5]. Such
problems are also, in general, NP-hard, but if we replace
maximum and minimum over all possible value to maximum
and minimum over almost all values, then we will be able to
produce similar feasible algorithms. Same idea can be applied
to more general problems, when we have more than two
combinations of minimum and maximum.

These problems appear, e.g., if we start with a general first-
order formula – i.e., a formula obtained from equalities and
inequalities by applying logical connectives “and”, “or”, and
“not” and quantifiers ∃x and ∀x running over appropriate
intervals. Indeed:

• each strict inequality f > g can be approximated, with
any possible accuracy δ > 0, as a non-strict inequality

f ≥ g + δ;

• each equality f = g can be represented as two inequali-
ties f ≥ g and g ≥ f ;

• each inequality f ≥ g can be represented as h ≥ 0, for

h
def
= f − g;

• the formula f ≥ 0& g ≥ 0 can be represented as

min(f, g) ≥ 0;

• the formula f ≥ 0 ∨ g ≥ 0 can be represented as

max(f, g) ≥ 0;

• the formula ∃x (f ≥ 0) is equivalent to max
x

f ≥ 0; and
• the formula ∀x (f ≥ 0) is equivalent to min

x
f ≥ 0.

REFERENCES

[1] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathe-
matics: A Historical Perspective, Oxford University Press, New York,
2017.

[2] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[3] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Com-
plexity and Feasibility of Data Processing and Interval Computations,
Kluwer, Dordrecht, 1998.

[4] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and
New Directions, Springer, Cham, Switzerland, 2017.

[5] R. B. Myerson, Game Theory: Analysis of Conflict, Harvard University
Press, Harvard, Massachusetts, 1997.

[6] H. T. Nguyen, C. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

[7] N. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kauffman,
San Francisco, California, 2003.

[8] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

[9] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, San
Diego, 1994.

[10] E. D. Rodriguez Velasquez, C. M. Chang Albitres, and V. Kreinovch,
“Fuzzy ideas explain a complex heuristic algorithm for gauging pave-
ment conditions”, Mathematical Structures and Modeling, 2018, Vol. 47,
pp. 82–90.

[11] E. D. Rodriguez Velasquez, C. M. Chang Albitres, and V. Kreinovch,
“Measurement-type ‘calibration’ of expert estimates improves their
accuracy and their usability: pavement engineering case”, Proceedings
of the IEEE Symposium on Computational Intelligence for Engineering
Solutions CIES’2018, Bengaluru, India, November 18–21, 2018.

[12] E. D. Rodriguez Velasquez, C. M. Chang Albitres, Thach Ngoc Nguyen,
O. Kosheleva, and V. Kreinovich, “How to take expert uncertainty
into account: economic approach illustrated by pavement engineering
applications”, In: V. Kreinovich and S. Sriboonchitta (eds.), Structural
Changes and Their Econometric Modeling, Springer Verlag, Cham,
Switzerland, 2019.

[13] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Chapman and Hall/CRC, Boca Raton, Florida, 2011.

[14] S. A. Vavasis, Nonlinear Optimization: Complexity Issues, Oxford
University Press, New York, 1991.

[15] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.

