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Abstract—Often, we use original expert estimates to compute
estimates of related quantities. In many practical situations, it
is desirable to know how accurate is the resulting estimate.
There are many techniques for computing this accuracy: we
can use simple probabilistic ideas and we can use simple fuzzy
ideas. Strangely enough, these two reasonable techniques lead
to drastically different results. Which of them is correct? Our
practical tests show that none of these two methods is perfect:
probabilistic approach usually underestimates uncertainty, while
the fuzzy approach overestimates it. This looks similar to many
cases that motivated Zadeh to promote the idea of soft computing
– a combination of different uncertainty techniques. To get a
more adequate combination technique, we analyzed the general
problem of combining accuracy estimates and came up with
a 1-parametric family of techniques that contains probabilistic
and fuzzy as particular cases – and that indeed works better
on several practical examples that each of the original two
techniques.

Index Terms—uncertainty estimation, probabilistic approach,
fuzzy approach, scale-invariance, geophysical applications

I. INTRODUCTION

Computations based on expert estimates: a typical situa-
tion. In many practical situations, we have expert estimates
x̃1, . . . , x̃n of several quantities x1, . . . , xn.

Based on these estimates, we often estimate the values of
other quantities y that depend on xi in a known way, i.e., for
which we know the dependence y = f(x1, . . . , xn). Namely,
as the desired estimate for y, it is natural to take the value

ỹ = f (x̃1, . . . , x̃n) .

For example, if we have a reasonable estimate x1 for the
distance that a car travelled, and an estimate x2 for the time it
took the car to travel, we can divide these two values and thus

provide the estimates ỹ =
x̃1

x̃2
for the car’s speed y =

x1

x2
.
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In many situations, accuracy estimation is important. In
many practical situations, it is important to know the accuracy
of the resulting estimate ỹ; see, e.g., [10].

For example, in economics, if we predict the nearest-future
change in stock prices, it is important to know how accurate is
this prediction: using an inaccurate estimate can lead to huge
money losses.

Similarly, in geophysics: if, based on the expert estimates,
we come up with a reasonable expected amount of oil ỹ in
a given area, the question is – how accurate is this estimate?
If this estimate is reasonably accurate, then it makes sense
to invest in this oil field. However, if the estimate ỹ is not
very accurate, maybe it is better to perform some additional
measurements and/or ask additional experts, to avoid sinking
millions of dollars into an unproductive area.

In medicine, we want to make sure that the estimate
correctly describes the state of the patient’s health and that,
therefore, the cure is right for the given patient – otherwise,
by prescribing a wrong treatment, we can make the disease
worse or even lose the patient.

Resulting problem. To estimate the accuracy of the combined
estimate ỹ, we need to know how accurate are the original
estimates x̃1, . . . , x̃n.

Usually, for each of these estimates x̃i, we know a number
∆i that describes its accuracy, i.e., that describes the order
of the possible approximation error ∆xi

def
= x̃i − xi: ∆xi is

approximately of the same order as ∆i.

• This number ∆i can be the upper bound on the possible
values of the approximation error.

• This number can be the mean squared value of the
approximation error.

• This number can be the most probable value of this error.
• This can simply be an expert’s estimate for the approxi-

mation error.



Based on the values ∆i describing the accuracy of each
original estimate x̃i, we would like to compute a number ∆
describing the accuracy of the resulting estimate ỹ.

Somewhat unexpected challenge and what we do in this
paper to resolve it. At first glance, the problem seems
straightforward: there are reasonable approaches for solving
it. For example:

• we can use simply probabilistic ideas, or
• we can use simple fuzzy ideas.

But here lies the challenge: as we will see in Sections 3 and 4,
these two approaches lead to drastically different results. Both
are intuitively reasonable, so which one should we choose?

A natural idea is to compare both accuracy estimates with
the actual values of uncertainty. Interestingly, in several cases
that we tried (see Section 5), the probabilistic result is too
optimistic and the fuzzy result is too optimistic, the actual
accuracy estimate is somewhere in between. To utilize this
observation, in Section 6, we consider the general problem
of combining accuracy, and show that, under reasonable as-
sumptions, the corresponding combination can be described
by a 1-parametric family. In this family, two values of this
parameter correspond to the naive probabilistic and naive fuzzy
approaches. In practice, for each domain, we recommend to
find – and use – the most appropriate value of this parameter.

II. PRELIMINARY ANALYSIS

It is reasonable to consider the case when estimates
are reasonably accurate. In some cases, the original expert
estimates x̃i are really ballpark estimates. This happens, e.g.,
when we ask experts to predict the distant future of technology
or economy. In such cases, we understand that these estimates
are not accurate at all, and, honestly, we do not worry how
accurate the resulting estimate ỹ is: of course, it is not very
accurate, the difference from the actual value can be in orders
of magnitude.

The problem of estimating the accuracy becomes important
when the original estimates are reasonably accurate, i.e., when
the differences ∆xi are reasonably small.

Linearization. We are interested in the difference

∆y = f (x̃1, . . . , x̃n)− f(x1, . . . , xn).

We do not know the actual values xi, we only know that these
values are close to the estimates x̃i, i.e., that xi = x̃i −∆xi,
for some small values ∆xi. Substituting these expressions for
xi into the formula for ∆y, we conclude that

∆y = f (x̃1, . . . , x̃n)− f (x̃1 −∆x1, . . . , x̃n −∆xn) .

Since the values ∆xi are small, we can expand the above
expression in Taylor series and keep only terms which are
linear in ∆xi. As a result, we get the expression

∆y =
n∑

i=1

ci ·∆xi,

where ci
def
=

∂f

∂xi
are the partial derivatives of the function

f(x1, . . . , xn) computed for xi = x̃i. Since we know the
function f(x1, . . . , xn), we can compute the corresponding
derivatives ci.

So, the quantity ∆y is the sum of n terms δxi
def
= ci ·∆xi.

Thus, to find the size of the difference ∆, let us first estimate
the sizes of each of these terms.

Estimating the size of each terms δxi. The approximation
error can be positive or negative. In most cases, we have no
reason to believe that positive values are more probable or less
probable. In other words, there is no difference between our
knowledge of possible values of the difference ∆xi and of the
opposite-sign difference −∆xi. This means, in particular, that
the value −∆xi should have the same size ∆i as the original
difference ∆xi.

Another observation is that if we change the original mea-
suring unit to a new one which is c times smaller, then all
the numerical values get multiplied by c. For example, if we
replace meters with centimeters, all the numerical values of
length get multiplied by 100. In general, this means that:

• instead of the original value ∆xi, we now have the new
value c ·∆xi, and

• instead of the original accuracy estimate ∆i, we now have
a new estimate c ·∆i.

Thus, if the approximation error ∆xi is of size ∆i, then
for ci > 0, the quantity ci ·∆xi is of size ci ·∆i. This takes
care of multiplying ∆xi by a positive number. Multiplying
the quantity ∆xi by a negative number ci < 0 is equivalent
to multiplying the quantity −∆xi by a positive number |ci|.
Since, as we have mentioned, for −∆xi, the accuracy is the
same ∆i as for ∆xi, we thus conclude that for ci < 0, the
accuracy of ci · ∆xi = |ci| · (−∆xi) is characterized by the
value |ci| ·∆i.

Combining the cases ci > 0 and ci < 0, we can make a
general statement:

• if the approximation error ∆xi is of size ∆i,
• then for each ci, the quantity δxi = ci ·∆xi is of size

δi
def
= |ci| ·∆i.

Resulting problem. We have the sum ∆y =
n∑

i=1

δxi of n

terms δxi each of which is of the size δi. What is the size of
the sum?

Let us show how different reasonable approaches solve this
problem.

III. SIMPLE PROBABILISTIC APPROACH

Analysis of the problem. There are many different reasons
why an expert estimate x̃i is, in general, different from
the actual value xi of the corresponding quantity. Thus, the
difference ∆xi = x̃i − xi can be viewed as a sum of many
different independent components corresponding to these dif-
ferent reasons.



It is known that the probability distribution of a sum of
a large number of small independent random variables is,
in general, close to Gaussian; this result is known as the
Central Limit Theorem (see, e.g., [11]). Thus, it is reasonable
to assume that each difference is normally distributed.

Each normal distribution is uniquely characterized by two
parameters: mean m and standard deviation σ. As we have
discussed in the previous section, it makes sense to assume
that the difference ∆xi and its opposite −∆xi have the same
accuracy characteristics. This means, in particular, that the
mean value mi of ∆xi should be the same as the mean value
of −∆xi. However, the mean value of −∆xi is equal to −µi.
Thus, −mi = mi, hence mi = 0. Thus, the distribution of
each difference ∆xi is characterized by only one parameter:
its standard deviation σi.

So, in this case, we can take σi as the corresponding
accuracy measure ∆i. For the term δxi = ci ·∆xi, the standard
deviation is equal to δi = |ci| ·∆i.

There is no reason to believe that there is any correlation
between approximation errors ∆xi corresponding to different
quantities xi. Thus, it is reasonable to assume that the ap-
proximation errors ∆xi are independent – and thus, that the
quantities δxi = ci · ∆xi are also independent. For the sum

∆y =
n∑

i=1

δxi of several independent random variables, the

variance δ2 is equal to the sum of variances δ2i . So, we arrive
at the following formula.

Resulting formula. [10] In the probabilistic approach, once
we know the error estimates δi = |ci| ·∆i for the terms δxi =

ci ·∆xi, the error estimate ∆ for the sum ∆y =
n∑

i=1

δxi has

the form

∆ =

√√√√ n∑
i=1

δ2i =

√√√√ n∑
i=1

c2i ·∆2
i . (1)

IV. SIMPLE FUZZY APPROACH

Analysis of the problem. In the fuzzy case, uncertainty is
characterized by a membership function. Let µi(∆xi) by the
membership function that describes, for each theoretically
possible value of the approximation error ∆xi, to what extent
this particular value is actually possible.

We have decided to assume that the information about ∆xi

is the same as information about −∆xi, so the membership
function should be event: µi(∆xi) = µi(|∆xi|). It is also
reasonable to assume that the larger the deviation, the less
possible it is, i.e., that each function µi(z) is decreasing for
z ≥ 0.

We assume that each uncertainty is characterized by only
one parameter ∆i. Let µ0(∆x0) be a membership function
corresponding to the value 1 of this parameter. If we now
take a difference ∆xi and change the measuring unit to the
one which is ∆i larger, then all numerical values are divided
by ∆i, i.e., instead of each original value ∆xi, we get a

new numerical value ∆x′
i =

∆xi

∆i
. In particular, the new

value of the accuracy parameter will be
∆i

∆i
= 1. Thus,

the new variable ∆x′
i is characterized by the membership

function µ0(z) corresponding to the value 1 of the uncertainty
parameter.

So, for each value ∆xi, the degree to which this value is
possible is equal to

µi(∆xi) = µ0(∆x′
i) = µ0

(
∆xi

∆i

)
.

Similarly, we can conclude that for δxi = ci · ∆xi, the
membership function takes the form

µ′
i(δxi) = µ0

(
δxi

δi

)
.

To form a membership function corresponding to the sum

∆y =
n∑

i=1

δxi of the quantities δxi, it is reasonable to use

Zadeh’s extension principle

µ(∆y) = max
(δx1,...,δxn):

n∑
i=1

δxi=∆y

f&(µ
′
1(δx1), . . . , µ

′
n(δxn)),

where f&(a, b) is an appropriate “and”-operation (t-norm).
In particular, for the simplest “and”-operation f&(a, b) =
min(a, b), we get

µ(∆y) = max
(δx1,...,δxn):

n∑
i=1

δxi=∆y

min(µ′
1(δx1), . . . , µ

′
n(δxn)).

It is known that in the case when all the original membership
functions have the same shape, the resulting function has
exactly the same shape, namely, it has the form

µ(∆y) = µ0

(
∆y

∆

)
,

where ∆ =
n∑

i=1

δi.

This formula can be easily confirmed if we take into account
that, according to Zadeh’s extension principle with f&(a, b) =
min(a, b), each alpha-cut y(α) for the sum is equal to the sum
of alpha-cuts corresponding to each term. For each term, the
alpha-cut is equal to [−c · δi, c · δi], for some parameter c
depending on α. Thus, the sum of these intervals has the form

[−c ·∆, c ·∆], where ∆ =
n∑

i=1

δi. So we arrive at the following

formula.

Resulting formula. In the fuzzy approach, once we know the
error estimates δi = |ci| ·∆i for the terms δxi = ci ·∆xi, the

error estimate ∆ for the sum ∆y =
n∑

i=1

δxi has the form

∆ =
n∑

i=1

δi =
n∑

i=1

|ci| ·∆i. (2)



V. RESULTING CHALLENGE

Challenge. While both formulas (1) and (2) seem reasonable,
they are different. They are very different: e.g., if all the value
δi are the same, i.e., if δ1 = . . . = δn, then:

• in the probabilistic case, we get ∆ =
√
n · δi, while

• in the fuzzy case, we get ∆ = n · δi.
The difference is a factor of

√
n. When n is large – and we

can have n ≈ 100 – the difference is order of magnitude.
So which of the two approaches should we choose?

This is not about fuzzy vs. probabilistic. At first glance,
this may look like a selection between probabilistic and fuzzy
approaches, but it is not:

• the same formula (2) that we had in the fuzzy case can
also be obtained in the probabilistic cases – when instead
of normal distributions, we assumed a different type of
distributions, Cauchy one; see, e.g., [6];

• similarly, the same formula (1) that we had in the
probabilistic case can also be obtained in the fuzzy cases
– when we consider another widely used “and”-operation
f&(a, b) = a·b and frequently used Gaussian membership

functions µi(∆xi) = exp

(
− (∆xi)

2

∆2
i

)
.

This means that selecting a proper method is not a method-
ological question of which of the two approaches is better –
fuzzy or probabilistic, it is a purely pragmatic question: how to
combine accuracy estimates for ∆xi into an accuracy estimate
for ∆y.

We compared the two approaches on several examples.
To decide which method works better, we compared these
two approaches on several examples in which we could later
determine the actual value of the quantity y; see, e.g., [2], [5].
Our conclusion was that that both methods are imperfect:

• the probabilistic formula (1) usually underestimated the
uncertainty, while

• the fuzzy formula (2) usually overestimated the uncer-
tainty.

So, what shall we do?

This seemingly negative result is actually in good accor-
dance with Zadeh’s ideas. Lotfi Zadeh always emphasized:

• that fuzzy logic is not a substitute for probabilities (or
for any other uncertainty formalism),

• that an ideal way to deal with uncertainty is to realize
that there are several different types of uncertainty and

• that, therefore, we need to combine different techniques.
This was the main idea behind the now well-accepted concept
of soft computing.

So, instead of selecting one or another, let us try to combine
the two approaches.

VI. HOW TO COMBINE ACCURACY ESTIMATES: A
GENERAL APPROACH

Analysis of the problem. We want an operation δ1 ∗ δ2 that
combines the uncertainty characteristic δ1 > 0 and δ2 > 0 of

two terms δx1 and δx2 into an uncertainty characteristic of
their sum δx1 + δx2.

• Intuitively, the sum cannot be more accurate than each of
the values, so we must have

δ1 ∗ δ2 ≥ δ1 and δ1 ∗ δ2 ≥ δ2.

• Small changes in δ1 or in δ2 should not lead to drastic
changes in the result, so the operation should be contin-
uous.

• The sum does not depend on the order in which we add
two quantities; thus, the value δ1 ∗ δ2 should also not
depend on the order. Thus, we should have

δ1 ∗ δ2 = δ2 ∗ δ1.

In mathematical terms, the desired operation should be
commutative.

• If we want to combine three terms, we can do it in several
different ways. For example:

– we can first combine δx1 and δx2, getting δ1 ∗ δ2,
and then combine the result with δx3, resulting in

(δ1 ∗ δ2) ∗ δ3;

– alternatively, we can first combine δx2 and δx3,
getting δ2∗δ3, and then combine the result with δx1,
resulting in

δ1 ∗ (δ2 ∗ δ3).

It is reasonable to require that the resulting estimate be
the same in both case, i.e., that

(δ1 ∗ δ2) ∗ δ3 = δ1 ∗ (δ2 ∗ δ3).

In mathematical terms, the desired operation should be
associative.

• Finally, as we mentioned several times, the combination
result should not change if we simply change the mea-
suring unit to a new one which is c times smaller than
the original one – after which all numerical values will
be multiplied c. So, if we have δ = δ1∗δ2, then, for every
c > 0, we should have

c · δ = (c · δ1) ∗ (c · δ2).

Now, we are ready for a formal definition.

Definition. By a combination operation, we mean a continuous
commutative associative binary operation δ1 ∗ δ2 on the set
of all non-negative numbers that satisfies the following two
properties:

• for all δ1 and δ2, we have δ1 ∗ δ2 ≥ δ1, and
• for all δ1, δ2, and c > 0, if δ = δ1 ∗ δ2, then

c · δ = (c · δ1) ∗ (c · δ2).

Proposition. Every combination operation has the form

δ1 ∗ δ2 = max(δ1, δ2) or δ1 ∗ δ2 = (δp1 + δp2)
1/p.



Proof. This proposition was, in fact, proven in [3].

Comment. The case δ1 ∗ δ2 = max(δ1, δ2) is, in effect, the
limit case of the formula δ1 ∗ δ2 = (δp1 + δp2)

1/p when p tends
to infinity. From this viewpoint, the max-case can be viewed
as a particular case of the general formula.

Resulting practical recommendation. Once we know the
error estimates δi = |ci| · ∆i for the terms δxi = ci · ∆xi,

the error estimate ∆ for the sum ∆y =
n∑

i=1

δxi has the form

∆ =

(
n∑

i=1

δpi

)1/p

=

(
n∑

i=1

|ci|p ·∆p
i

)1/p

. (3)

Here:
• for p = 2, we get the probabilistic formula (1);
• for p = 1, we get the fuzzy formula (2).

In general, for each domain, we need to empirically select the
value p.

For example, for geophysical data, the value p ≈ 1.1 turned
out to work the best [2].
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