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Abstract In many practical situations, we need to estimate the parameters of a lin-
ear (or more general) dependence based on measurement results. To do that, it is
useful, before we start the actual measurements, to estimate how accurately we can,
in principle, determine the desired coefficients: if the resulting accuracy is not suffi-
cient, then should not waste time trying and resources and instead, we should invest
in more accurate measuring instruments. This is the problem that we analyze in this
paper.

1 Formulation of the Problem

Need to determine the dependence between different quantities. One of the main
objectives of science is to find the dependencies y = f (x1, . . . ,xn) between values of
different quantities at different moments of time and at different locations.

Once we know such dependencies, we can then use them to predict the future
values of different quantities.

For example, Newton’s laws describe how the acceleration y of a celestial body
depends on the current location and masses of this and other bodies x1, . . . ,xn – and
thus, these laws enable us to predict how these bodies will move.

Another important case is when we want to estimate the value of a quantity y
which is difficult to directly measure. In such cases, it is often possible to find easier-
to-measure quantities x1, . . . ,xn knowing which we can determine y. For example, it
is difficult to directly measure the distance y between two faraway locations on the
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Earth, but we can determine this distance if we use astronomical observations – or,
nowadays, signals from the GPS satellites – to find the exact coordinates of each of
the two locations.

How can we determine this dependence. In some cases, we can use the known
physical laws to derive the desired dependence. However, in most other cases, this
dependence needs to be determined empirically:

• we measure the values x1, . . . ,xn, and y in different situations, and then
• we use the measurement results to find the desired dependence.

Often, we know the general form of the dependence, we just need to find the
coefficients. In many cases, we know the general form of the desired dependence,
i.e., we know that y = F(x1, . . . ,xn,c0,c1, . . . ,cm), where F is known function, and
the coefficients ci need to be determined.

For example, we may know that the dependence is linear, i.e., that

y = c0 + c1 · x1 + . . .+ cn · xn.

This is a typical situation when the values xi have a narrow range [X i,X i] and thus,
we can expand the function f (x1, . . . ,xn) in Taylor series over xi −X i and ignore
quadratic (and higher order) terms in this expansion.

Need to take uncertainty into account – in particular, interval uncertainty. Mea-
surements are never absolutely accurate: the measurement result x̃ is, in general,
different from the actual (unknown) value x. In many practical situations, the only
information that we have about the measurement error ∆x def

= x̃−x is the upper bound
∆ on its absolute value: |∆x| ≤ ∆ ; see, e.g., [5].

In this case, after each measurement, the only information that we have about the
actual value x is that this value is somewhere in the interval [x̃−∆ , x̃+∆ ]. Because
of this fact, this case is known as the case of interval uncertainty. There exist many
algorithms for dealing with such uncertainty; see, e.g., [1, 3, 4].

Measurement uncertainty leads to uncertainty in coefficients. Since we can only
measure the values xi and y with some uncertainty, we can therefore only determine
the coefficients ci with some uncertainty.

It is therefore important to determine how accurate are the values ci that we get
as a result of these measurements.

Which uncertainty should be taken into account. Strictly speaking, there are
measurement uncertainties both when we measure easier-to-measure quantities
x1, . . . ,xn, and when we measure the desired difficult-to-measure quantity y. How-
ever, usually, because of the very fact that y is much more difficult to measure than
xi, the measurement errors ∆y corresponding to measuring y are much larger than
the measurement errors of measuring xi – so much larger that we can usually safely
ignore the measurement errors of measuring xi and assume that these values are
known exactly.

Thus, in the linear case, we can safely assume that for each measurement k, we
know the exact values x(k)1 , . . . ,x(k), but we only know y(k) with uncertainty – i.e.,
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based on the measurement result ỹ(k) and the known accuracy ∆ > 0, we know that

the actual value y(k) = c0 +
n
∑

i=1
ci ·x(k)i is between y(k) = ỹ(k)−∆ and y(k) = ỹ(k)+∆ .

Once we perform the measurements, we can feasibly find the accuracy. One we
have the measurement results, we can find the bounds on each of the coefficients ci
(and, similarly, the bounds on any linear combination of ci) by solving the following
linear programming problems (see, e.g., [7]): minimize (maximize) ci under the
constraints that

y(k) ≤ c0 +
n

∑
i=1

ci · x(k)i ≤ y(k)

for all the measurements k = 1, . . . ,K.

Remaining question. But before we start spending our resources on measurements,
it is desirable to check how accurately we can, in principle, determine the coeffi-
cients ci.

This checking is important: If the resulting accuracy is not enough for us – then
we should not waste time performing the measurements, and instead we should
invest in a more accurate y-measuring instrument.

Of course, we can answer the above question by simulating measurement errors,
but it would be great to have simple analytical expressions that would not require
extensive simulation-related computations.

What we do in this paper. In this paper, we provide such expressions for the linear
case.

2 Definitions and Results

Discussion. The range of each physical quantity is usually bounded:

• coordinates of Earth locations are bounded by the Earth’s size,
• velocities are bounded by the speed of light, etc.

Thus, we can safely assume that for each variable xi, we know the interval [X i,X i]
of its possible values.

Thus, we arrive at the following formulation of the problem.

Definition 1. Let us assume that we are given the value ∆ > 0 and n intervals
[X i,X i], i = 1,2, . . . ,n. We say that a tuple (∆c0,∆c1, . . . ,∆cn) is within the possible
uncertainty if for each tuple (c0,c1, . . . ,cn) and for each combination of values xi ∈
[X i,X i], we have |y′− y| ≤ ∆ , where:

• y def
= c0 +

n
∑

i=1
ci · xi and

• y′ def
= c′0 +

n
∑

i=1
c′i · xi, where c′i

def
= ci +∆ci.
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Comment. Because of the measurement uncertainty, after the measurement, the
range of possible values of the corresponding quantity x is [x̃−∆ , x̃+∆ ]. It may
be therefore convenient to represent the intervals [X i,X i] in the same form, as

[X i,X i] = [X̃i −∆i, X̃i +∆i].

For this, we need to take X̃i =
X i +X i

2
and ∆i =

X i −X i

2
.

Proposition 1. For each ∆ and [X i,X i], a tuple (∆c0,∆c1, . . . ,∆cn) is within the
possible uncertainty if and only if

|∆c′0|+
n

∑
i=1

|∆ci| ·∆i ≤ ∆ , (1)

where ∆c′0
def
= ∆c0 +

n
∑

i=1
∆ci · X̃i.

Proof of Proposition 1. One can easily see that, since the dependence of y on ci is

linear, the difference ∆y def
= y′− y is equal to ∆y = ∆c0 +

n
∑

i=1
∆ci · xi.

Each of the variables xi independently runs over its own interval

[X i,X i] = [X̃i −∆i, X̃i +∆i].

Thus, each value xi from this interval can be represented as X̃i +∆xi, where ∆xi
def
=

xi − X̃i takes all possible values from the interval [−∆i,∆i].
Substituting this expression for xi into the above formula for ∆y, we conclude

that

∆y = ∆c′0 +
n

∑
i=1

∆ci · X̃i +
n

∑
i=1

∆ci ·∆xi. (2)

To make sure that always |∆y| ≤ ∆ , i.e., that always −∆ ≤ ∆y≤ ∆ , it is sufficient
to make sure that

−∆ ≤ ∆ and ∆ ≤ ∆ ,

where:

• ∆ is the smallest possible value of the expression (2), while

• ∆ is the largest possible value of the expression (2).

Let us find these smallest and largest values.
Each of the variables ∆xi independently runs over its own interval [−∆i,∆i].

Thus, the smallest possible value of (1) is attained when each of the terms in the
sum (2) is the smallest.

• For ∆ci ≥ 0, the term ∆ci ·∆xi is increasing with ∆xi, so its smallest value if
when xi is the largest: ∆xi =−∆i. In this case, the value is equal to −∆ci ·∆i.

• For ∆ci ≤ 0, the term ∆ci ·∆xi is decreasing with ∆xi, so its smallest value if
when xi is the largest: ∆xi = ∆i. In this case, the value is equal to ∆ci ·∆i.
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We can describe both terms by a single formula −|∆ci| ·∆i. Thus, the smallest pos-

sible value ∆ of ∆y is equal to ∆ = ∆c′0 −
n
∑

i=1
|∆ci| ·∆i, and the condition −∆ ≤ ∆

is equivalent to

−∆c′0 +
n

∑
i=1

|∆ci| ·∆i ≤ ∆ . (3)

Similarly, the largest possible value of each term ∆ci ·∆xi is equal to |∆ci| ·∆i,
thus

∆ = ∆c′0 +
m

∑
i=1

|∆ci| ·∆i,

and the condition ∆ ≤ ∆ can be described as

∆c′0 +
n

∑
i=1

|∆ci| ·∆i ≤ ∆ . (4)

Inequalities (3) and (4) are equivalent to requiring that the largest of the two left-
hand sides is smaller than or equal to ∆ , i.e., to the desired inequality. The proposi-
tion is proven.

Discussion. Based on Proposition 1, we can find bounds on each of the coeffi-
cient ∆c1, . . . ,∆cn:

Proposition 2. For each i from 1 to n, among all possible tuples which are within
the possible uncertainty, the corresponding values of ∆ci form the interval[

− ∆
∆i

,
∆
∆i

]
.

Comments. Thus, if we can measure y with accuracy ∆ , and we can use any value
xi from the interval [X̃i −∆i, X̃i +∆i], then we can determine the coefficient ci that

describes the dependence of y on xi with accuracy
∆
∆i

.

It is worth mentioning that the accuracy
∆
∆i

is what we can guarantee if we per-

form sufficiently many measurements. However, even with a primitive y-measuring
device, for which the measurement accuracy ∆ is high, we can get lucky and get
much more accurate – even absolutely accurate – values of ci.

Indeed, let us assume that for each tuple
(

x(k)1 , . . . ,x(k)n

)
of the x-values, for which

the actual value of y is y(k) = c0 +
n
∑

i=1
ci · x(k)i , we perform two y-measurements:

• in the first measurement, we get ỹ(k) = y(k)+∆ and thus, based on this measure-
ment result, we conclude that the actual value of y(k) belongs to the interval

[ỹ(k)−∆ , ỹ(k)+∆ ] = [y(k),y(k)+2∆ ];
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• in the second measurement, we get ỹ(k) = y(k)−∆ and thus, based on this mea-
surement result, we conclude that the actual value of y(k) belongs to the interval

[ỹ(k)−∆ , ỹ(k)+∆ ] = [y(k)−2∆ ,y(k)].

Since the value y(k) belongs to both intervals [y(k),y(k)+2∆ ] and [y(k)−2∆ ,y(k)], it
belongs to their intersection – and this intersection consists of the single point y(k).
Thus, in this lucky case, we get the exact value of each y – and thus, after n+ 1
measurement, determine the exact values of all n+ 1 coefficients c0,1c1, . . . ,cn by
solving the corresponding system of linear equations

c0 +
n

∑
i=1

ci · x(k) = y(k), k = 1, . . . ,n+1.

Proof of Proposition 2. If ∆ci is a part of the tuple which is within the possible
uncertainty, then from the inequality (1), we can conclude that |∆ci| ·∆i ≤ ∆ , hence
that

|∆ci| ≤
∆
∆i

. (5)

Vice verse, for each value ∆ci that satisfies the inequality (5), we can take ∆c1 =
. . . = ∆ci−1 = ∆ci+1 = . . .∆cn = 0 and choose ∆c0 = −∆xi · X̃i, then ∆c′0 = 0 and
thus, the inequality (1) is satisfied.

The proposition is proven.

Proposition 3. When 0 is a possible value of each variable xi, then among all pos-
sible tuples which are within the possible uncertainty, the corresponding values of
∆c0 form the interval [−∆ ,∆ ].

Comment. Thus, if we can measure y with accuracy ∆ , and we can use any value xi
from the interval [X̃i −∆i, X̃i +∆i] containing 0, then we can determine the free term
c0 in the dependence of y on x1, . . . ,xn with accuracy ∆ .

Proof of Proposition 3. If a tuples (∆c0,∆c1, . . . ,∆cn) is within the possible uncer-
tainty, then for possible value x1 = . . .= xn = 0, we get |∆c0| ≤ ∆ .

Vice versa, if we have a value ∆c0 for which |∆c0| ≤ ∆ , them, by taking
∆c1 = . . . = ∆cn = 0, we get a tuple that, as one can easily see, satisfies the de-
sired inequality for all xi and is, thus, within the possible uncertainty.

The proposition is proven.

Discussion. When for some i, 0 ̸∈ [X i,X i], then all values ∆c0 ∈ [−∆ ,∆ ] are still
possible, but some values outside this interval are possible too.

Proposition 4. For every value ∆c0 ∈ [−∆ ,∆ ], there exists a tuple (∆c0,∆c1, . . . ,∆cn)
which is within the possible uncertainty.

Proof: this was, in effect, already proven in the proof of Proposition 3.

Proposition 5. For n = 1, the range of possible values of ∆c0 is [−∆ ′,∆ ′], where

∆ ′ = ∆ +
∆
∆1

·m1 and:
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• m1 = 0 if 0 ∈ [X1,X1];
• m1 = X1 is X1 > 0, and
• m1 = |X1| when X1 < 0.

Proof. We have already proven this result for the case when 0 ∈ [X1,X1]. Without
losing generality, let us consider the case when X1 > 0; the case when X1 < 0 is
proven similarly.

In this case, on the one hand, for x1 = X1, we have |∆c0 +∆c1 ·X1| ≤ ∆ , hence

|∆c0| ≤ |∆c0 +∆c1 ·X1|+ |−∆c1 · x1| ≤ ∆ + |∆c1| ·X1.

By Proposition 1, we have |∆c1| ≤
∆
∆1

, hence indeed |∆c0| ≤ ∆ ′.

On the other hand, let us prove that the value ∆c0 = ∆ ′ is possible. Then, by
swapping the signs of all ∆ci, we can prove that the value −∆ ′ is also possible. The
inequalities |∆c0 +∆c1 · x1| ≤ ∆ that describe the set of possible tuples is an inter-
section of convex sets and is, thus, itself convex. So, with ∆ ′ and −∆ ′, any convex
combination of them is also possible – i.e., all the values from the interval [−∆ ′,∆ ′].

Hence, it is sufficient to prove that the value ∆c0 = ∆ ′ is possible. Indeed, we

will prove that it is possible if we take ∆c1 =− ∆
∆1

. We then need to prove that for

these values ∆ci, we have |∆c0 +∆c1 · x1| ≤ ∆ for all x1 ∈ [X1,X1].
The left-hand side of the inequality is a convex function of x1, so it is sufficient to

check this inequality for the endpoints x1 = X1 and x1 = X1. For x1 = X1, we have

∆c0 +∆c1 ·X1 = ∆ +
∆
∆1

·X1 −
∆
∆1

·X1 = ∆ ,

and for x1 = X1, we get

∆c0 +∆c1 ·X1 = ∆ +
∆
∆1

·X1 −
∆
∆1

·X1 =

∆ − ∆
∆1

· (X1 −X1) = ∆ − ∆
∆1

·2∆1 = ∆ −2∆ =−∆ .

In both cases, we have |∆c0 +∆c1 · x1| ≤ ∆ . Thus, the proposition is proven.

3 Discussion

What is we have probabilistic uncertainty. In the above text, we considered the
case when we only know the upper bound on the measurement errors – i.e., when
we only know the interval of possible values of the measurement error. In many
practical situations, however, in addition to this upper bound, we also have some
information about the probability of different values from this interval.
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In such cases, it is convenient to represent the measurement error as the same of
two components:

• its mean, which is called systematic error, and
• the difference between the measurement error and its mean, which is called the

random error.

Usually, we know the upper bound ∆i on the absolute value of the systematic error,
and we know some characteristics of the random error; see, e.g., [5]. With what
accuracy can we then determine ci?

Interestingly, we get the same answer as in the interval case. Indeed, if for the
same example, we measure y several times, the arithmetic average of the measure-
ment results tends to its mean value, i.e., to the actual value y plus the systematic
error si; see, e.g., [6]. Thus, in measurement results obtained this way, the random
error disappears and we get, in effect, the interval case.

What if we consider quadratic dependencies. In the above text, we considered
the case when we could ignore quadratic and higher order terms, and thus, safely
assume that the dependence of y on xi is linear. What if we want a more accurate
description and thus, consider quadratic terms as well, i.e., consider the dependence

y = c0 +∑
i=1

ci · xi +
n

∑
i=1

n

∑
j=1

ci j · xi · x j.

In this case, even for a single tuple

(∆c0,∆c1, . . . ,∆cn,∆c11,∆c12, . . . ,∆cnn),

it is NP-hard (= intractable) to check whether this tuple is within the accuracy, i.e.,
whether

|∆y|=

∣∣∣∣∣∆c0 +∑
i=1

∆ci · xi +
n

∑
i=1

n

∑
j=1

∆ci j · xi · x j

∣∣∣∣∣≤ ∆

for all values xi from the corresponding intervals [X i,X i]: indeed, finding the max-
imum of a quadratic function under interval uncertainty is known to be NP-hard
[2, 8].

What if we have an ellipsoid. Instead of requiring that possible values of (x1, . . . ,xn)
form a box, we can consider the case when this set is an ellipsoid.

In this case, the range of a linear expression ∆c0 +
n
∑

i=1
∆ci · xi can also be ex-

plicitly computed and thus, we also have an analytical expression describing tuples
(∆c0,∆c1, . . . ,∆cn) which are within the possible uncertainty.

What is we also have relative measurement error. In our text, we assumed that
the measurement accuracy ∆ is the same for all y, i.e., in measurement terms, that
we have an absolute error. In practice, we often also have relative error component,
in which cases the upper bound ∆(y) on the y-measurement error depends on y as
∆(y) = ∆0 + c · |y|, for some ∆0 > 0 and c > 0.
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Once we have measurement results, we can still use linear programming to find
the accuracy with which we can determine the coefficients ci, but it is not clear how
to come up with an analytical expression for the tuples (∆c0,∆c1, . . . ,∆cn) which
are within the possible uncertainty.
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