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Abstract

Fuzzy logic is normally used to describe the uncertainty of human
knowledge and human reasoning. Physical phenomena are usually de-
scribed by probabilistic models. In this paper, we show that in extremal
conditions, when the concentrations are very large, some formulas describ-
ing physical interactions become fuzzy-type. We also show the observable
consequences of such fuzzy-type formulas: they lead to bursts of gravita-
tional waves.

1 Traditional Viewpoint: Probabilities for
Physical World, Fuzzy for Imprecise
(“Fuzzy”) Expert Knowledge

Equations describing the physical world are usually precise. Tradi-
tionally, our knowledge is described in precise terms. From Newton’s laws to
relativity theory, we have precise equations that describe how different physical
quantities change in time.

Sometimes, this knowledge is probabilistic. In many physical situations,
it is not possible to exactly predict the future state of a system.

In some situations, we know the exact equations describing the interaction
of particles, but the number of particles is so huge that it is not possible to
exactly solve the corresponding system of equations. For example, a room full
of air contains about 10?* molecules. In this case, all we can do is make predic-
tions about the frequency of different outcomes — i.e., about the probabilities of
different events. This is the case of statistical physics; see, e.g., [2, 12].



If we take quantum effects into account, then the same phenomenon occurs
for all possible physical processes. Indeed, according to quantum physics, it
is not even theoretically possible to predict the exact future values of all the
physical quantities such as coordinates, momentum, etc. [2, 12]. All we can do
is predict the corresponding probabilities.

Physical equations describing the probabilities are also exact. While
the knowledge is probabilistic, equations that describe how these probabilities
change with time are exact, be it Boltzmann’s equations of statistical physics
or Schroedinger’s equations of quantum mechanics.

These equations are usually smooth (differentiable). Different particles
are reasonable independent, so the overall probability can be obtained by mul-
tiplying probabilities corresponding to different particles. The product function
is differentiable infinitely many times, so usually, the corresponding equations
are also differentiable (smooth).

Need to describe expert knowledge. In many real-life situations, in addi-
tion to (or, sometimes, instead of) the exact equations, we also have imprecise
(“fuzzy”) expert knowledge, knowledge that experts describe by using imprecise
natural-language words.

For example, a medical doctor may say that a skin irritation is suspicious
if it has irregular shape, or that a medicine is recommended if the patient has
a high fever — but what exactly is irregular or high is not well-defined, it is
subjective.

Fuzzy logic as a natural way to describe imprecise expert knowledge.
In both above examples, it is not the case that we have an exact threshold on
temperature (or on some regularity parameter) so that:

e below this threshold, we have one decision, and
e above the threshold, we have another decision.

This would make no sense: why give a medicine to someone whose body tem-
perature is 39.00 C but but not to someone whose temperature is 38.99 C?

In all such cases, for temperatures close to some transition value, experts
are not 100% sure whether the temperature is high (or whether the shape is
irregular), they are only confident to some degree.

In the computer, “absolutely true” is usually represented as 1, and “abso-
lutely false” as 0, so it is reasonable to describe intermediate degrees of confi-
dence by intermediate numbers, i.e., numbers from the interval [0,1]. This is
the main behind fuzzy logic, a formalism invented by Lotfi A. Zadeh to describe
imprecise expert knowledge; see, e.g., [1, 3, 7, 9, 10, 13].

In fuzzy logic, to describe each imprecise property like “high”, we assign,
to each possible value ¢ of the corresponding quantity, a number p(g) from the
interval [0, 1] that describes to what extent the expert is confident that this
quantity satisfies the corresponding property — e.g., to what extent the given
temperature ¢ is high.



How do we estimate fuzzy degrees. To estimate the expert’s degrees of
confidence, we can, e.g., ask each expert to mark his/her degree of confidence
on a scale from 0 to 10:

e 0 meaning no confidence at all, and
e 10 meaning absolutely sure.

To get a value between 0 and 1, we divide the resulting estimate by 10.

Need to combine fuzzy degrees. Experts can estimate degrees of certainty
in their statements. However, conclusions based on expert knowledge are often
based on taking into account several expert statements. Our degree of confidence
in such a conclusion is thus equal to our degree of confidence that the first of used
statements is true and the second used statement is true, etc. In other words, in
addition to the expert’s degrees of confidence in their statements S1,...,.5,, we
also need to estimate the degrees of confidence in different “and”-combinations
SZ' & Sj, Sl & Sj & S]€7 etc.

In the ideal world, we can simply ask the experts to estimate the degree of
confidence in each such combination. However, this is not realistically possible.
Indeed, for n original statements, there are 2™ — 1 such combinations: since
combinations are in 1-1 correspondence with non-empty subsets of the set of
n statements. Already for reasonable n = 30, we get an astronomical number
230 ~ 10° combinations — and there is no way that we can ask a billion questions
to the experts.

Since we cannot elicit the expert’s degree of confidence in “and”-
combinations directly from the experts, we therefore need to estimate these
degrees based on the known experts’ degrees of confidence in individual state-
ments. In other words, we need to be able to combine the degrees of confidence
a and b of statements A and B into an estimate for degree of confidence in
the “and”-combination A & B. The algorithm for such combination is called an
“and”-operation or, for historical reasons, a t-norm. The result of applying this
combination algorithm to numbers a and b will be denoted fg (a,b).

How to combine fuzzy degrees? Which operation fg (a,b) should we choose?

First, since A & B means the same as B & A, it is reasonable to require that
the resulting estimates coincide as well, i.e., that fg (a,b) = fe.(b,a).

Second, since A & A means the same as A, it is reasonable to require that
our estimate for the degree of confidence in A & A be the same as the original
degree of confidence in the statement A, i.e., that fg(a,a) = a.

Third, since A& B is a stronger statement than each of A and B — since it
implies both A and B — it is reasonable to require that our degree of confidence
in this “and”-statement is smaller than or equal to the degree of confidence in
each A and B: fg(a,b) < a and fg(a,b) <b.

Finally, if our degree of confidence in one or both of the statements A and
B increases, the resulting degree of confidence in A & B should also increase —
or at least remain the same (but definitely not decrease). In other words, the



function fg (a,b) should be monotonic: if a < o’ and b < ¥/, then we should
have fg(a,b) < fe(a',b).

It turns out that there is exactly one operation that satisfies these four
properties: the min-operation fg (a,b) = min(a, b) (and this operation, proposed
in the very first of Zadeh’s papers, is indeed one of the most widely used ones in
applications of fuzzy techniques). Indeed, it is easy to see that the min-operation
satisfies all four above properties.

Vice versa, let us assume that a function fg (a,b) satisfies all four properties.
Since this function is symmetric (first property), it is sufficient to consider the
case when a < b. In this case, due to the third property, we have

fe(a,b) <a.

On the other hand, since a < b, monotonicity implies that fg(a,a) < fg(a,bd).
By the second property, fg(a,a) = a, so we get

a< f&(a’b)'

From fg(a,b) < aand a < fg(a,b), we conclude that fg (a,b) = a for a < b,
i.e., that for a < b, we have fg(a,b) = min(a,b). Due to symmetry, this equality
holds for a > b as well. The statement is proven.

2 High Concentrations Naturally Lead to
Fuzzy-Type Interactions

Chemical kinetics and Boltzmann’s formulas of statistical physics: a
brief reminder. As we have mentioned earlier, in many real-life situations,
we have a large number of small interacting particles. These particles may be
molecules of different type whose interaction constitute chemical reactions, these
particles may be molecules of gas whose interaction simply means bouncing off
each other, etc.

The molecules interact when they are close to each other. The usual way to
describe such an interaction takes into account that, on the microscopic level,
the space is mostly empty, so such interactions are reasonably rare. As a result,
e.g., in chemical reactions, the probability that a molecule of the 1st type gets
involved in the interaction in a given time period is proportional to the prob-
ability of finding any molecule of the 2nd type, and this probability is, in its
turn, proportional to the concentration b of the molecules of the 2nd type. To
get the overall amount of interactions, we need to multiply this probability by
the number of molecules of the 2st type — which is proportional to their con-
centration a. Thus, the intensity of intersection is proportional to the product
a - b of the two concentrations.

The rate with which each of the concentration changes is therefore also
proportional to this product:

—=k-a-b+... (1)



When the reaction leads to physical motion, the corresponding change in
the location z is also proportional to the product:
dx

Y kabet... 1
p k-a-b+ (1a)

Beyond traditional models: case of high concentration. What hap-
pens when the concentration is high? This situation is best understood if we
consider yet another phenomenon where the above product model is usually
applied — the predator-prey model. For example, if both wolves and rabbits
are reasonably rare, it takes some running for a wolf to find a rabbit, and the
intensity of the wolves-eat-rabbits process is proportional to the product a - b of
the concentrations of wolves and rabbits.

But what if the concentrations of wolves and rabbits become so large that
they can, in effect, always see each other? In this case, each wolf is actively
engaged in eating rabbits — as long as there is sufficient number of rabbits for
each of the wolves. Thus:

e If the concentration of wolves a is smaller than the concentration of rabbits
b, the intensity of the eating process is proportional to the number of
wolves, i.e., to a.

e On the other hand, if there are fewer rabbits than wolves, i.e., if a > b,
the the intensity of eating is proportional to the number of rabbits, i.e.,
to b.

Both cases can be described by a single formula: namely, in both cases,
the intensity of interaction — and thus, the rate with which each concentration
changes — is proportional to min(a, b) (see, e.g., [4, 5, 6]):

da

%:lmmm(a,b)Jr... (2)
Z—j =k -min(a,b) + ... (2a)

Discussion. This model is indeed fuzzy-type:

e in contrast to the traditional product formula which is similar to the usual
formula for the probability of the combined event A & B (see, e.g., [11]),

e the new formula resembles a widely used formula for finding the fuzzy
degree of confidence of such a combined event.

Comment. Tt is worth mentioning that fuzzy-type interactions are not only use-
ful for describing high-concentration physical phenomena. Since these interac-
tions correspond to faster reaction, their simulation can speed up computations
[4, 5, 6].



3 Fuzzy-Type Interactions Naturally Lead to
Gravitational Wave Bursts

Can we detect remote fuzzy-type interactions? When we are in the
vicinity of high-concentration processes — e.g., in catalysis — we can directly
observe the fuzzy-type behavior. However, most physical processes with high
concentrations are in the domain of astrophysics, thousands of light years away
from us. Is it possible to distinguish such faraway fuzzy-type processes from
more regular one?

The main difference between fuzzy-type and traditional interactions.
Traditional interactions are smooth. In a small vicinity of each location, each
smooth function can be well approximated by linear functions — just like a curve
can be approximated by its tangent. This possibility to linearize a smooth
function — i.e., to replace it by linear terms in its Taylor expansion in small
vicinity of each location — is an important idea that helps physicists in their
computations; see, e.g., [2]. From this viewpoint, in a small vicinity, all smooth
interactions are similar — they are all linear.
Interestingly, this is where fuzzy-type interactions differ:

e while the right-hand side of the formula (1a) — corresponding to traditional
interactions — is always smooth (differentiable),

e the right-hand side of the formula (2a) — corresponding to fuzzy-type in-
teractions — is mot differentiable in the vicinity of the line a = b.

To be more precise, the corresponding derivatives are discontinuous at this point:
for the function f(a,b) = min(a,b):

e we have or = 1 when a < b and thus, f(a,b) = a, and

da
of

e we have i 0 when a > b and thus, f(a,b) =b.

We cannot use this difference directly. Can we use this difference in
smoothness to directly distinguish non-smooth fuzzy-type interactions from
smooth traditional ones? Not really: even when we observe an Earth object
from far away, the image is blurred (i.e., in mathematical terms, smoothed). In
general, all remote signals are smoothed, so, irrespective of whether the original
signal was smooth or not, the observed signal is smooth.

Let us try to observe the difference indirectly. While we cannot observe
the non-smoothness directly, we may be able to observe it indirectly. Good news
is that in physics, the rate of change — i.e., the derivative — of a quantity is also
an observable quantity.

For example, we can observe coordinates — and measure the corresponding
location of an object. We can also directly measure the first derivative of the
coordinate — the velocity — e.g., by its Doppler effect. We can even directly



measure the second derivative of the coordinate — the acceleration — by an
accelerometer.

dx
In our case, the first derivative T is described by a non-smooth function

2

x
min(a, b). Thus, the derivative of the first derivative — i.e., the acceleration T2
— is discontinuous. Discontinuity, however, will also be smoothed.

Let us go one step further and take one more derivative, i.e., let us consider

the third derivative ——. For a “jump” function, the derivative is infinite, so

we will have an infinite third derivative. After smoothing, we will still have a
huge value in the vicinity of the original non-smoothness. So, the question is:
how can observe the third derivative?

How can we observe the third derivative: analysis of the problem. In
most real-life measurements, the first two derivatives dominate — to the extent
that, in contrast to the the first two derivatives that correspond to named
physical quantities (velocity and acceleration), there is no special word for the
third derivative. To be able to observe the third derivative, we thus need to
come up with a physical phenomenon in which the first two derivatives do not
dominate — i.e., when their effects are Os (or at least small).

In other words, we need a physical phenomenon in which accelerations do
not count: if we have several bodies moving with the same acceleration, it is as
if they are immobile. There is a well-known phenomenon of this type: namely,
this is exactly what General Relativity and gravity are all about [2, 8, 12].
Indeed, Einstein’s discovery of General Relativity started with his Equivalence
Principle, according to which a person in a freely falling elevator will not notice
any gravitation.

In General Relativity, there is no absolute space or absolute time, what we
measure when we measure spatial distances or time intervals depends on the
bodies. In particular, if in some coordinate system, all the bodies move with
the same acceleration @, this simply means that we can change the coordinate
system by taking the location of one of the bodies as the system’s starting point.
In the new coordinate system, all the bodies have 0 acceleration relative to each
other — thus, there is no acceleration at all.

The situation is different is we have a change in acceleration — third derivative
— be it change in time or change across space. This change cannot be eliminated
by simply changing the coordinate system. Thus, our hope for detecting third
derivatives lies in the analysis of the gravitation phenomena.

How can we find the observable consequences of third derivative in
gravitation? Gravitation force is very weak in comparison to all other physical
forces. As a result, many phenomena are very difficult to observe and measure
for gravity — since they are very weak.

Good news is that — at least on the Newtonian level — the formulas for
gravitation are similar to the formulas for the electromagnetic field: in both
cases, we have the same Coulomb’s law (the only difference is that similar electric
charges repulse each other, while similar masses attract each other).



Another good news is that electromagnetic forces are much stronger than
the gravitational force. This can be seen, e.g., by the fact that even small
magnets easily overcome gravitation and pick up bodies from the ground, not
to mention that electrons forming an electric current are not deterred by gravity
and easily climb the wire going up. As a result of this difference in strength,
many phenomena which are difficult to observe and measure for gravity (since
they are very weak) can be easily observed and measured for electromagnetic
processes.

From this viewpoint, to find the observable consequences of third derivative
in gravitation, let us recall observable effects of other derivatives in electromag-
netic phenomena.

Electromagnetic interactions: a brief reminder. According to Coulomb’s
laws, all electric changes interact with each other: opposite charges attract each
other, while charges of different signs repel each other.

Starting from Newton, interaction between the two bodies was understood as
action-at-a-distance, so that a change in one object immediately affects all other
objects in the Universe. In this description, interactions travel instantaneously
— i.e., with infinite speed,

However, according to relativity theory, no signal can propagate faster than
the speed of light; no action-at-a-distance is possible. The only way a particle
can affect another particle is via a field: a particle changes the field in its vicinity,
this change leads to a change in the vicinity of this vicinity, etc., until the change
reaches the location of the second particle.

In quantum physics, everything is quantized, including the fields. Quanta
of electromagnetic field are photons. Thus, interaction between two charged
particles means, in effect, that one particle emits photons, and photons then
interact with other particles. In other words, particles exchange photons — and
this exchange results in attraction or repulsion.

In particular, different particles forming a changed body interact with each
other by exchanging photons.

When the body is inertial, i.e., when the body travels with a constant speed
along a straight line, this process of exchanging photons is stable: some pho-
tons go in, some come out, everything is stable, no photons are lost, and no
energy is lost. Indeed, otherwise, the loss of energy would mean that the body
starts slowing down — and in the coordinate system associated with its initial
motion, this would mean that the initially immobile body starts moving, which
contradicts to energy conservation law.

However, when a body deviates from the inertial trajectory — i.e., if there
is an acceleration — the balance between incoming and outgoing photos is dis-
rupted: the number of photons going on corresponds to one velocity, while the
number of photons coming back in corresponds to a different velocity. As a
result of this dis-balance, when a body accelerates, some photons are lost and
some energy is lost. So, accelerated body emits some photons — i.e., radiates,
emits what is called electromagnetic waves.

The larger the deviation from the inertial movement — i.e., the larger the



acceleration — the larger the resulting photon flow. In the first approximation,
the intensity of this photon flow (radiation) is proportional to the acceleration.

Back to gravitational interactions: fuzzy-type interactions lead to
gravitational waves. Gravity is also a field, its quanta are called gravitons.
From this viewpoint, gravitational interaction means that the bodies exchange
gravitons.

In contrast to the electromagnetic field, acceleration does not necessary
means disbalance: as we have mentioned, a constant acceleration does not have
any physical meaning, it can be easily eliminated by changing a coordinate sys-
tem. The only thing that cannot be eliminated by such a change is the third
derivative. Thus, if there is a third derivative, there is a disbalance between
outgoing and incoming gravitons — i.e., a body emits a gravitational wave.

In the first approximate, the intensity of this wave is proportional to the
third derivative — i.e., to the intensity of the fuzzy-type interactions.

What type of gravitational waves will be observe? In the fuzzy-type
interaction, the locations that have an infinite third derivative — and thus, emit
gravitational waves — corresponds to the case when the high concentrations are
equal a(t) = b(t).

For a homogeneous body, in general, we have only one moment of time when
this equality occurs, so we will see a momentary burst of gravitational waves.

For a non-homogeneous body, at different locations, the above equality is,
in general, achieved at different times. So, we will have an extended burst —
and by the duration of this burst, we can tell how non-homogeneous is the
corresponding celestial body.

Comment. It should be mentioned that the expected bursts are different from
the gravitational waves that we are observing now [12]: these waves are chirps,
periodic waves with a rapidly increasing frequency. A natural explanation for
such chirps is that they are caused by two bodies (e.g., two black holes) orbiting
closely around each other. As they emit gravitational waves, they lose energy
and thus, get closer and closer to each other. This, in accordance with the
Kepler’s laws, causes the orbiting period to decrease — and thus, the frequency
of the emitted waves to increase.
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