Towards a More Efficient Representation of
Functions in Quantum and Reversible Computing

Oscar Galindo!, Laxman Bokati?, and Vladik Kreinovich!?
Department of Computer Science
2Computational Science Program

University of Texas at El Paso, El Paso, TX 79968, USA
ogalindomo@miners.utep.edu, Ibokati@miners.utep.edu,
vladik@utep.edu

Abstract

Many practical problem necessitate faster computations. Simple phys-
ical estimates show that the only way to achieve a drastic computation
speedup is to use quantum — or, more generally, reversible — computing.
Thus, we need to be able to transform the existing algorithms into re-
versible form. Such transformation schemes exist. However, such schemes
are not very efficient. Indeed, in general, when we write an algorithm,
we composed it of several pre-existing modules. It would be nice to be
able to similarly compose a reversible version of our algorithm from re-
versible version of these moduli — but the existing transformation schemes
cannot do it, they require that we, in effect, program everything “from
scratch”. It is therefore desirable to come up with alternative transfor-
mations, transformation that transform compositions into compositions
and thus, transform a modular program in an efficient way — by utilizing
transformed moduli. Such transformations are proposed in this paper.

1 Formulation of the Problem

Need for faster computing. While computers are very fast, in many practical
problems, we need even faster computations. For example, we can, in principle,
with high accuracy predict in which direction a deadly tornado will turn in the
next 15 minutes, but this computation requires hours even on the most efficient
high performance computers — too late for the resulting prediction to be of any
use.

Faster computations means smaller processing units. One of the main
limitations on physical processes is the fact that, according to modern physics,
all processes cannot move faster than the speed of light. For a laptop of size
~ 30 cm, this mean that it takes at least 1 nanosecond (10~ sec) for a signal
to move from one side of the laptop to the other. During this time, even the

cheapest laptops perform several operations. Thus, to speed up computations,
we need to further decrease the size of the computer — and thus, further decrease
the size of its memory units and processing units.

Need for quantum computing. Already the size of a memory cell in a
computer is compatible with the size of a molecule. If we decrease the computer
cells even more, they will consist of a few dozen molecules. Thus, to describe
the behavior of such cells, we will need to take into account the physical laws
that describe such micro-objects — i.e., the laws of quantum physics.

Quantum computing means reversible computing. For macro-objects, we
can observe irreversible processes: e.g., if we drop a china cup on a hard floor,
it will break into pieces, and no physical process can combine these pieces back
into the original whole cup. However, on the micro-level, all the equations are
reversible. This is true for Newton’s equations that describe the non-quantum
motion of particles and bodies, this is true for Schroedinger’s equation that
takes into account quantum effects that describes this notion; see, e.g., [1, 3].
Thus, in quantum computing, all elementary operations must be reversible.

Reversible computing beyond quantum. Reversible computing is also
needed for a different reasons. Even at the present level of micro-miniaturization,
theoretically, we could place more memory cells and processing cells into the
same small volume if, instead of the current 2-D stacking of these cells into a
planar chip, we could stack them in 3-D.

For example, if we have a Terabyte of memory, i.e., 10'2 cells in a 2-D
arrangement, this means 10° x 10°. If we could get a third dimension, we would
be able to place 106 x 10% x 106 = 10'® cells in the same volume — million times
more than now.

The reason why we cannot do it is that already modern computers emit a
large amount of heat. Even with an intensive inside-computer cooling, a working
laptop warms up so much that it is possible to be burned if you keep it in your
lap. If instead of a single 2-D layer, we have several 2-D layers forming a 3-
D structure, the amount of heat will increase so much that the computer will
simply melt.

What causes this heat? One of the reasons may be design flaws. Some part
of this heat may be decreased by an appropriate engineering design. However,
there is also a fundamental reason for this heat: Second Law of Thermody-
namics, according to which, every time we have an irreversible process, heat is
radiated, in the amount T - S, where S is the entropy — i.e., in this case, the
number of bits in information loss; see, e.g., [1, 3]. Basic logic operations (that
underlie all computations) are irreversible. For example, when a & b is false, it
could be that both a and b were false, it could be that one of them was false.
Thus, the usual “and”-operation (a,b) — a & b is not reversible.

So, to decrease the amount of heat, a natural idea is to use only reversible
operations.

How operations are made reversible now? At present, in quantum (and

reversible) computing, a bit-valued function y = f(x1,...,2,) is transformed
into the following reversible operation:

Tf : (xl,---,$n7$0) — (x17"'71‘717560@.](‘(1:1’"'7%77,))7

where zq is an auxiliary bit-valued variable, and & denotes “exclusive or”, i.e.,
addition modulo 2; see, e.g., [2].

It is easy to see that the above operation is indeed reversible: indeed, if we
apply it twice, we get the same input back:

Ty(T(x1, ... 20, 20) =Tp(x1,. . Zn, 20 B f21,...,2T0)) =

(1, Ty o ® f(x1, .y xn) ® f(T1,. .., T0)).

For addition modulo 2, a & a = 0 for all a, so indeed

o ® f(x1,...,x0) ® f(z1,...,2n) =20 D (f(21,...,20n) ® fx1,...,2,)) = g

and thus,
T (Tr(21, -3 &0, 20)) = (T1,. .+, Tn, To)-

Limitations of the current reversible representation of functions. The
main limitation of the above representation is related to the fact that we rarely
write algorithms “from scratch”, we usually use existing algorithms as building
blocks.

For example, when we write a program for performing operations involving
sines and cosines (e.g., a program for Fourier Transform), we do not write a new
code for sines and cosines from scratch, we use standard algorithms for comput-
ing these trigonometric functions — algorithms contained in the corresponding
compiler. Similarly, if in the process of solving a complex system of nonlinear
equations, we need to solve an auxiliary system of linear equations, we usually
do not write our own code for this task — we use existing efficient linear-system
packages. In mathematical terms, we form the desired function as a composition
of several existing functions.

From this viewpoint, if we want to make a complex algorithm — that consists
of several moduli — reversible, it is desirable to be able to transform the reversible
versions of these moduli into a reversible version of the whole algorithm. In other
words, it is desirable to generate a reversible version of each function so that
composition of functions would be transformed into composition. Unfortunately,
this is not the case with with the existing scheme described above. Indeed, even
in the simple case when we consider the composition f(f(x1)) of the same
function f(x1) of one variable, by applying the above transformation twice, we
get — as we have shown — the same input x; back, and not the desired value
F(f(21)).

Thus, if we use the currently used methodology to design a reversible version
of a modularized algorithm, we cannot use the modular stricture, we have, in
effect, to rewrite the algorithm from scratch. This is not a very efficient idea.

Resulting challenge, and what we do in this paper. The above limitation
shows that there is a need to come up with a different way of making a function
reversible, a way that would transform composition into composition. This way,
we will have a more efficient way of making computations reversible.

This is exactly what we do in this paper.

2 Analysis of the Problem and the Resulting
Recommendation

Simplest case: description. Let us start with the simplest case of numerical
algorithms, when we have a single real-valued input x and a single real-valued
output y. Let us denote the corresponding transformation by f(x).

In general, this transformation is not reversible. So, to make it reversible,
we need to consider an auxiliary input variable u — and, correspondingly, an
auxiliary output variable v which depends, in general, on z and u: v = vy(z, u).
The resulting transformation (z,u) — (f(z),vs(x,u)) should be reversible.

How to make sure that composition is transformed into composition.
Let us fix some value of the auxiliary variable u that we will use, e.g., the value
u = 0. We want to make sure that when = = 0, then in the resulting pair
(y,v), the second value v is also 0, i.e., that vs(x,0) = 0. This way, (z,0) is
transformed into (z/,0) = (f(x),0). So, if after this, we apply the reversible

analogue of g(z), we get (g(z'),0) = (9(f(x)),0).

What does “reversible” mean here? In the computer, real numbers are
represented with some accuracy €. Because of this, there are finitely many
possible computer representations of real numbers.

Reversibility means that inputs and outputs are in 1-1 correspondence, and
thus, for each 2-D region r, its image after the transformation (x,u) — (y,v)
should contain exactly as many pairs as the original region 7.

Each pair (z,u) of computer-representable real numbers takes the area of
€2 in the (z,u)-plane. In each region of this plane, the number of possible
computer-representable numbers is therefore proportional of the area of this re-
gion. Thus, reversibility means that the transformation (x,u) — (f(z),v(x,u))
should preserve the area.

From calculus, it is known that, in general, under a transformation

(X1, yxn) = (fi(@r, .o yzn)y ooy fal@r, ooy Tn)),

the n-dimensional volume is multiplied by the determinant of the matrix with

Y7
elements l Thus, reversibility means that this determinant should be equal
Ly

to 1.

Let us go back to our simple case. For the transformation (z,u) —

(f(z),v(x,u)), the matrix of the partial derivatives has the form

(f’(ff) 0 >
a’l)f 8’Uf 5
Or Ou

where, as usual, f’(z) denoted the derivative. Thus, equating the determinant
of this matrix to 1 leads to the following formula

Ovy _

f/(l') ’ u 1,

from which we conclude that

avf _ 1
Ou fl(x)

Thus,

1
f'(x)

Uavf U
vf(x,U)zvf(a:,O)—I—/ a—du:vf(x,O)—i—/
0o ocu 0

du =

U

ve(z,0) + @)

We know that vs(z,0) = 0, thus we have

u

fr=@)’

vp(z,u) =

and the transformation takes the form

(z,u) — <f(a;),ﬂl(‘m)) .

Examples.

e For f(z) = exp(z), we have f'(z) = exp(x) and thus, the reversible ana-
logue is (z,u) — (exp(x),u - exp(—1x)).

e For f(z) = In(z), we have f'(z) = 1/x and thus, the reversible analogue
is (z,u) = (z,u-x).

Comment. The above formula cannot be directly applied when f'(x) = 0. In
this case, since anyway, we consider all the numbers modulo the “machine zero”
€ — the smallest positive number representable in a computer — we can replace
f/(z) with the machine zero.

General case. Similarly, if we have a general transformation

(@14 @n) = F(@1 e Tn) & (@1) ey fal@1se oy 20),s

we want to add an auxiliary variable v and consider a transformation

(1’1,...,Zn,u) - (f1($17"'axn)v'"7fn(xla'"axn>7vf(xla'~~axn7u))'

To make sure that composition is preserved, we should take vy(x1,...,z,,0) =
0. Thus, from the requirement that the volume is preserved, we conclude that

U
Vi1, Ty, U) = — 55

det ‘ Ofi

3xj

Resulting recommendation. To make the transformation

(X1, yxn) = (fil@r, .oy zn)y e fa(@n, oo 2))

reversible, we should consider the the following mapping;:

(CL‘]_,...,.’IJn7u) — fl(xlv-~'amn)7"'7fn(w17"'7xn)7#

det H oz,

3 Discussion

Need to consider floating-point numbers. In the previous text, we consid-
ered only fixed-point real numbers, for which the approximation accuracy & —
the upper bound on the difference between the actual number and its computer
representation — is the same for all possible values x;.

In some computations, however, we need to use floating-point numbers, in
which instead of directly representing each number as a binary fraction, we,
crudely speaking, represent its logarithm: e.g., in the decimal case, 1 000 000 000
is represented as 10, where 9 is the decimal logarithm of the original number.
In this case, we represent all these logarithms with the same accuracy €. In
this case, the volume should be preserved for the transformation of logarithms
In(z;) into logarithms In(f;), for which

O(f) _w; Of,

8111(1‘]') o f1 . 6.’2]’.

In this case, formulas similar to the 1-D case imply that the resulting reversible
version has the form

U
(xl,”';xnau)_) fl(xlv"'al'n),'“;fn(xla"'vxn)v—a
det || 22 . Ji
fi 893]-

In some cases, the input is a fixed-point number while the output is a float-
ing point number; this happens, e.g., for f(z) = exp(x) when the input z is
sufficiently large. In this case, we need to consider the dependence of In(f) of x.

Case of functions of two variables. If we are interested in a single function
of two variables f(z1,x2), then it makes sense not to add an extra input, only
an extra output, i.e., to consider a mapping (z1, z2) — (f(z1,z2), g(z1, z2)), for
an appropriate function g(z1, z2).

The condition that the volume is preserved under this transformation means
that

o 0 0y

dry Oxy Oxe Ory

For example, for f(x1,22) = x1 + 22, we get the condition

dg g
(9.%‘2 81‘1 a
This expression can be simplified if, instead of the original variables x; and z,
. . U1 + U2
we use new variables u; = 1 — o and us = 1 + xo for which z; = —5

Uy —

u
and xo = L In terms of the new variables, the original function g(x1, z2)

has the form

U +us U2 — U
G(u17u2):f(12 27 22 1)'
For this new function,
oG _1 99 1 99 _ 1
Ou; 2 Oxy 2 Ozy 2

Thus,
1
G(Ul,UQ) = —5 Ul + C(Ug)

for some function C(us), i.e., substituting the expressions for u;,
To — T

2
So, to make addition reversible, we may want to have subtraction — the operation
inverse to addition; this make intuitive sense.

Similarly, for f(z1,22) = 1 - 22, we get the condition

g(z1,22) = + C(x1 + x2).

v, 09 99 _
2 8372 ! 8:51 N
: . P . of _ of
This expression can be simplified if we realize that x; - = , where we
denoted X; In(z;). In these terms, we have
99 99 _
0X, 90X,

and thus, as in the sum example, we get

Xo— Xy

g(Xl’XZ): 2

+ C (X1 + Xo).
Thus, we get

In(zo) — In(z1)

5 + C(Iln(z1) + In(z2)),

g(xlva) =

ie.,

flzy,m2) = L (@) + C(x1 - m2).

2 Tl

So, to make multiplication reversible, we need to add a (function of) division —
the operation inverse to multiplication. This also makes common sense.

Acknowledgments

This work was partially supported by the US National Science Foundation via
grant HRD-1242122 (Cyber-ShARE Center of Excellence).

References

[1] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics,
Addison Wesley, Boston, Massachusetts, 2005.

[2] M. Nielsen and I. Chuang, Quantum Computation and Quantum Informa-
tion, Cambridge University Press, Cambridge, 2000.

[3] K.S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Fluids,
Plasmas, FElasticity, Relativity, and Statistical Physics, Princeton University
Press, Princeton, New Jersey, 2017.

