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Abstract There are many different independent factors that affect student grades.
There are many physical situations like this, in which many different independent
factors affect a phenomenon, and in most such situations, we encounter normal dis-
tribution – in full accordance with the Central Limit Theorem, which explains that
in such situations, distribution should be close to normal. However, the grade dis-
tribution is definitely not normal – it is multi-modal. In this paper, we explain this
strange phenomenon, and, moreover, we explain several observed features of this
multi-modal distribution.

1 Formulation of the Problem

Many different factors affect the student grades. Many different independent fac-
tors affect the student’s grade in a class. The grade can be affected by a student’s
preparedness for different sections of the material, by the student’s degree of in-
volvement in other classes, by how well the professor’s teaching style matches the
student’s learning style, by possible personal problems – the list can go on and on.

Based on this, one would expect normal distribution of the grades. Situations
when the result comes from the joint effect of a large number of independent factors
are ubiquitous in real life. From the mathematical viewpoint, such situations are well
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analyzed. It is known that the distribution of the sum of a large number of relatively
small independent random variables is close to Gaussian (normal) — this is the
gist of the so-called Central Limit Theorem; see, e.g., [16]. And indeed, normal
distributions are encountered in many such situations.

Based on the the above explanation, one would expect that in a large class, grades
would also be normally distributed. But they are not.

A puzzling fact: grade distribution is multi-modal. Even for a relatively large
class, we very rarely see the bell-shaped curve of a normal distribution. In reality,
the distribution is multi-modal.

This multi-modality is a well-known phenomenon: so well-known that many pro-
fessors use it for grading. To avoid a natural student’s complaint about grading fair-
ness, that this student with 89.9 got a B but someone with a practically indistin-
guishable grade of 90.1 gets an A, experienced teachers recommend to use, as an
A-or-B threshold, to select not some arbitrary number like 90, but the largest gap
between the grades which is close to 90. This way, there is a significant gap between
B and A students, and thus, the grades are viewed as more fair than before.

Such a gap can always be found – exactly because the distribution is multi-modal,
because between the modes, the probability density gets very low, and thus, gaps
between neighboring grades become much larger than in the vicinity of each mode.

But why? It is great that we can use multi-modality, but the question remains: why?
In this paper, we provide a possible uncertainty-based explanation for this unex-
pected phenomenon.

Additional observations. Another interesting phenomenon is that the number of
modes does not stay the same throughout the students’ studies: for undergradu-
ate students, we have more modes, whole for graduate students, we observe fewer
modes. This seems to be in perfect accordance with the fact that in undergradu-
ate studies, we usually use more different grades: A, B, and C, while for graduate
students, C is practically a failure grade, so, in effect, we only use As and Bs. Con-
venient, but why?

Yet another convenient-but-why observation is that modes are almost equidistant,
so the corresponding clusters are indeed close to the usual groupings of 90-100, 80-
90, 70-80, etc.

In this paper, we try to explain these additional observations as well.

2 Analysis of the Problem and the Resulting Qualitative
Explanation

Important phenomenon: students help each other. At first glance, the situation
with grades is the same as with other cases when Central Limit Theorem works:
e.g., in situations like Brownian motion where the motion of a particle is caused by
a joint effect of many different phenomena.
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At first glance, the situation is the same, and if the students were simply randomly
affected by all the factors mentioned above, we probably would have observed ex-
actly the same normal distribution as in many physical situations.

But there is a big difference between students and particles: students help each
other. This help may not always be a huge contribution to the student’s success, but,
as everyone who has ever studied knows well, it does provide an important help.
Students ask questions to each other, students exchange ideas – and often even form
study groups to study together, and it helps.

How does this helping phenomenon affects the resulting grade distribution?

What happens when two students study together: ideal case. In the ideal case,
when two students study with each other, they exchange knowledge, and at the end,
both get the exact same amount of knowledge. To be more precise, each student
knows exactly what he knew before + what the other student knew. As a result, if
at this moment, we give them a test, they will get the exact same grade – reflecting
their exact same state of knowledge.

What happens in practice. In practice, this ideal exchange of information only
happens when students are at approximately the same level of knowledge. If we
try to bring together two students with a big gap between them – e.g., a straight A
student and an almost-failing student – this rarely helps, because most students lack
the ability to clearly explain things to those who know much less.

For example, in VK’s department, when we started hiring undergraduate instruc-
tional assistants for classes, it turns out that students who in their time got B for the
corresponding classes were much better in helping new students than those who got
A – the A students knew material much better, but they could not as convincingly
explain it to the new students.

Not only students, starting professors (and even some should-have-been-
experienced professor) have the same limitation.

As a result, this exchange of knowledge happens only when the difference be-
tween the students’ levels of knowledge – i.e., the difference between their grades
– is small. The larger the difference, the less probable it is that the knowledge ex-
change will happen.

Eventually, the students get better in this knowledge exchange skills: as they
progress from undergraduate students to graduate ones, their ability improves, and
the threshold beyond which they cannot effectively exchange knowledge decreases.

What happens as a result: a qualitative description. How does the existence of
this collaboration gap affect distribution of student grades? To understand the effect
on the qualitative level, let us consider a simplified model of student grade distribu-
tion.

Suppose that originally, students’ knowledge levels are uniformly distributed – at
least on some segment of the grades interval. This can be simplified into saying that
the students’ grades are initially distributed with the same step h. In other words,
these grades, when sorted in the increasing order, form the following sequence:
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g0 < g1 = g0 +h < g2 = g0 +2h < .. . < gk = g0 + k ·h < .. . < gn = g0 +n ·h.

In the beginning, the least well performing student is the one who is the most des-
perate for help. So, it is reasonable to expect that first, the student whose grade is
g0 will reach for help. The person most appropriate for helping him is the person
whose grade is the closest to his – e.g., the student with the grade g1. They start
actively collaborating, and, as the result of this collaboration, the reach the same
grade level – which is close to g1. For simplicity, let us assume that their grade level
is now exactly g1.

The student whose grade is g2 also needs help — so he/she contacts the closest
better student, the one with the grade level g3. As a result of their collaboration, they
both reach the same level g3.

Similarly, the first yet-unpaired student g4 teams us with g5, so their grade level
is now g5, etc. As a result of this first round of exchanges, we have pairs of students
whose grades are

g1 = g0 +h,g3 = g0 +3h,g5 = g0 +5h, . . .

note that the gap between different levels has doubled, from h to 2h.
Now, the same process starts again: students at level g1 are the most eager for

help, so they contact students at the next level g3 to form a study group. As a result
of their joint study, all four of them reach the level g3.

Students at the lowest not-yet-involved level g5 contact students from the level
g7 and all get to the level g7, etc. Now, we have a new list of grades:

g3 = g0 +3h < g7 +7h < g11 = g0 +11h < .. .

The gap has doubled again, to 4h. At the next iteration of this process, the gap will
double again – until it reaches the threshold after which the mutual exchange of
knowledge becomes difficult.

As a result, instead of the original uniform distribution, we have big groups with
approximately the same level of knowledge – separated by gaps in which there are
no students with this particular grade.

From simplified model to real life situations. Of course, the above description is
oversimplified. In reality, the original distances gi −gi−1 are not exactly equal, and
the effects are also not always the same. As a result, what we get is not the above
simplified picture, but rather a smoothed version of it: instead of groups of students
with identical grades, we have groups with close grades – i.e., in effect, we will have
a multi-modal distribution.

So, the mutual help indeed explains why grade distribution is multi-modal.

Why there are fewer modes for grades of graduate students? The same phe-
nomenon explains why for graduate students, we usually have fewer modes than for
undergraduate ones: graduate students have already learned how to exchange knowl-
edge, so for them, the threshold above which they cannot productively collaborate
is much higher. As a result, they continue merging into a single cluster even when
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at the undergraduate level, we would have reached the original merging threshold
and stopped. As a result, for graduate students, we have fewer clusters – i.e., fewer
modes of the resulting distribution.

3 Towards a Quantitative Analysis

Analogy with physics. To looks for a quantitative analysis of the situation, let us
look for other situations when a similar phenomenon occurs.

What is the above phenomenon? We started with a distribution which was per-
fectly uniform. This distribution was symmetric, in the sense that it does not change
– at least locally – if we simply shift all the grades by the same number h. Then what
happens if two nearby students with grades gi and gi+1 start collaborating. As a re-
sult, the knowledge of both students reaches the same level gi+1: g′i = g′i+1 = gi+1.
Now, we get a gap of width 2h between the levels g′i−1 = gi−1 and g′i = gi+1.

The distribution is no longer invariant with respect to a shift by h – even if many
pairs exchange their knowledge. The original symmetry is broken.

This phenomenon of spontaneous symmetry breaking is ubiquitous in physics;
see, e.g., [2, 17]. We can easily observe this phenomenon: e.g., if we drop a
breakable rotationally symmetric vase, it will not break into rotationally symmet-
ric pieces: it will break into irregular ones.

This phenomenon is very important: without it, our Universe would remain the
same highly homogenous and isotropic blurb that it was close to the Big Bang.
Luckily, gravity acts as the spontaneous symmetry breaking mechanism. Specifi-
cally, if a small fluctuation appears and at some location, the density at this location
becomes slightly larger than at other locations, then this heaver location will start
attracting other particles. As it attracts them, its mass increases and it attracts more
and more – until the whole original homogeneous cloud disintegrates into what we
call proto-galaxies [3, 4, 8].

In physics, researchers go beyond qualitative explanations. Not only this mech-
anism explains symmetry breaking, it explains all the observed shapes of celestial
bodies, such as spiral galaxies and planetary systems like ours in which distances of
the planets to the central star form a geometric progression; see, e.g., [3, 4, 8]. (This
mechanics also explains relative frequencies of different shapes.)

To understand the corresponding explanations, we need to know the basic ideas
of statistical physics, according to which it is not very probable to go from a com-
pletely symmetric state to a state with no symmetries at all: it is much more probable
that – at least at first – some symmetries will be preserved, and the more symmetries
will be preserved, the more probable the corresponding transition. For example, a
solid body (i.e., matter in highly symmetric – usually crystal – state), when heated,
usually does not immediately gets transformed into a completely asymmetric state
of gas, it first gets transformed into the state of the liquid in which some symmetries
are preserved [2, 17].
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What are the symmetries in the grades case? How can we apply the above idea
in our example – of grade distribution?

In the gravity case, the original symmetries were easy to find: rotations, shifts,
probably scalings. To apply a similar approach to grade distribution, we need to
understand what are the natural symmetries here. Let us brainstorm.

How are grades formed? Usually, by simply adding the grades corresponding
to different assignments – and these grades, in their turn, are obtained by simply
adding grades on different problems or parts or aspects of each assignment. Some
assignments are very tough, some are much easier. There have to be easier assign-
ments: we are talking mass education, not training students to win at an international
student olympiad in computer science.

What does it mean that the assignment is relatively easy? That on this particular
assignment (or part of the assignment), practically all the students will get a very
good grade. One professor may give a certain number of such assignments, another
professor may give one more such relatively simple task. The difference between
the grades given by these two professors will be exactly the grade e on this extra
assignment.

So, depending on who teaches a class, for the same level of knowledge, students
may get grades gi from one professor and grades gi +e from another one. This shift
gi → gi + e is therefore a reasonable symmetry here. In other words, the original
situation is invariant under all possible shifts g → g+ e.

Now, spontaneous symmetry breaking occurs, and the situation is no longer fully
symmetric. However, in line with the general ideas from statistical physics, the most
probable situation is that some of the original symmetries will remain. In other
words, there remains some value e0 so that – at least locally – the resulting dis-
tribution will not change if we simply add e0 to all the grades. In particular, this
means that if we add e0 to one mode (i.e., to one local maximum of the correspond-
ing probability distribution), then we should again encounter a model — i.e., yet
another local maximum. So, in the first approximation, local maxima (modes) are
almost equidistant – and, as we have mentioned, this is exactly what we observe!

Thus, this equidistance distribution can also be explained by our analysis.

Future work. To make the conclusions more qualitative, we need to provide a for-
mal explanation of the threshold. In the above analysis, we viewed the threshold as,
in effect, an interval beyond which collaboration is not productive – in line with the
interval uncertainty (see, e.g., [5, 7, 9, 11, 12]). However, in practice, this thresh-
old is not precise, it is imprecise – so we believe that the use of fuzzy techniques
(see, e.g., [1, 6, 10, 13, 14, 15, 18]) will lead to an even better description of this
phenomenon.
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