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Universidad Icesi
Calle 18 No. 122-135 Pance

Cali, Colombia, hannibals76@gmail.com

Abstract

Several decades ago, traditional neural networks were the most effi-
cient machine learning technique. Then it turned out that, in general, a
different technique called support vector machines is more efficient. Rea-
sonably recently, a new technique called deep learning has been shown to
be the most efficient one. These are empirical observations, but how we
explain them – thus making the corresponding conclusions more reliable?
In this paper, we provide a possible theoretical explanation for the above-
described empirical comparisons. This explanation enables us to explain
yet another empirical fact – that sparsity techniques turned out to be very
efficient in signal processing.

1 Formulation of the Problem

Main objectives of science and engineering. We want to make our lives
better, we want to select actions and designs that will make us happier, we want
to improve the world so as to increase our happiness level. To do that, we need
to know what is the current state of the world, and what changes will occur if
we perform different actions. Crudely speaking, learning the state of the world
and learning what changes will happen is the main objective of science, while
using this knowledge to come up with the best actions and best designs is the
main objective of engineering.

Need for machine learning. In some cases, we already know how the world
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operates: e.g., we know that the movement of the celestial bodies is well de-
scribed by Newton’s equations – it is described so well that we can predict, e.g.,
Solar eclipses centuries ahead. In many other cases, however, we do not have
such a good knowledge, we need to extract the corresponding laws of nature
from the observations.

In general, prediction means that we can predict the future value y of the
physical quantity of interest based on the current and past values x1, . . . , xn

of related quantities. To be able to do that, we need to have an algorithm
that, given the values x1, . . . , xn, computes a reasonable estimate for the desired
future value y.

In the past, designing such algorithms was done by geniuses – Newton de-
scribed how to predict the motion of celestial bodies, Einstein provided more
accurate algorithms, Schroedinger, in effect, described how to predict probabili-
ties of different states of the quantum system, etc. This still largely remains the
domain of geniuses, Nobel prizes are awarded every year for these discoveries.
However, now that the computers has become very efficient, they are often used
to help. This use of computers is known as machine learning: when we know, in
several cases c = 1, . . . , C, which values y(c) corresponded to appropriate values

x
(c)
1 , . . . , x

(c)
n , and we want to find an algorithm f(x1, . . . , xn) for which, for all

these cases c, we have y(c) ≈ f(x
(c)
1 , . . . , x

(c)
n ).

The value y may be tomorrow’s temperature in a given area, it may be a
binary (0-1) variable deciding whether a given email is legitimate or a spam (or
whether, e.g., the given image is an image of a cat).

Machine learning: a brief history. One of the first successful general ma-
chine learning techniques was the technique of neural networks; see, e.g., [3]. In
this technique, we look for algorithms of the type

f(x1, . . . , xn) =

K∑
k=1

Wk · s

(
n∑

i=1

wki · xi − wk0

)
−W0,

for some non-linear function s(z) called an activation function, and for some
values wki and Wk knows as weights. As the function s(z), researchers usually

selected the so-called sigmoid function s(z) =
1

1 + exp(−z)
.

This algorithm emulates a 3-layer network of biological neurons – the main
cells providing data processing in our brains. In the first layer, we have input
neurons that read the inputs x1, . . . , xn. In the second layer – called a hidden
layer – we have K neurons each of which first generates a linear combination

zk =

n∑
i=1

wki · xi − wk0

of the input signals, and the applies an appropriate nonlinear function s(z) to
this combination, resulting in a signal yk = s(zk). The processing by biological
neurons is well described by the sigmoid activation function – this is the reason
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why this function was selected for artificial neural networks in the first place.
After that, in the final output layer, the signals yk from the neurons in the

hidden layer are combined into a linear combination
K∑

k=1

Wk · yk −W0 which is

returned as the output.
A special efficient algorithm – known as backpropagation – was developed to

train the corresponding neural network, i.e., to find the values of the weights

that provide the best fit for the observation results x
(c)
1 , . . . , x

(c)
n , y(c).

Support Vector Machines: a brief description. Later, in many practical
problem, a different technique became more efficient: the technique of Support
Vector Machines; see, e.g., [29] and references therein. Let us explain this
technique on the example of a binary classification problem, i.e., a problem in
which we need to classify all objects (or events) into one of two classes, based
on the values x1, . . . , xn of the corresponding parameters – i.e., in which the
desired output y has only two possible values.

In general, if, based on the values x1, . . . , xn we can uniquely determine
to which of the two classes this object belongs, this means that the set of all
possible values of the tuple x = (x1, . . . , xn) is divided into two non-intersecting
sets S1 and S2 corresponding to each of the two classes.

We can therefore come up with a continuous function f(x1, . . . , xn) such
that f(x) ≥ 0 for x ∈ S1 and f(x) ≤ 0 for x ∈ S2. As an example of such
a function, we can take f(x) = d(x, S2) − d(x, S1), where the distance d(x, S)
between a point x and the set S is defined as the distance from x to the closest
point of S, i.e., as inf

s∈S
d(x, s). Clearly, if x ∈ S, then d(x, s) = 0 for s = x thus

d(x, S) = 0.

• For points x ∈ S1, we have d(x, S1) = 0 but usually d(x, S2) > 0, thus
f(x) = d(x, S2)− d(x, S1) > 0.

• On the other hand, for points x ∈ S2, we have d(x, S2) = 0 while, in
general, d(x, S1) > 0, thus f(x) = d(x, S2)− d(x, S1) < 0.

In some simple cases, there exists a linear function

f(x1, . . . , xn) = a0 +

n∑
i=1

ai · xi

that separates the two classes. In this case, there exist efficient algorithms
for finding the corresponding coefficients ai – for example, we can use linear
programming (see, e.g., [9, 31]) to find the values ai for which:

• a0 +
n∑

i=1

ai · xi > 0 for all known tuples x ∈ S1, and

• a0 +
n∑

i=1

ai · xi < 0 for all known tuples x ∈ S2.
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In many practical situations, however, such a linear separation is not possible.
In such situations, we can take into account the known fact that any continuous
function on a bounded domain (and for practical problems, there are always
bounds on the values of all the quantities) can be approximated, with any given
accuracy, by a polynomial. Thus, with any given accuracy, we can separate the
two classes by checking whether the f -approximating polynomial

Pf (x) = a0 +

n∑
i=1

ai · xi +

n∑
i=1

n∑
j=1

aij · xi · xj + . . .

is positive or negative.
In other words, if we perform a non-linear mapping of each original n-

dimensional point x = (x1, . . . , xn) into a higher-dimensional point

X = (X1, . . . , Xn, X11, X12, . . . , Xnn, . . .) = (x1, . . . , xn, x
2
1, x1 · x2, . . . , x

2
n, . . .),

then in this higher-dimensional space, the separating function becomes linear:

Pf (X) = a0 +

n∑
i=1

ai ·Xi +

n∑
i=1

n∑
j=1

aij ·Xij + . . . ,

and we know how to effectively find a linear separation.
Instead of polynomials, we can use another basis e1(x), e2(x), . . . , to ap-

proximate a general separating function as a1 · e1(x) + a2 · e2(x) + . . .
The name of this technique comes from the fact that when solving the corre-

sponding linear programming problem, we can safely ignore many of the samples
and concentrate only on the vectors X which are close to the boundary between
the two sets – if we get linear separation for such support vectors, we will auto-
matically get separation for other vectors X as well.

This possibility to decrease the number of iterations enables us to come up
with algorithms for the SVM approach which are more efficient than general
linear programming algorithms – and many other ideas an tricks help make the
resulting algorithms even faster.

Deep learning: a brief description. Lately, the most efficient machine
learning tool is deep learning; see, e.g., [19]. Deep learning is a version of
a neural network, but the main difference is that instead of a large number of
neurons in a hidden layer, we have multiple layers with a relatively small number
of neurons in each of them.

Similarly to the traditional neural networks, we start with the inputs x1,

. . . , xn. These inputs serve as inputs x
(0)
i to the neurons in the first later. On

each layer k, each neuron takes, as inputs, outputs x
(k−1)
i from the previous

layer and returns the value x
(k)
j = sk

(∑
i

w
(k)
ij · x

(k−1)
i

)
−w

(k)
0j . For most layers,

instead of the sigmoid, it turns out to be more efficient to use a piece-wise linear
function sk(x) = max(x, 0) which is 0 for x < 0 and equal to x for x > 0. In
the last layer, sometimes, the sigmoid is used.
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There are also layers in which inputs are divided into groups, and we combine
inputs from each group into a single value – e.g., by taking the maximum of the
corresponding values.

In addition to the general backpropagation idea, several other techniques
are used to speed up the corresponding computations – e.g., instead of using all
the neurons in training, one of the techniques is to only use, on each iteration,
some of the neurons and then combine the results by applying an appropriate
combination functions (which turns out to be geometric mean).

Natural questions. So far, we have described what happened: support vector
machines turned out to be more efficient in machine learning, and deep learning
is, in general, more efficient than support vector machines. A natural question
is: why? How can we theoretically explain these empirical facts – thus increasing
our trust in the corresponding conclusions?

What we do in this paper. In our previous papers, we explained why deep
learning is more efficient than the traditional neural networks; see, e.g., [2, 20,
21]. (We also explained the selection of piece-wise linear activation functions
[17], why some combination functions are more efficient [18], and several other
features of deep learning [20].)

In this paper, we extend these explanations to the comparison between sup-
port vector machines and neural networks.

The resulting explanation will help us understand yet another empirical fact
– the empirical efficiency of sparse techniques in signal processing.

2 Why Support Vector Machines Are, in Gen-
eral, More Efficient than Traditional Neural
Networks: An Explanation

This empirical comparison is the easiest to explain. Indeed, to train a traditional

neural network on the given cases x
(c)
1 , . . . , x

(c)
n , y(c), we need to find the weights

Wk and wki for which

y(c) ≈
K∑

k=1

Wk · s

(
n∑

i=1

wki · x(c)
i − wk0

)
−W0.

Here, the activation function s(z) is non-linear, so we have a system of non-
linear equations for finding the corresponding weights Wk and wki. In general,
solving a system of nonlinear equations is NP-hard even for quadratic equations;
see, e.g., [23, 27].

In contrast, for support vector machines, to find the corresponding coeffi-
cients ai, it is sufficient to solve a linear programming problem – and this can
be done in feasible time. This explains why support vector machines are more
efficient than traditional neural networks.
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3 Why Deep Learning Is, in General, More Effi-
cient than Support Vector Machines: An Ex-
planation

At first glance, the above explanation should work for the comparison between
support vector machines and deep networks: in the first case, we have a feasible
algorithm, while in the second case, we have an NP-hard problem that may
require very long (exponential) time.

However, this is only at first glance. Namely, the above comparison assumes
that all the inputs x1, . . . , xn are independent – in the sense of functional de-
pendency, i.e., that none of them can be described in terms of one another. In
reality, most inputs are dependent in this sense. This is especially clear in many
engineering and scientific applications, where we use the results of measuring
appropriate quantities at different moments of time as inputs for prediction,
and we know that these quantities are usually not independent – they satisfy
some differential equations. As a result, we do not need to use all n inputs – if
there are m � n independent ones, this means that it is sufficient to use only
m of the inputs – or, alternatively, m different combinations of inputs, as long
as they combinations are independent (and, in general, they are); see, e.g., [22].

And this is exactly what is happening in a deep neural network. Indeed, in
the traditional neural network, in which we have many neurons in the processing
(hidden) layer – we can have as many as inputs or even more. In contrast, in
the deep neural networks, the number of neurons in each layer is limited. In
particular, the number of neurons in the first processing layer is, in general,
much smaller than the number of inputs. And all the resulting computations

are based only on the outputs x
(1)
k of the neurons from this first layer. Thus,

in effect, the desired quantity y is computed not based on all n inputs, but
based only on m combinations – where m is the number of neurons in the first
processing layer.

The empirical fact – that, in spite of this limitation, deep neural networks
seem to provide a universal approximation to all kinds of actual dependencies
– is an indication that, inputs are usually dependent on each other.

This dependence explains why, empirically, deep neural networks work better
than support vector machines – deep networks implicitly take into account this
dependency, while support vector machines do not take any advantage of this
dependency. As a result, deep networks need fewer parameters than would be
needed if they would consider n functionally independent inputs. Hence, during
the same time, they can perform more processing and thus, get more accurate
predictions.
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4 Sparsity Techniques: an Explanation of Their
Efficiency

What are sparsity techniques. The above explanations help us explain an-
other empirical fact: that in many applications of signal and image processing,
sparsity techniques has been very effective. Specifically, usually, in signal pro-
cessing, we represent the signal x(t) by the coefficients ai of its expansion in the

appropriate basis e1(t), e2(t), etc.: x(t) ≈
n∑

i=1

ai · ei(t). In Fourier analysis, we

use the basic of sines and cosines, in wavelet analysis, we use wavelets as the
basis, etc. Similarly, in image processing, we represent an image I(x) by the
coefficients of its expansion over some basis.

It turns out that in many practical problems, we can select the basis ei(t)
in such a way that for most actual signals, the corresponding representation
becomes sparse in the sense that most of the corresponding coefficients ai are
zeros. This phenomenon leads to very efficient algorithms for signal and image
processing; see, e.g., [1, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 24, 25, 26, 28, 30, 32].
However, while empirically successful, from the theoretical viewpoint, this phe-
nomenon largely remains a mystery: why can we find such a basis? Some
preliminary explanations were provided in our previous papers [8, 12], but ad-
ditional explanations are definitely desirable.

Our new explanation. The shape of the actual signal x(t) depends on many
different phenomena. So, in general, we can say that x(t) = F (t, c1, . . . , cN ) for
some function F , where c1, . . . , cN are numerical values characterizing all these
phenomena.

Usual signal processing algorithms implicitly assume that we can have all
possible combinations of these values ci. However, as we have mentioned, in
reality, the corresponding phenomena are dependent on each other. As a result,
there is a functional dependence between the corresponding values ci. Only few
of them m� N are truly independent, others can be determined based on the
these few ones.

If we denote the corresponding m independent values by b1, . . . , bm, then
the above description takes the form xi(t) = G(t, b1, . . . , bm) for an appropriate
function G.

It is known that any continuous function – in particular, our function G –
can be approximated by piecewise linear functions. If we use this approximation
instead of the original function G, then we conclude that the domain of possible
values of the tuples (b1, . . . , bm) is divided into a small number of sub-domains
D1, . . . , Dp on each of which Dj the dependence of xi(t) on the values bi is
linear, i.e., has the form

xi(t) =

m∑
k=1

bk · ejk(t),

for some functions ejk(t).
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So, if we take all m · p the functions ejk(t) corresponding to different sub-
domains as the basis, we conclude that on each subdomain, each signal can be
described by no more than m� p ·m non-zero coefficients – this is exactly the
phenomenon that we observe and utilize in sparsity techniques.
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