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Abstract

In many situations like driving, it is important that a person concen-
trates all his/her attention at a certain critical task – e.g., watching the
road for possible problems. Because of this need to maintain high level
of attention, it was assumed, until recently, that in such situations, the
person maintains a constantly high level of attention (of course, until he
or she gets tired). Interestingly, recent experiments showed that in reality,
from the very beginning, attention level oscillates. In this paper, we show
that such an oscillation is indeed helpful – and thus, it is necessary to
emulate such an oscillation when designing automatic systems, e.g., for
driving.
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1 Formulation of the Problem

In many real-life situations, high level of attention is crucial. In many
practical situations, we concentrate on a certain task. For example, when a
person drives a car, he/she needs to keep a close attention to the road, to make
sure that if a problem appears, the driver will react as soon as possible – and
thus, avoid a possible accident.

What researchers assumed. In critical situations, when the maximum at-
tention is needed, psychologists assumed that the attention is consistently kept
at the maximum possible level – of course, until the person becomes too tired
to maintain this level of attention.

This assumption makes perfect sense: when a lot is at stake, including the
person’s own life, it makes sense to concentrate all the energy on avoiding pos-
sible catastrophic situations.
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A recent surprising observation. Surprisingly, recent experiments showed
that while the attention indeed remains high, the attention level – as measured,
e.g., by the reaction time – constantly oscillates; see, e.g., [1, 2]. This level
remains high, but the reaction time still oscillates between the smallest possible
value and a much larger value. This larger value of reaction time is still good,
but not as perfect as the smallest value.

The problem. It is not clear what is the reason for this observed phenomenon.
Are they somehow needed for survival? Or are they due to an imperfection of
human physiology?

This is not just an interesting theoretical question, it has practical applica-
tions:

• If the oscillations indeed improve the system’s performance, then we should
add similar oscillations to the self-driving cars and other automated vehi-
cles and systems.

• On the other hand, if the oscillations are caused by imperfections of human
physiology, then we should not emulate human drives in this; we should
instead keep the computer’s attention level constant.

What we do in this paper. In this paper, we show that oscillations do
make the system more efficient – and thus, appropriate oscillations should be
implemented in automatic control systems.

2 Analysis of the Problem

Need for a numerical model. To analyze the problem, to see whether con-
stant attention of oscillating attention are more productive, we need to formu-
late this problem in precise numerical terms. Let us therefore describe a simple
simplified model of this phenomenon.

Towards a simplified model. Let T denote the duration of the period during
which we need to maintain high attention level. Without losing generality, we
can start counting time from the beginning of this period. In this case, the
corresponding time interval takes the form [0, T ].

There are natural limitations on how many observations we can process,
whether in a computer or in our brains. For a high-performance computer,
these limitations are higher than for a simple laptop, but they are still there.
These limitations are real: e.g., when a conference speaker makes a presentation
remotely (e.g., by skype), the system often does not catch up when the speaker’s
movements are too fast.

Let us assume that, because of these limitations, during a certain period of
time T , we can process at most N observations. In crucial situations requiring
high attention, it is important that the person concentrates on the correspond-
ing task as much as possible – and thus, that this person processes as much
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information as possible. This means that in such situations, we should pro-
cess the maximum possible number of observations: namely, we should process
exactly N observations during the time T .

These observations correspond to, in general, different moments of time. Let
us sort these moments of time in chronological order. For each i from 1 to N ,
let us denote the time of the i-th observation by ti. Then, we have

0 ≤ t1 ≤ t2 ≤ . . . ≤ tN ≤ T.

We want to detect possible obstacles as early as possible, at the time when
the corresponding signals are still weak. For weak signals, a single observation
is not sufficient for reliable detection, since there is always some noise level: we
are not sure that the observed signal is real or just a noise. Swerving every
time when a speck appears which may be a car or a pedestrian is also a sure
recipe for disaster: this means that a car would follow an unpredictable waving
trajectory, like when the driver in drunk. We need to perform correcting actions
only when we are reasonably sure that there is indeed a problem on the road.

The more observations confirm that there is a problem, the higher our level
of confidence that this problem is real. Let m denote the smallest number
of observations that make us confident. Then, if a problem appears at time
t ∈ [0, T ], we will detect it when m observations pass after this time t. Let i(t)
denote the first index i for which ti ≥ t. The problem can then we observed
in observations made at times ti(t), ti(t)+1, ti(t)+2, etc. The problem will be
detected afterm such observations, i.e., at the moment ti(t)+m−1. The difference

∆(t)
def
= ti(t)+m−1 − t between the time when we detect the problem and the

original time t is the main component of the reaction time.
For problems appearing at the end of the time period [0, T ], namely for

problems corresponding to times t > tN−m, there are not enough remaining
observations to observe this problem.

Definition 1.

• By an high-attention situation, we mean a tuple (T,N,m), where T > 0
is a real number, and m and N are integers for which m < N .

• For each high-attention situation, by a strategy, we mean an increasing
sequence of real numbers t1, . . . , tN for which 0 ≤ t1 ≤ t2 . . . ≤ tN .

• For a given strategy and for each moment t ∈ [0, T ], by the reaction time
∆(t), we mean the difference ti(t)+m−1 − t.

Comment. As we have mentioned earlier, the reaction time is defined only for
moments t ≤ tN−m.

Which strategy should we prefer? We want to minimize reaction time.
First of all, we want to make sure that no matter when the problem appears,
we should be able to deal with it within a reasonable time r – and this time
should be as small as possible. This means that for all the moments t ≤ T − r,
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we should have ∆(t) ≤ r. This guaranteed reaction-time r should be as small
as possible.

There may be several different strategies with the same worst-case reaction
time. To select between then, it is reasonable to choose the strategy with the
smallest possible average reaction time: the average value of ∆(t) over all the
moments t ∈ T − r. Thus, we arrive at the following definition.

Definition 2.

• For each strategy ti, by its worst-case reaction time rw(ti), we mean the
smallest positive real number r for which max

0≤t≤T−r
∆(t) ≤ r.

• For a strategy ti with worst-case reaction time r, by its average reaction
time ra(ti), we mean the value

ra(ti)
def
=

1

T − r
·
∫ T−r

0

∆(t) dt.

3 Oscillations Are Better: Proofs

Discussion. Let us use the above model to check which strategy is better:
the strategy is constant or the strategy in which attention is oscillating. Let us
describe these strategies in precise terms.

Constant level of attention: how to formalize. Constant level of attention
means that we have the exact same difference δ = ti+1 − ti between the two
consecutive observations, i.e., that t2 = t1 + δ, t3 = t2 + δ = t1 + 2δ, etc., all
the way to tN = T .

In this case, the worst-case reaction time is r = m · δ that occurs if the
problem appears right after each observation, at time t = ti + ε for some small
positive ε ≪ δ. To maintain the same reaction time for t = 0, it is sufficient to
take t1 = δ, thus, ti = i · δ. So, δ = T/N .

Since we ignore moments t > T − r, we can as well place all the moments ti
corresponding to these times at T − r.

Definition 3. By a uniform strategy, we mean the strategy in which ti =
i · (T/N) for i < N −m and ti = (N −m) · (T/N) for i ≥ N −m.

Proposition 1. For the uniform strategy, the worst-case reaction time is rw =
m · (T/N), and the average reaction time is

ra =

(
m− 0.5− m · (m− 1)

2(N −m)

)
· (T/N).

Proof. For the worst-case reaction time, the result is straightforward.
For the average reaction time, the interval [0, T − r] is divided into N −m

intervals [ti−1, ti] of equal width δ. Thus, to compute the average reaction time
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over the whole interval [0, T − r], it is sufficient to compute the average reaction
time over each of these small intervals, and then compute the arithmetic average
of these averages.

For the first N−2m+1 intervals [ti−1, ti], the reaction time changes between
the maximal value m ·δ (attained close to ti−1) and the smallest value (m−1) ·δ
(attained at ti), so the average over this interval is (m− 0.5) · δ.

For i = N − m + 2, we have reaction time changing from (m − 1) · δ to
(m − 2) · δ, with an average ((m − 1) − 0.5) · δ. For the next interval, we have
((m− 2)− 0.5) · δ, etc., all the way to 0.5 · δ for the last interval.

In general, the average over each interval has the form (j − 0.5) · δ, where in
N − 2m + 1 cases, we have j = m, and then we have m − 1 values j = m − 1,
j = m−2, . . . , j = 1. So, the average reaction time is equal to ra = (E[j]−0.5)·δ,
where E[j] is the average value of j. Here,

E[j] =
m · (N − 2m+ 1) + (m− 1) + . . .+ 1

N −m
=

m · (N − 2m+ 1) +
(m− 1) ·m

2
N −m

.

Since N − 2m+ 1 = (N −m)− (m− 1), we get

E[j] =
m · (N −m)−m · (m− 1) +

(m− 1) ·m
2

N −m
=

m · (N −m)− (m− 1) ·m
2

N −m
= m− (m− 1) ·m

2(N −m)
.

Substituting this expression for E[j] into the formula ra = (E[j] − 0.5) · δ, we
get the desired result.

The proposition is proven.

Oscillations: how to formalize. Let us consider the extreme case of oscilla-
tions, where instead of having observations at uniformly distributed times, we
bring observations in groups of m: no observations, then m of them in a row,
then again no observations, then N of them in a row, etc., until we reach the
last m values, i.e., the values starting with k ·m+ 1, where k = ⌊N/m⌋:

t1 = t2 = . . . = tm = r, tm+1 = . . . = t2m = 2r, . . . ,

tk·m+1 = . . . = tN = k · r. (1)

Definition 3. By a maximally oscillating strategy, we mean the sequence (1),
where k = ⌊N/m⌋ and r = T/k.
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Proposition 2. For the maximally oscillating strategy, the worst-case reaction
time is rw = T/k, and the average reaction time is

ra = T/(2k).

Discussion. For the case when N is divisible by m, we get k = N/m. In this
case, the worst-case reaction time rw = T/k = m · (T/N) is the same as for the
uniform strategy. However, the average reaction time is almost twice smaller.
Thus, the oscillations indeed make the strategy more efficient.

Proof of Proposition 2. For the worst-case reaction time, the proof is
straightforward. On each interval of width r, the reaction time changes from 0
to r. For each value t from 0 to r, the reaction time is r − t. Thus the average
reaction time is

1

r
·
∫ r

0

(r − t) dt =
1

r
·
(
r · t− t2

2

)∣∣∣∣r
0

=
1

r
·
(
r2 − r2

2

)
=

1

r
· r

2

2
=

r

2
.

The proposition is proven.

Discussion. It is possible to show that not only the maximally oscillating
strategy is better than the uniform strategy, it is actually the best possible.

Definition 4. Let an high-attention situation (T,N,m) be given. We say that
a strategy ti is optimal of for every other strategy t′i, we have:

• either rw(ti) < rw(t
′
i),

• or rw(ti) = tw(t
′
i) or ra(ti) ≤ ra(t

′
i).

Proposition 3. For each high-attention situation, the maximally oscillating
strategy is optimal.

Proof. Let us assume that we have an optimal strategy, and that its worst-case
reaction time is equal to r = rw(ti). For the maximally oscillating strategy, we
have ra(ti) = 0.5 · r. Let us show that, vice versa, we cannot have ra < 0.5 · r,
and that if ra = 0.5 ·r, then the corresponding strategy is maximally oscillating.
This will prove that the maximally oscillating strategy is indeed optimal.

Indeed, the fact that the worst-case reaction time is equal to r means there
exists a moment t0 for which ∆(t) is as close to r as possible. This, in turn,
means that between the moments t0 and t0+r−ε, there are m values ti, namely
the values ti(t0), ti(t0)+1, . . . , ti(t0)+m−1. If all these m values are equal to each
other, then for each moment t between t0 and the common value of ti, we get
∆(t) = ti(t0) − t = t0 + r − t, and thus, the average value of ∆(t) over the
corresponding interval is equal to 0.5 · r.

In general, the next m values ti cannot be earlier that t0 + r, thus we have
∆(t) ≥ t0 + r− t. If for some t, we get strict equality, then the average reaction
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time over the corresponding interval is > 0.5 · r. The only possibility to have
this part of ta equal to 0.5 · r is when for all t, we have ∆(t) = t0 + r − t.

Let us show that in this case, we have at least m values ti equal to t0 + r.
Indeed, let j be the last value for which tj < t0+ r. Then, any t between tj and
t0 + r, the fact that we have ∆(t) = t0 + r − t means that the next m values ti
must be ≤ t0+r. Since the only value ti between t and t0+r is the value t0+r,
this means that we have at least m values equal to t0+ r. Thus, for the optimal
solution, we have a group of at least m equal values, then another group of at
least m equal values, etc.

If we group ti into groups of size > m, then we would be divide the interval
[0, T ] into fewer pieces than in the case when each group has exactly m values ti.
So, in this case, the distance between two consecutive groups will be larger than
in the case when we have the division into groups of m; thus, this arrangement
cannot be optimal. Hence, in the optimal arrangement, we should havem indices
in each group of equal consecutive values ti. This is exactly the oscillating
arrangement. The proposition is proven.
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