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Abstract

To adequately treat different types of lung dysfunctions in children,
it is important to properly diagnose the corresponding dysfunction, and
this is not an easy task. Neural networks have been trained to perform
this diagnosis, but they are not perfect in diagnostics: their success rate is
60%. In this paper, we show that by selecting an appropriate invariance-
based pre-processing, we can drastically improve the diagnostic success,
to 100% for diagnosing the presence of a lung dysfunction.

1 Formulation of the Problem

Lung dysfunctions. One of the major lung dysfunctions is asthma, a long-
term inflammatory disease of the airways of the lungs. It is characterized by
recurring airflow obstruction, bronchospasms, wheezing, coughing, chest tight-
ness, and shortness of breath. These episodes may occur a few times a day or a
few times per week [22].



Asthma may be preceded by Small Airway Impairment (SAI), a chronic ob-
structive bronchitis. If inflammation persists during SAI, it could cause asthma.

SAI, in its turn, may be preceded by a less severe condition that medical
doctors classify as Possible Small Airways Impairment (PSAI).

Diagnostics of different lung dysfunctions is difficult but important.
All lung dysfunctions lead to similar symptoms like wheezing, coughing, etc. As
a result, it is difficult to distinguish between these dysfunctions — and it is also
difficult to distinguish these chronic dysfunctions from a common short-term
respiratory disease.

However, the diagnosing of these diseases is very important, because in gen-
eral, for different diseases, different treatments are efficient.

How different dysfunctions are diagnosed now. Since it is difficult to
diagnose different dysfunctions solely based on the symptoms, the corresponding
diagnostics involves measuring airflow in different situations. The most effective
diagnostic comes from active measurements — spirometry. A patient is asked
to deeply inhale, to hold their breath, and to exhale as fully as possible —
and the corresponding instrument is measuring the airflow following all these
instructions. Based on these measurements, symptoms, and clinical history,
medical doctors come up with a diagnosis of different dysfunctions.

Children diagnostics: a serious problem. Unfortunately, the spirometry
technique described above does not work with little children, especially children
of pre-school age, since it not easy to make them follow the corresponding in-
structions; see, e.g., [16]. The same problem occurs with elderly patients and
patients with certain limitations.

An additional problem is that even when children follow instructions during
the spirometry testing, spirometry results are not sensitive enough to detect
obstruction of small airways (2 mm or less in diameter); see, e.g., [6, 11, 12, 15,
19).

How can we diagnose children: main idea of the corresponding mea-
surements. Since we cannot use active measuring techniques, techniques that
require children’s active participation, we have to rely on passive techniques, i.e.,
techniques that do not require such participation. What we can do is change
the incoming airflow and measure how that affects the outcoming airflow.

Passive measurements: details. The easiest way of changing the airflow is
to switch a certain extra amount of airflow on or off. This is the main idea
behind the Impulse Oscillometry System (I0S); see, e.g., [6]. In a usual IOS,
the additional airflow is switched on and off with a period of 5 Hz, meaning
that we have a 0.1 sec period with extra flow, 0.1 sec period without, then again
a 0.1 sec period with extra flow, etc. The system then measures the resulting
outflow y(t).

In real-life clinical environment, the measurement result are affected by noise.
Because of this noise, the measured values y(t) somewhat deviate from the
actual (unknown) flow results y(t). The deviations y(t) — y(t) measured at



different moments of time ¢ are usually caused by different factors and are,
thus, statistically independent. As a result of this independence, the noise is
heavily oscillating — i.e., changes with high frequency. To decrease the effect of
this noise, it is therefore reasonable to take a Fourier transform and ignore high-
frequency components of this transform — since these components are heavily
corrupted by noise.

Since the input signal is periodic, with the period of 5 Hz, we expect the
output signal to also be periodic, with the same frequency. In general, when
we perform Fourier transform on a signal which is periodic with frequency f,
we only get components corresponding to multiples of f, i.e., to f, 2f, 3f, etc.
In our case, this means that we will have components corresponding to 5 Hz,
10 Hz, etc. In practice, it was discovered that components above 25 Hz are too
noisy to be useful — actually, the most informative values are one corresponding
to 5-15 Hz range. The values corresponding to 20 and 25 Hz are also useful,
but they are somewhat less informative that the 5-15 Hz values. So, the system
returns the components corresponding to 5, 10, 15, 20, and 25 Hz. To be on the
safe side, the system also returns the component corresponding to 35 Hz, which
sometimes adds some additional information.

Another problem is related to the fact that while it is relatively easy to
implement the on-off switching of the input airflow, the actual values of the
on- and off-case airflows may change with time: the pressure in the system may
decrease, etc. In principle, it is possible to maintain the exact airflow values, but
this will make the system too complicated and thus, too expensive. Instead, the
existing systems rely on the fact that while it is not easy to maintain the input
airflow a(t) at some pre-defined level ag, it is possible to accurately measure
this airflow.

The added airflow a(t) — ao is relatively small, so when estimating the reac-
tion y(t) of a human breathing system to this airflow, we can safely ignore terms
which are quadratic and of higher order in terms of a(t) — ag and conclude that
the dependence is linear: y(t) = [ c(t, s) - a(s) ds for some coefficients c(t, s).

The system does not change much during the time when measurements are
performed. So if we start the experiment ¢y seconds earlier, i.e., if we take
a(t) = a(t + to) instead of a(t), then the output should change accordingly, to
y(t) = y(t + o). So, on the one hand, we have

y(t) = /c(t7 s)-a(s)ds = /c(t, s) - a(s +to)ds,
which, if we introduce a new variable s = s + t( for which ds = ds, leads to
() = / (5 — 1) - a(3) d5.
On the other hand,

y(t) = y(t +to) = /C(t + to, s) - a(s) ds.



So, for all inputs a(t), we should have

/c(t +to,8) - als) ds = /c(t,s o) - als) ds.

Two linear functions coincide if the coefficients at all the unknown (in this case,
a(s)) coincide, so we must have c(t + tg,s) = c(t,s — tp). In particular, for
every two values v; and vy, we can take s = tg = vy and t = v; — vo and

conclude that ¢(v1,v2) = ¢(vy — v9,0), i.e., that ¢(vy,vs) = z(v1 — vg), where

we denoted z(a) def ¢(a,0). Substituting this expression for ¢(v1,v9) into the

formula that describes the relation between a(t) and y(t), we conclude that
y(t) = [ z(t—s)-a(s)ds. This is called a convolution of functions z(t) and a(t).

It is known that the Fourier transform of the convolution is equal to the
product of Fourier transforms. Thus, in this case, for the corresponding Fourier
transforms Z(f), Y(f), and A(f), we get Y (f) = Z(f)- A(f). We are interested
in the values Z(f) that do not depend on the inputs. In our case, we have
computed the values Y(f), so we can also compute the Fourier coefficients A(f),
and return the ratios Z(f) = Y(f)/A(f). This is exactly what the IOS system
returns: the complex numbers Z(f) = R(f) +1- X(f) that correspond to six
frequencies f = 5,10,...,35. In analogy with electric circuits, the complex
value Z(f) is called the impedance, its real part R(f) is called resistance, and
its imaginary part X (f) is called reactance.

These six complex numbers — or, equivalently, the six real parts and the six
imaginary parts — are what we can use to properly diagnose the lung dysfunction.

It is not easy to make a diagnosis based on IOS data. If we plot the
IOS data corresponding to patients with different diagnoses, we see that the
corresponding ranges of values R(f) and X(f) have a huge intersection; see,
e.g., Fig. 1-2. This shows that it is not easy to diagnose a patient based on I0S
data.

How IOS-based diagnosis is performed now. There are no exact formulas
that describe the diagnosis based on the six complex values Z(f); the research
about the clinical applications of the IOS parameters is still ongoing. However,
we do have several patient records for which, on the one hand, we know the
corresponding values Z(f), and, on the other hand, we have a diagnosis provided
by a skilled medical doctor. It is therefore reasonable to use machine learning
and train the system to be able to diagnose a patient.

This has indeed been done: researchers have used either all or some of the
12 numbers (real parts R(f) and imaginary parts X(f)) as input and tried to
train the neural network to learn the diagnosis in the children patients.

The resulting diagnostic system is, however, not yet perfect. For adult pa-
tients, if we use spirometry results as well as 10S, we get an almost perfect
separation of asthma from healthy: its accuracy is 98-99% [3, 4]. However,
when we only use IOS data, the current system’s testing-data accuracy in dis-
tinguishing lung dysfunctions such as asthma, SAI, and PSAI from patients who
do not have any of these diseases is only close to 60% [5].
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Figure 1: Resistance Maximum, Middle and Minimum Patients’ Curves per Class

Comment. Similar imperfect results were obtained for a related problem: pre-
dicting asthma deterioration one week ahead. For this problem, neural networks
and other machine learning techniques result, at best, in 70-75% prediction ac-
curacy; see, e.g., [14].

Resulting problem and what we do in this paper. It is therefore desir-
able to come up with better diagnostic techniques. Our approach is to help a
neural network by providing an appropriate pre-processing of the inputs data.
It turns out that an appropriate pre-processing indeed drastically improves the
diagnostic results: for diagnosing the presence of a lung dysfunction, we have
100% accuracy.

2 First Pre-Processing Stage: Scale-Invariant
Smoothing

Need for further de-noising. The above-described filtering out of noisy
high-frequency components eliminates some noise, but some noise remains.

Smoothing as a way to de-noise. To further decrease the noise level, it is
desirable to take into account that in real life, almost all dependencies (including
the dependence of the signal intensity on frequency) are smooth — in the sense
that a small change in frequency leads to a small change in intensity.

How to smooth a signal. Thus, instead of considering the original (noisy)
six complex numbers Z(f) corresponding to f = 5,10,..., it makes sense to
approximate these values by a smooth dependence, i.e., by a function of the

k
type Y ¢; - e;(f), for some smooth functions ey (f), ..., ex(f).
j=1
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Figure 2: Reactance Maximum, Middle and Minimum Patients’ Curves per Class

Which level of smoothness to choose. Usually, real-life processes are very
smooth — with few exceptions like phase transitions. It is therefore desirable to
select approximating functions e;(f) which are as smooth as possible.

In general, for functions, there are several different degrees of smoothness.
The simplest case is when a function is one time differentiable. The next —
more smooth — case is when a function is two times differentiable, etc. Then,
we have functions which are infinitely many time differentiable, and finally,
the smoothest of all — analytical functions, functions that can be expanded in
Taylor series. Thus, to achieve maximal smoothness, we will use analytical
functions e;(z).

Which analytical functions should we choose: the idea of scale-
invariance. There are many different analytical functions, which ones should
we choose?

A natural requirement for this choice comes from the fact that we are approx-
imating a function from numbers (f) to numbers (Z). These numbers represent
the values of the corresponding physical quantities. However, the numerical
value of each physical quantity depends not only on the quantity itself, it also
depends on the measuring unit that we have selected for this quantity. If we
replace the original measuring unit with a new one which is A times smaller,
all the numerical values will multiply by A. In other words, for each frequency,
instead of the original numerical value f, we will have a new numerical value
f = A f that describe the exact same physical quantity.

There is no physical reason why some measuring units would be preferable to
others. Therefore, it makes sense to require that the selection of the resulting

k
class C of linear combinations ) ¢; - e;(f) should not change if we simply
j=1
re-scale all the values by changing the measuring unit for frequencies.



The idea of scale-invariance is actively and successfully used in physics; see,
g., [7, 20]. Tt is therefore reasonable to apply it to our problem as well.

In our case, scale-invariance means that the class C' should be equal to the
~ k ~
class C of all linear combinations »_ ¢; - e;(f). In particular, this means that,
j=1
for every i, the function e;(\ - f) from the class C can be described as a linear
k

combination ) ¢;;(A) - e;(f) of the original functions, with coefficients c;;(\)
j=1
depending on 7 and A:

k
A f)= chi()‘) e (f). (1)
=1

Thus, we have a system of equations for the unknown functions e;(f). Let us
solve this system.

Solving the corresponding system of equations. We know that the func-
tions e;(f) are smooth. Let us show that the functions ¢j;(\) are smooth as
well. Indeed, for every ¢, by taking k different values fi,..., fx in the equation
(1), we get a system of k linear equations with & unknowns c1;(A), ..., cx;(A):

Zcﬂ ej(f1) = ei(A- f1);

ZC]’L 6] f2 *61()‘ f2)

k
ch'i()\) ce;(fr) = ei(N- fr).

It is known that, in general, the solution to a system of linear equations can be
described by Cramer’s rule, as a ratio of two polynomials — and thus, a smooth
function — depending on the coefficients and on the right-hand sides. In our case,
the coefficients e;(f1),...,e;(fx) are constants — and thus, do not depend on A
at all, while the right-hand sides e;(A- f1),...,e;(A- fx) are smooth functions of
A. Thus, the solutions to this system of linear equations — i.e., the coefficients
¢;i(A) — are obtained by plugging smooth functions

ei(f1)s--ej(fi)sei(N- f1), .o ei( N fr)

into a smooth expression (Cramer’s rule) and are, thus, also smooth functions
of A.
Now, we can take the system of equations (1) corresponding to i = 1, ...

k
A f) = chl(/\)

k:

)
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k
A f) =) e\ e
j=1
All the expressions in this system are differentiable functions of A\. Thus, we can

differentiate both sides of each equation by A. As a result, we get the following
system of equations:

k
) =2 -es(f)

k
FrehA- 1) = cha(N) - e(f);
j=1

freh-f) = chk

where e}, as usual, denotes the derivative of the function e;. If we substitute
A = 1 into these formulas, we get the following system of ordinary differential
equations:

k
fel(f)=>_Ci-ei(f)
j=1

k
frex(f) = Zcﬂ’eﬂ'(f);

Frenlf) =D Cr-es(f),

j=1

where we denoted Cj; o i (1).

de;
For each i, the expression f - e, = f - — can be equivalently reformulated

df
Here, df/f = d(In(f)). So, if we introduce a new variable F' = In(f)

df / f
for which f = exp(F), then for the new functions E;(F) e, (exp(F)), we get

£ = o

following system of equations:

= Ej(F). Thus, in terms of the new functions, we get the

k
2201
j=1



k
By(F) =Y Cjo - EB;(F);

k
Ei(F) =) Cji- E;(F).
j=1

This is a system of linear differential equations with constant coefficients. It is
known that a general solution to this system is a linear combination of terms
FP . exp(\- F), where:

e )\ is an eigenvalue of the matrix [|Cj;|| (which is, in general, complex
A=a+b-i), and

e the value p # 0 appears when we have a duplicate eigenvalue — in this case,
p is a non-negative integer smaller than the dimension of the corresponding
eigenspace.

In terms of real values, we get
FP.exp(A- F)=FP? -exp((a+0b-i)- F) =
FP-exp(a-F)-(cos(b- F)+i-sin(b-F)).

Substituting F' = In(f) into this expression, we conclude that the functions
e;(f) are linear combinations of the expressions

(In(f))? - exp(a - In(f)) - (cos(b-In(f)) 41 sin(b - In(f))).
Here, exp(a - In(f)) = (exp(In(f))* = [, so the above expression has the form

(In(f))? - f* - (cos(b-In(f)) +i-sin(b-In(f))).

Let us take into account that the functions e;(f) should be analytical.
Now, we can take into account that the functions e;(f) should be analytical,
i.e., they should be expandable in Taylor series for f = 0. This requirement
excludes possible logarithmic terms (In(f))?, as well as cosines and sines of these
logarithms, which leaves us with linear combinations of the powers f¢. Due to
analyticity, all the powers should be natural numbers, so we conclude that all
the functions e;(f) are linear combinations of expressions f0 = 1, f1 = f, f2,
...In other words, due to scale-invariance, all the functions e;(f) should be
polynomials.

We want to approximate the function Z(f) by a linear combination of the
functions e;(f). A linear combination of polynomials is also a polynomial. Thus,
we arrive at the following conclusion.

General conclusion of this section. Due to the natural requirement of scale-
invariance, we should approximate the impedance function Z(f) by a polyno-
mial.



3 Which Order Polynomials Should We Use?

Formulation of the problem. We want to find the polynomial that fits the
observations. Of course, if we take a polynomial of a sufficiently large degree,
we can always find a polynomial that fits all observed data exactly — this is a
well-known Lagrange interpolation polynomial.

However, the whole purpose of the polynomial smoothing is to de-noise the
signal, and if we keep all the values intact, we will retain all the noise. Thus,
we should not use polynomials of too high order.

On the other hand, if we use polynomials of too low order — e.g., constants
or linear functions — we get a smoothing, but the approximation is too crude,
and we lose the information contained in the original signal. How can we find
the adequate degree of approximating polynomials?

Natural idea: general case. A natural idea is to take into account the general
monotonicity of IOS curves — as described, e.g., in [11] — and select the higher
order of approximating polynomials that preserve this monotonicity.

Let us apply this general idea to our problem. According to [11], for all
three diseases (asthma, SAI, and PSAI):

e for the real part R(f) of the impedance Z(f), the corresponding value
first decreases with frequency f, and then increases;

e for the imaginary part X (f) of the impedance Z(f), the corresponding
value increases with frequency f.

So:

e for each degree, we use the usual Least Squares techniques (see, e.g., [18])
to find the polynomial of this degree that best approximates the observed
values, and then

e we select the largest degree for which, on the corresponding interval of
values of frequency, the resulting best-approximation polynomials follow
the same monotonicity pattern.

It turns out that:
e for quadratic and cubic polynomials, we have this feature, but

e for 4th order polynomials, we no longer have the desired monotonicity: for
example, for the resistance R(f), the corresponding 4th order polynomial
first decreases, then increases, but then decreases again; see, e.g., Fig. 3.

Because of this, in this paper, we approximate the functions R(f) and X (f)
by cubic polynomials. Let us denote the corresponding approximating polyno-
mials by R(f) and X*(f).

10
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4 Second Pre-Processing Stage: Using the Ap-
proximating Polynomials to Distinguish Be-
tween Different Diseases

Formulation of the problem. For each diagnosis d, we have several obser-
vations corresponding to patients with these diagnosis. Based on these obser-
vations, for each patient ¢ with this diagnosis (i € d), we find the smoothed
functions RZ(f) and X2(f).

Now, when we have a new patient with the corresponding functions R*(f)
and X%(f), we would like to diagnose this patient, i.e., to classify this patient
to one of the groups d. How can we do it?

How to separate different groups: general idea. How do we distinguish
groups in general? How do we distinguish cats from dogs? Usually, in such
situations:

e we have a mental picture of a typical cat,
e we have a mental picture of a typical dog, and

e we make our decision based on how similar the observed object is to one
of these two typical ones.

A natural idea is thus:

e to form, for each group corresponding to a given diagnosis d, “typical”
function R4(f) and X4(f) corresponding to this diagnosis, and then

e to base our diagnosis of new, yet-undiagnosed patients based on how sim-
ilar their functions R*(f) and X%(f) are to the typical functions corre-
sponding to each diagnosis.

11



A natural way to form a typical function. A natural way to form the
typical function R4(f) corresponding to a given diagnosis d is to take all the
10S values R;(f) corresponding to patients ¢ with this diagnosis (i € d), and use
Least Squares to find the cubic function R4(f) that best approximate all these
measurement results, i.e., for which the sum > S"(R4(f) — R:i(f))? attains its
icd f

smallest possible value (here, the summation is over the I0S frequencies f = 5,
10, 15, 20, 25, and 35 Hz).

Similarly, a natural way to form the typical function X4(f) corresponding to
a given diagnosis d is to take all the IOS values X;(f) corresponding to patients
i with this diagnosis, and use Least Squares to find the cubic function X4(f)
that best approximate all these measurement results, i.e., for which, the sum
S5 (Xa(f) — Xi(f))? attains its smallest possible value.
ied f

5 Third Pre-Processing Stage: Scale-Invariant
Similarity /Dissimilarity Measures

How to describe the similarity of functions: preliminary analysis. To
use the above general idea for diagnosing a patient, we need to select a numerical
measure of similarity/dissimilarity between the function R*(f) describing the
new patient and the function R4(f) describing a typical patient with diagnosis
d.

One thing to take into account is that usually the measurement record pro-
duced by the IOS device contains an initial spike, when the measured value
jumps from the original 0 value to a non-zero value corresponding to the actual
measurement. This initial impulse-type spike affect the Fourier transform values
R(f) and X (f) produced by the measuring device. Since the Fourier transform
of an impulse is a constant function, this means that to all the measured values
R;(f) and X;(f), a constant is added that corresponds to the Fourier transform
of this original impulse. Because of this added constant, the same constant gets
added to the approximating cubic curves R?(f) and X?(f). For the same pa-
tient with the same disease, in different measurements, the initial impulse may
be slightly different. Thus, the corresponding added constants may be different
for the two measurements of the same patient. In other words, for the same
patient, in two consequent measurements, we may get two functions differing
by a constant.

So, to properly match, e.g., the patient’s function R*(f) with the function
R4(f) describing a typical patient with diagnosis d, we need to take this possible
constant difference into account.

How do we estimate the corresponding constant difference? As we have
mentioned earlier, the most informative part of the IOS results correspond to

the 5-15 Hz range. The central point of this range is the value 10 Hz. It is
therefore reasonable to take the difference AR;y R4(10) — R%(10) of the

values corresponding to this central frequency as an estimate for the constant

12



difference. Thus, we should compare the typical function Rg(f) not with the
actual patient’s function RZ(f), but with the “shifted” function R¢(f) + AR;q4,
shifted so as to provide the best match between the two functions.

In other words, to diagnose a patient i, we need to describe the similar-
ity /dissimilarity between the functions R (f) + AR;q and Ru(f).

Similarly, for reactance, we need to describe the similarity/dissimilarity be-

tween the functions X (f)+AX,q and X4(f), where AX;q & X4(10)— X2 (10).

How to describe the similarity/dissimilarity of functions: general
idea. In general, if we have two functions F(f) and G(f), how can we de-
scribe their similarity/dissimilarity? For each frequency f, the larger the ab-
solute value |F(f) — G(f)| of the difference, the less similar are the corre-
sponding values. Thus, it makes sense to assume that the degree of dissimi-
larity between these two values is a monotonic function of this absolute value:
m(|F(f) — G(f)|), for some increasing function m(x).

The overall degree of dissimilarity we can then estimate by simply adding the
degree corresponding to different frequencies f, i.e., by considering an integral

/ m(\F(f) - G df.

Remaining question. Which similarity/dissimilaroty measures — i.e., which
functions m(zx) — should we use?

Main idea: wuse scale-invariance. To select an appropriate similar-
ity /dissimilarity measure, let us use the same scale-invariance idea that we used
to select an approximating family of functions.

Scale-invariance: from idea to formulas. If, for measuring real and imag-
inary components of the impedance, we select a new unit which is A times
smaller than the original one, then all the corresponding numerical values F'(f)
and G(f) get multiplied by A:

e instead of F(f), we get F(f) = A- F(f), and
e instead of G(f), we get G(f) = X- G(f).

In this case, the absolutely value of the difference x = |F(f) — G(f)| also gets
multiplied by A:

F=F(f) =G =IA-F(f) =A-G(P = A |F(f) = G(f)] = X+ .

We want to select the function m(z) (that describes degree of similar-
ity /dissimilarity) in such a way that if we change a measuring unit for F(f)
and G(f), the resulting value of closeness will not change — provided, of course,
we appropriately change a unit for measuring dissimilarity.

13



Such an appropriate re-scaling is often necessary; see, e.g., [7, 20]. For
example, a simple physical formula — like the fact D = v - ¢t that the distance
D is equal to velocity v times time ¢ — does not change if we change the unit
of time (e.g., from hours to seconds), but we need to appropriately change the
related unit of velocity — from km/h to km/sec.

For each A, let u(\) denote an appropriate re-scaling of the dissimilarity
value m(z). This means that if we replace x with Z = X - x, then the resulting
dissimilarity value m(Z) = m(X - x) differs from the original value m(z) only by
a re-scaling factor p(A):

mA- ) = u(\) - m(a).

It is known (see, e.g., [1]) that all measurable solutions of this functional equa-
tions have the form m(z) = C - z“.

By selecting an appropriate unit for measuring dissimilarity, we can make
the coefficient C' equal to 1. Thus, we arrive at the following conclusion.

Conclusion of this section. Due to scale-invariance, we measure dissimilarity
between two functions as

/ F(f) — G(f)|° - dF.

Remaining question. What value « should we use?

6 How to Select a: Need to Have Efficient and
Robust Estimates

General idea. In the computer, we can only represent finitely many different

values f1, fa, ... S0, an integral, in effect, means a (weighted) sum > |F; — G;|,

where we denoted F; def F(f;) and G; o G(fi).

From this viewpoint, which value a should we choose?

Need for efficient estimates. We want to be able to have an efficient algo-
rithm that finds the closest approximation, i.e., an approximation for which the
dissimilarity degree > |F; — G;|® is the smallest possible.

It is known (see, e.g., [13, 21]) that, in general, feasible algorithms exist
for minimizing convex objective functions, while in many non-convex cases,
optimization is NP-hard (i.e., crudely speaking, not feasible). Moreover, it
has been proven [10] that, in general, minimization is feasible only for convex
objective functions. Thus, it makes sense to select the value « in such a way
that the objective function Y |F; — G;|* be convex.

In general, according to calculus, a function is convex if its second derivative
is non-negative. For 2 > 0, the first derivative of the function = is - 2®~!, and
the second derivative is equal to « - (o — 1) - 2272, Here, o > 0 — the larger the
difference, the less similar are the functions, and the value %2 is also always
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positive. Thus, the second derivative is non-negative if and only o — 1 > 0, i.e.,
if and only if a > 1.

Thus, to make sure that the corresponding optimization problems can be
efficiently solved, we need to select av > 1.

Need for robustness. Another important requirement for selecting « is to
make sure that the resulting estimates are the least affected by noise, i.e., are
the most robust.

It is known (see, e.g., [9]), that among all the methods based on the objective
function Y |F; — G;|® with a > 1, the most robust is the method corresponding
to a = 1. Thus, to guarantee the desired robustness, we will use a = 1. So, we
arrive at the following conclusion.

Conclusion of this section. Among all computationally efficient scale-
invariant dissimilarity measures, the most robust (i.e., the most resistant to
noise) is the dissimilarity measure

[ -6ul-ar

In our case, F(f) = Rq(f) and G(f) = R¥(f) + AR;q4, so we need to use the

dissimilarity measure

/ Ra(f) — (RO(f) + ARwa)| df.

When this dissimilarity measure is close to 0, this means that the function
R2(f) corresponding to the i-th patient is very similar to the typical function
R4(f) corresponding to diagnosis d. The more dissimilar these two functions,
the larger the value of this dissimilarity measure.

Similarly for reactance, we use the dissimilarity measure

/ IXa() — (X2(F) + AXia)| dF.

7 Scale-Invariance Helps to Take into Account
that Signal Informativeness Decreases with
Time

For I0OS, the starting part of the signal is more informative. In the
previous sections, we implicitly assumed that the values of the signal y(¢) at
different moments of time are equally informative. However, a typical I0S
measurement lasts for 30-45 seconds — a reasonable time to be tied in to a
strange apparatus. As a result, children’s level of stress somewhat increases
as the measurement process continues. This stress level affects the breathing
process — and thus, the measurement results.

So, we can conclude that values y(¢) corresponding to earlier time are more
informative than values corresponding to later moments of time ¢.

15



How can we take this phenomenon into account. A reasonable idea
of taking the above phenomenon into account is to consider not the original
signals y(t), but the signals weighted with some weight w(¢) which decreases
with time. In other words, instead of the original signals y(t), we consider
weighted signals w(t) - y(t).

Which weight function should we choose: let us again apply scale-
invariance. Which weight function w(t) should we choose? A reasonable idea
is to again use scale-invariance. In other words, we assume that if we change
the unit of time to a one which is A times smaller — which means changing all
numerical values of time from ¢ to ¢ = A - t, then the formula for the weight
remains the same — once we appropriately re-scale the weight function w as
well, from w to w = pu(A) - w, for some function p(A).

This means that if in the original units, we have f(¢) = w, then in the new
units, we will have f (%) = @. Substituting the expressions for @ and # into this
formula, we conclude that f(A-t) = u(\) - w and thus,

f-1) = p(A) - £ (D).

We have already mentioned that all measurable (in particular, all monotonic)
solutions of this functional equation have the form w = A -t* [1]. Since we
assume that the weight decreases with time, we must have o < 0.

Which value a should we choose? Whether we use the original signal or its
weighted form, what we will do next is apply Fourier transform. The original
IOS device already returns the Fourier coefficients of the original signal y(t).
Thus, from the computational viewpoint, it is desirable to select « for which
the Fourier transform of the weighted function y(t)-t* can be described in terms
of the Fourier transform of the original function y(t).

It is known that such a description is possible only for integer values «;
namely:

e the Fourier transform of y(t) /t is proportional to the integral of the Fourier
transform of y(¢);

e the Fourier transform of y(t)/t? is proportional to the second integral
(integral of an integral) of the Fourier transform of y(t); etc.

The simplest of these cases is the case & = —1, which corresponds to the integral.
Thus, in addition to the original Fourier transform values, we should consider
integrals of these values.

Details. Of course, when computing these integrals, we should take into ac-
count the smoothing that we have applied to the original signal. In other words,
we should integrate not the original values Z(f), but the corresponding smooth-
ing polynomial approximations.

Integration should be considered over the most informative part of the spec-
trum — from 5 to 15 Hz. Thus, we arrive at the following conclusion.
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Conclusion of this section. In addition to the smoothed signals R(f)
and X%(f), we should also consider their integrals Ir(f) = f5f R*(z) dx and

Xg(f) = [ X(x) da.

8 Pre-Processing Summarized: What Informa-
tion Serves as an Input to a Neural Network

Let us summarize. Let us summarize the scale-invariance-motivated pre-
processing steps, and thus, describe what inputs are fed into a neural network.
This whole process consists of two stages:

e In the first, preliminary stage, we process data about known patients to
find the “typical” functions R4(f) and X4(f) that correspond to each
diagnosis d.

e On the working stage, we use these typical functions to diagnose a new
patient.

Preliminary stage. First, for each diagnosis d, we process patients with known
diagnoses d to find the typical functions R4(f) and X,4(f) corresponding to each
of these diagnoses. This is done as follows.

For each patient with the known diagnosis, we get the IOS values R(f) and
X (f) corresponding to frequencies f equal to 5 Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz,
and 35 Hz.

Then, we use the Least Squares techniques to find the coefficients r¢, 1, 72,
and r3 of the cubic polynomial

Rd(f)=T‘o—|—’l“1'f—|-’l"2'f2+7‘3-f3

that best approximates the measured values R;(f) corresponding to the patients
with this diagnosis d (of course, we only use patients from the training set, to
be able to test our results of the patients from the testing set). In other words,
we find the coefficients of the cubic polynomial for which the sum

> > (Ra(f) = Ri(f))?
ied f

is the smallest possible.
Similarly, we use the Least Squares techniques to find the coefficients xg, 1,
Z2, and x3 of the cubic polynomial

Xa(f) =20 +a1-f+a2 fPras f

that best approximates the measured values X;(f) corresponding to all the pa-
tients with this diagnosis d. In other words, we find the coefficients of the cubic

polynomial for which the sum > S7(X4(f) — X;(f))? is the smallest possible.
icd f
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For each of these functions, we then compute the integrals Igq(f) =
I Ra(z) da and Ixa(f) = [ Xa(x) da.

Working stage. For a new patient, we get the IOS values R(f) and X(f)
corresponding to frequencies f equal to 5 Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz, and
35 Hz. Then:

e We use the Least Squares techniques to find the coefficients rq, 71, ro, and
r3 of the cubic polynomial

Ra(f)=7"0—|—7”1'f+7"2'f2+7’3-f3

that best approximates the measured values R(f). We also compute the
integral Ir(f) = fo R(z) dx.

o After that, we use the Least Squares techniques to find the coefficients x,
1, T2, and x3 of the cubic polynomial

Xf)=z0o+a1 f+as fP+as f

that best approximates the measured values X (f). We also compute the
integral Ix(f) = f; X(z)dx.

e Finally, for each of the four diagnoses d, we compute the following values:
o [2|Ra(f) — (R*(f) + ARg)| df, where ARy ' Ry(10) — R*(10);
o 37 1ra(f) = (I%(f) + Alra)| df. where Alg.g = I5.4(10) ~ I7(10);
(

o [21Xa(f) = (X(f) + AXa)| df, where AXyq % X4(10) — X°(10);

o [ Ixa(f) = (I%(f)+Alx.a)| df, where Alx g % Iy 4(10)—I%(10).

These four tuples of four values corresponding to four diagnoses — the total of
16 values — can then be used to train a neural networks to diagnose the patient.

Do we need all these 16 inputs? In data processing, it is known that if
we use too many inputs, the prediction accuracy decreases. Indeed, if we use
too many inputs, then, together with the most informative ones, we also add
less informative ones. These additional inputs add noise to the result of data
processing without providing us with any useful information.

Because of this, in data processing in general, it is a good idea not just to
use all possible inputs, but also to check if selecting only some of these inputs
will leads to more accurate results.

In our case, we tested whether we need both values corresponding to re-
sistance R and values corresponding to reactance X. Interestingly, it turned
out that the reactance-related values only decrease the prediction quality. As a
result, our recommendation is to only use resistance-related values when diag-
nosing patients.
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9 The Results of Training Neural Networks on
These Pre-Processed Data

Available data. In our research, we used the data collected by our colleague
Erika Meraz [2]. This data consists of 288 IOS data sets from patients with
known diagnoses.

Pre-processing: first stage. First, for each data set, we used Least Square to
find the coefficients of cubic polynomials R¢(f) that best fit the observed I0S

values R;(f). Then, we computed the integral I ;(f) = f5f R¢(x) dz.

Neural network: general idea. We trained a neural network to distinguish
patients with lung dysfunctions from patients without lung dysfunction.

A neural networks consist of neurons. Each neuron takes several inputs
Z1,...,Z, and transforms them into the signal

y=so(wy - x1+ ...+ Wy T, —wo),

where wg, w1, ..., w, are coefficients that need to be determined during train-
ing, and s¢(z) is a nonlinear function known as the activation function.

In this research, we used neural networks with sigmoid activation function
s0(z) = 1/(1 4 exp(—2)), the most widely used activation function. It is worth
mentioning that this function can also be justified by invariance: this time,
by shift-invariance (and not scale-invariance, as in the previous examples); see,
e.g., [17].

Separation into training and validation data sets. Overall, we had 288
data sets, of which:

e 257 data sets correspond to patients wit lung dysfunctions, and
e 31 data sets correspond to patients without lung dysfunctions.

To train a neural networks, we separated the corresponding data set into train-
ing data set (used for training) and validation data set (used for validation).
In all three cases, we used approximately 75% of the data for training and
approximately 25% for validation; see, e.g., [8, 18]. Specifically:

e we selected 214 data sets for training, among which 191 corresponded to
patients with lung dysfunctions and 23 corresponded to patients without
lung dysfunctions, and

e the remaining 74 data sets were used for validation, among which 66 cor-
responded to patients with lung dysfunctions, and 8 patients without lung
dysfunctions.

We have four possible diagnoses: asthma (a), SAI (s), PSAI (p), and the
absence of lung dysfunctions (n). Within the training set, for each of these
four diagnoses d, we applied the Least Square method to all the values R;(f)
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corresponding to the data sets with this diagnosis to compute the typical values
R,(f) corresponding to this diagnosis. We then computed the integral I 4(f) =

f5f Ry(x) de.

Resulting typical functions R4(f). As a result of this analysis, we got the
following typical functions corresponding to different diagnoses; see Fig. 4:

Ro(f) =1.152 —7.842-1072 - f +2.686- 1073 - f2 —2.443 - 1075 - f3;
R (f) =8.960-10"! —5.738 - 1072 - f +2.067-1073 - f2 —2.024-107° - f3;
R,(f) =6.076-10"" —2.717- 1072 . f +8.278 - 10~* - f? — 4.888 - 107% . f3;
R.(f) =4.612-107* —1.508 - 1072 - f +4.789 - 10~* - f2 —2.424 - 107 . f3.
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Figure 4: Cubic Resistance Functions per Class

Pre-processing: second stage. For each patient i, and for each of the four
diagnoses d, we computed the following two similarity/dissimilarity measures:

o [|Ra(f) — (RA(f) + ARig)| df, where ARy % Ry(10) — R%(10); and

def
o f ‘IR’d(f) - (I%ﬂ(f) + AIR,i,d)‘ df, where AIR,i,d = IR’d(lo) - I%yl(lo)
The resulting eight values serve as input to the neural network.

The results of training the neural network. The purpose of the neural
network was to separate patients with lung dysfunctions from patients without
lung dysfunction.

During the training, the network selected 50 neurons in the hidden layer.
On the validation data set, the neural network achieved 100% accuracy on the
validation set: all 74 cases were classified correctly.
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This is much better that in the previous studies. The resulting clas-
sification accuracy is much better than the 60% accuracy achieved by neural
networks without pre-processing.
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