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Abstract. One of the important steps in deep learning is softmax, when
we select one of the alternatives with a probability depending on its ex-
pected gain. A similar formula describes human decision making: some-
what surprisingly, when presented with several choices with different
expected equivalent monetary gain, we do not just select the alternative
with the largest gain; instead, we make a random choice, with probabil-
ity decreasing with the gain — so that it is possible that we will select
second highest and even third highest value. Both formulas assume that
we know the exact value of the expected gain for each alternative. In
practice, we usually know this gain only with some uncertainty. For ex-
ample, often, we only know the lower bound f and the upper bound f on
the expected gain, i.e., we only know that the actual gain f is somewhere
in the interval [f,?] In this paper, we show how to extend softmax and
discrete choice formulas to such cases of interval uncertainty.
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1 Formulation of the Problem

Deep learning: a brief reminder. At present, the most efficient machine
learning technique is deep learning (see, e.g., [2,7]), in particular, reinforcement
deep learning [12], where, in addition to processing available information, the
system also (if needed) automatically decides which additional information to
request — and if an experimental setup is automated, to produce.

For selecting the appropriate piece of information, the system estimates, for
each possible alternative, how much information this particular alternative will
bring.
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It is important to add randomness. And here comes an interesting part. A
reader who is not familiar with details of deep learning algorithms may expect
that the system selects the alternative with the largest estimate of expected in-
formation gain. This idea was indeed tried — but it did not work well: instead of
looking for the best possible model, i.e., the model for which the averaged differ-
ence between the predictions and observations is the smallest, the corresponding
system would often get stuck in a local minimum of the corresponding objective
function.

In numerical analysis, a usual way to get out of a local minimum is to perform
some random fluctuation. This is, e.g., the main idea behind simulated annealing.
Crudely speaking, it means that we do not always follow the smallest — or the
largest — value of the corresponding objective function, we can follow the next
largest (smallest), next next largest, etc. — with some probability.

Softmax: how randomness is currently added. Of course, the actual max-
imum should be selected with the highest probability, the next value with lower
probability, etc. In other words, if we want to maximize some objective func-

tion f(a), and we have alternatives ay, ..., a, for which this function has values

f1 def flar), ..., fa def f(ay), then the probability p; of selecting the i-th alter-

native should be increasing with f;, i.e., we should have p; ~ F(f;) for some
increasing function F(z), i.e., p; = ¢- F(f;), for some constant c.

We should always select one of the alternatives, so these probabilities should

add up to 1: > p; = 1. From this condition, we conclude that ¢- Y F(f;) = 1.

Jj=1 j=1
Thus,
= )
glF(fj)
and so,
pi= D) 2)
> F(f;)
j=1

Which function F(z) should we choose? In deep learning — a technique that
requires so many computations that it cannot exist without high performance
computing — computation speed is a must. Thus, the function F(z) should be
fast to compute — which means, in practice, that it should be one of the basic
functions for which we have already gained an experience of how to compute it
fast. There are a few such functions: arithmetic functions, the power function,
trigonometric functions, logarithm, exponential function, etc.

The selected function should be increasing, and it should always return non-
negative results — otherwise, we will end up with meaningless negative probabil-
ity. Among basic functions, only one function has this property — the exponential
function F(z) = exp(k - z) for some k > 0. For this function, the probability p;



Softmax under Interval Uncertainty 3

takes the form

P = M. (3)

S exp(k - £;)
j=1

This expression is known as softmaz.

It is desirable to further improve deep learning. Deep learning has lead to
many interesting results, but it is not a panacea. There are still many challenging
problems where the existing deep learning algorithms has not yet led to fully
successful learning. It is therefore desirable to look at all the stages of deep
leaning and see if we can modify them so as to improve the overall learning
performance.

Need to generalize softmax to the case of interval uncertainty. One
of the stages in which there is a potential for improvement is softmax. Indeed,
when we apply the softmax formula, we only take into account the corresponding
estimates f1, ..., f,. However, in practice, we do not just have these estimates,
we often have some idea of how accurate is each estimate. Some estimates may be
more accurate, some may be less accurate. It is desirable to take this information
about accuracy into account.

For example, as a measure of such accuracy, we may know the upper bound
A; on the absolute value |f; — f2<¢| of the difference between the estimate f; and
the (unknown) actual value f2°* of the objective function. In this case, the only
information that we have about the actual value f“* is that this value is located
somewhere in the interval [f; — A, fi + 4]

How to take this interval information into account when computing the cor-
responding probabilities p;? This is the problem that we study in this paper —
and for which we provide a reasonable solution.

Another important case where a softmax-type formula is used. There is
another application area where a similar formula is used: the analysis of human
choice.

If a person needs to select between several alternatives aq,...,a,, and this
person knows the exact monetary value f1,..., f, associated with each alterna-
tive, then we expect this person to always select the alternative with the largest
possible monetary value — actual or equivalent. We also expect that if we present
the person with the exact same choice several times in a row, this person will
always make the same decision — of selecting the best alternative.

Interestingly, this is not how most people make decisions. It turns out that we
make decisions probabilistically: instead of always selecting the best alternative,
we select each alternative a; with probability p; described exactly by the softmax-
like formula

exp(k - fi)

pi= o @)
> explk- 1)

for some k > 0.
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In other words, in most cases, we usually indeed select the alternative with
the higher monetary value, but with some probability, we will also select the
next highest, with some smaller probability, the next next highest, etc.

This fact was discovered by an economist D. McFadden — who received a
Nobel Prize in Economics for this discovery; see, e.g., [10,11,13].

But why? At first glance, such a probabilistic behavior sounds irrational — why
not select the alternative with the largest possible monetary value?

A probabilistic choice would indeed be irrational if this was a stand-alone
choice. In reality, however, no choice is stand-alone, it is a part of a sequence
of choices, some of which involve conflict — and it is known that in conflict
situations, a probabilistic choice makes sense. Let us give a simple example
explaining why it is so.

Suppose that a person own two stores, one bigger, one smaller, but has just
enough money to hire one all-night-long security person. A seemingly rational
idea is to use this person to protect the bigger store — since in case of theft, the
corresponding losses will be larger. However, if the owner does this, the thieves
will know that the smallest store is not protected at all and rob it that very
night. A much better strategy is, every night, to assign the security person to
one the stores with some probability. We need to send this person to the larger
store with a higher probability — i.e., in a larger portion of nights — but we still
need to maintain some probability of providing security for the smaller store
instead. Then, the thieves will weigh the risk of being caught (and sent to jail)
vs. possible gain and thus, hopefully, refrain from an attack.

In practice, we usually only know gain with some uncertainty. Mc-
Fadden’s formula describes people’s behavior in an idealized situation when the
decision maker knows the exact momentary consequences f; of each alternative
a;. In practice, this is rarely the case. At best, we know a lower bound L and

an upper bound f, of the actual (unknown) value f;. In such situations, all we
know is that the unknown value f; is somewhere within the interval | L,?l]

How can we extend McFadden formula to this case of interval uncertainty?
This is also what we will do in this paper.

2 Formulating the Problem in Precise Terms

Discussion. Let A denote the class of all possible alternatives. We would like,
given any finite set of alternative A C A and a specific alternative a € A, to
describe the probability p(a| A) that out of all the alternatives from the set A,
the alternative a will be selected.

Once we know these probabilities, we can then compute, for each set B C A,
the probability p(B|A) that one of the alternatives from the set B will be
selected as p(B|A) = Y p(b| A). In particular, we have p(a | A) = p({a}| A4).

beB

A natural requirement related to these conditional probabilities is that if we

have A C B C C, then we can view the selection of A from C as either a direct
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selection, or as first selecting B, and then selecting A out of B. The resulting
probability should be the same, so we must have p(A|C) = p(A|B) - p(B|C).
Thus, we arrive at the following definition.

Definition 1. Let A be a set. Its elements will be called alternatives. By a choice
function, we mean a function p(a|A) that assigns to each pair (A, a) of a finite
set A C A and an element a € A a number from the interval (0,1] in such a way
that that the following two conditions are satisfied:

— for every set A, we have Y p(a]|A) =1, and
acA

— whenever A C B C C, we have p(A|C) = p(A|B)-p(B|C), where p(B| A) et
2 pb]A).
€

Proposition 1. For each set A, the following two conditions are equivalent to
each other:

— the function p(a| A) is a choice function, and
— there exists a function v : A — IR that assigns a positive number to each
alternative a € A such that

plafA) =

()

Proof. It is easy to check that for every function v, the expression (5) indeed
defines a choice function. So, to complete the proof, it is sufficient to prove that
every choice function has the form (5).
Indeed, let p(a|A) be a choice function. Let us pick any ag € A, and let us
define a function v as
det pla|{a,ao})
v(a) = —————==. (6)
plao|{a,ao})

In particular, for a = ag, both probabilities p(a|{a,ap}) and p(ag |{a,ap}) are
equal to 1, so the ratio v(ag) is also equal to 1. Let us show that the choice
function has the form (5) for this function v.
By definition of v(a), for each a, we have p(a|{a,ap}) = v(a) plag|{a,ao}).
By definition of a choice function, for each set A containing ag, we have
pla|A) =plal{a,ao})p({a,a0} | A) and p(ag | A) = p(ao |{a,a0})p({a;ao} | A).
Dividing the first equality by the second one, we get

plal4)  plal{a,ao})
plao] A) ~ plag |{a,a0})’ (6)

By definition of v(a), this means that

pald)
paol4) "
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Similarly, for each b € A, we have

p(b[A)

———= =v(b). 8

pao 2y )
Dividing (7) by (8), we conclude that for each set A containing ag, we have

plal4) _ vla) o

p(b|A)  w(b)

Let us now consider a set B that contains a and b but that does not necessarily
contain ag. Then, by definition of a choice function, we have

pla| B) = p(al{a,b}) - p({a, b} | B) (10)
and

p(b| B) = p(b[{a,b}) - p({a, b} | B). (11)
Dividing (10) by (11), we conclude that

pla] B) _ plal{a,b}) (12)

p(b[B)  p(b|{a,b})

The right-hand side of this equality does not depend on the set B. So the left-
hand side, i.e., the ratio

pla|B)
p(b| B)
also does not depend on the set B. In particular, for the sets B that contain ay,
this ratio — according to the formula (9) — is equal to v(a)/v(b). Thus, the same
equality (9) holds for all sets A — not necessarily containing the element ay.
From the formula (9), we conclude that

plalA) _ p(b|A)

(13)

GORTON -
In other words, for all elements a € A, the ratio
pal s
v(a)
is the same. Let us denote this ratio by c4; then, for each a € A, we have
p(al4) = ca - v(a). (16)
From the condition that ) p(b|A) = 1, we can now conclude that
ca- Y. v(b) =1, thus <
beA
ea= (1)
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Substituting this expression (17) into the formula (16), we get the desired ex-
pression (5).
The proposition is proven.

Comment. This proof is similar to the proofs from [4, 8].

Discussion. As we have mentioned earlier, a choice is rarely a stand-alone event.
Usually, we make several choices — and often, at the same time. Let us consider
a simple situation. Suppose that we need to make two independent choices:

— in the first choice, we must select one the alternatives aq,...,a,, and
— in the second choice, we must select one of the alternatives by, ..., b,.

We can view this as two separate selection processes. In this case, in the first
process, we select each alternative a; with probability

) (18)
> v(ar)
k=1
and, in the second process, we select each alternative b; with probability
b
_vlby) (19)

NE!

v(be)

o~
I

1

Since the two processes are independent, for each pair (a;, b;), the probability of
selecting this pair is equal to the product of the corresponding probabilities:

nv(ai) . WZ](bJ) ) (20)
kgl v(ak) Z; v(bé)

Alternatively, we can view the whole two-stage selection as a single selection
process, in which we select a pair (a;, b;) of alternatives out of all n - m possible
pairs. In this case, the probability of selecting a pair is equal to

Un(fai,bj)) . (21)
22214<ak>b6ﬁ

NE

k=1

The probability of selecting a pair should be the same in both cases, so the
values (20) and (21) must be equal to each other. This equality limits possible
functions v(a).

Indeed, if all we know about each alternative a is the interval [f(a), f(a)] of
possible values of the equivalent monetary gain, then the value v should depend
only on this information, i.e., we should have v(a) = V(f(a), f(a)) for some
function V(x,y). Which functions V (z,y) guarantee the above equality?

To answer this question, let us analyze how the gain corresponding to select-
ing a pair (a;, b;) is related to the gains corresponding to individual selections
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of a; and b;. Suppose that for the alternative a;, our gain can take any value

from the interval [f(a;), f(a;)], and for the alternative b;, our gain can take

any value from the interval [f(b;), f(bj)]. These selections are assumed to be

independent. This means that we can have all possible combinations of values

Flai) € [f(ar), Fa) and f(by) € [£(by); F(by)).

The smallest possible value of the overall gain f(a;) + f(b;) is when both
gains are the smallest. In this case, the overall gain is f(a;) + f(b;). The largest
possible value of the overall gain f(a;)+ f(b;) is when both gains are the largest.
In this case, the overall gain is f(a;)+ f(b;). Thus, the interval of possible values

of the overall gain is

[f (@i bs,)), f({ai, by, )] = f(ai) + f(bs), Flai) + F(b)]- (22)

In these terms, the requirement that the expressions (20) and (21) coincide takes

the following form, where we denoted f; def flai), g; def g(by):

Definition 2. We say that a function V : R x R — IR is consistent if for

every two sequences of intervals [il,?l], e [in,fn], and (g, 1) -5 19, Tl
for every i and j, we have

V. f) o Vigpg) o VU +g,.fi+7)) (23)
SVULTD SV, % SV, g, T +70)
k=1 =1 k=1/¢=1

Monotonicity. Another reasonable requirement is that the larger the expected
gain, the more probable that the corresponding alternative is selected.

The notion of larger is easy when gains are exact, but for intervals, we can
provide the following definition.

Definition 3. We say that an interval A is smaller than or equal to an interval
B (and denote it by A < B) if the following two conditions hold:

— for every element a € A, there is an element b € B for which a <b, and

— for every element b € B, there is an element a € A for which a < b.

Proposition 2. 3
[a,a] < [b,b] & (a <b&a<b). (24)

Proof is straightforward.

Definition 4. We say that a function V : IR x IR — R is monotonic if for
every two intervals [a,a) and [b,b], if [a,a] < [b,b] then V(a,a) < V(b,b).

Proposition 3. For each function V : R x R — IR™, the following two condi-
tions are equivalent to each other:

— the function V is consistent and monotonic;
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— the function V(f, f) has the form

V(f,])=C-exp(k-(am - [+ (1-an)-[)), (25)

for some values C > 0, k > 0, and ag € [0,1].

Conclusion. Thus, if we have n alternatives ai, ..., an, and for each alternative
a;, we know the interval | I f;] of possible values of the gain, we should select
each alternative ¢ with the probability
exp(k - (am- fi+(1—an) f))
pi= — . (26)
> expll- (o Ty + (1= ) 1)
J:

=Jj

Thus, we have found the desired extension of softmax and McFadden’s discrete
choice to the case of interval uncertainty.

Comment 1. The formula (26) is the original McFadden’s formula in which,
instead of the exact gain f;, we use the expression ay - f; + (1 — ag) - f, for
some ay € [0,1]. The formula (3) was first proposed by a future Nobelist Leo
Hurwicz and is thus known as Hurwicz optimism-pessimism criterion [3, 5, 6, 9].

Comment 2. For the case when we know the exact values of the gain, i.e., when
we have a degenerate interval [f, f], we get a new justification for the original
McFadden’s formula.

Comment 3. Similar ideas can be used to extend softmax and McFadden’s for-
mula to other types of uncertainty. As one can see from the proof, by taking
logarithm of V| we reduce the problem to additivity, and additive functions
are known; see, e.g., [6]. For example, for probabilities, the equivalent gain is
the expected value — since, due to large numbers theorem, the sum of many
independent copies of a random variable is practically a deterministic number.
Similarly, a class of probability distributions is equivalent to the interval of mean
values corresponding to different distributions, and specific formulas are known
for the fuzzy case.

Proof of Proposition 2. It is easy to check that the function (26) is consistent
and monotonic. So, to complete the proof, it is sufficient to prove that every
consistent monotonic function has the form (25).

Indeed, let us assume that the function V is consistent and monotonic.
Then, due to consistency, it satisfies the formula (23). Taking logarithm of
both sides of the formula (23), we conclude that for the auxiliary function

u(a,a) def In(V (a,a)), for every two intervals [a, @] and [b, b], we have
u(a,a) +u(b,b) = u(a+b,a+b) +c (27)
def

for an appropriate constant c. Thus, for U(a,a) = u(a,a) — ¢, substituting
u(a,a) = U(a,a@) + ¢ into the formula (27), we conclude that

U(a,a) +U(b,b) =U(a+b,a+b), (28)
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, that the function U is additive. Similarly to [6], we can use the general clas-

sification of additive locally bounded functions (and every monotonic function is
locally bounded) from [1] to conclude that U(a, @) = ki - @+ k2 - a. Monotonicity
with respect to changes in g and @ imply that k; > 0 and ko > 0. Thus, for

V(a,a) = exp(u(a,a)) = exp(U(a,a) + ¢) = exp(c) - exp(U(a, a)),

we get the desired formula, with C' = exp(c), k = k1 +ko and ay = ki /(k1 +k2).

The proposition is proven.
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