Why Fuzzy Partition in F-Transform?
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Abstract

In many application problems, F-transform algorithms are very effi-
cient. In F-transform techniques, we replace the original signal or image
with a finite number of weighted averages. The use of weighted average
can be naturally explained, e.g., by the fact that this is what we get any-
way when we measure the signal. However, most successful applications
of F-transform have an additional not-so-easy-to-explain feature: the par-
tition requirement, that the sum of all the related weighting functions is
a constant. In this paper, we show that this seemingly difficult-to-explain
requirement can also be naturally explained in signal-measuring terms:
namely, this requirement can be derived from the natural desire to have
all the signal values at different moments of time estimated with the same
accuracy.

1 Formulation of the Problem

F-transform: a brief reminder. In many practical applications, it turns out
to be beneficial to replace the original continuous signal z(t) defined on some
time interval with a finite number of “averaged” values

mi:/Ai(t)-ac(t)dt, 1=0,...,n, (1)

where A;(t) > 0 are appropriate functions; see, e.g., [13, 14, 16, 17, 18, 19].

In many applications, a very specific form of these functions are used:
namely, A;(t) = A(t —t;) for some function A(t) and for ¢t; = to + - h, where tg
and h > 0 are numbers for which A(¢) is equal to 0 outside the interval [—h, h].
However, more general families of functions A;(¢) are also sometimes efficiently
used.

The transition from the original function z(t) to the tuple of values
(x0,x1,...,%y) is known as the F-transform; [13, 14, 16, 17, 18, 19].



A similar 2-D transformation is very useful in many image processing prob-
lems.

The general idea behind F-transform is very reasonable. From the gen-
eral measurement viewpoint, F-transform makes perfect sense — it corresponds
to the results of measuring the signal. Indeed, in practice, a measuring instru-
ment cannot measure the exact value x(t) of the signal at a given moment ¢. No
matter how fast the processes within the measuring instrument, it always has
some inertia. As a result, the value m; measured at each measurement depends
not only on the value x(t) of the signal at the given moment of time, it also
depends on the values at nearby moments of time; see, e.g., [20].

The signal is usually weak, so the values z(t) are small. Thus, we can
expand the dependence of m; on z(t) in Taylor series and safely ignore terms
which are quadratic or of higher order with respect to z(t) and conclude that
the value m; is a linear function of different values x(¢); this is a usual technique
in applications; see, e.g., [3]. The general form of a linear dependence is

W:m9+/&@m@ﬁ (2)

for some coefficients A;(t).
A measuring instrument is usually calibrated in such a way that in the
absence of the signal, when z(t) = 0, the measurement result is 0. After such a

(0)

calibration, we get m; ~ = 0 and thus, the expression (2) gets a simplified form

W:/&@m@m (3)

This is exactly the form used in F-transform. Thus, the F-transform is indeed
a very natural procedure: it replaces the original signal z(¢) with the simulated
results of measuring this signal — and the results of measuring the signal is
exactly what we have in real life.

But why partition? So far, everything has been good and natural, but there
is one aspect of successful applications of F-transform that cannot be explained
so easily: namely, in most such applications, the corresponding functions A;(t)
form a partition, in the sense that

> A =1 (4)

for all moments ¢ from the corresponding time interval.

What we do in this paper. In this paper, we show that the partition require-
ment (4) can also be naturally explained in the measurement interpretation of
F-transform.

To be more precise, we show that what naturally appears is a 1-parametric
family of similar requirements of which the partition requirement is a particular
case, and then we explain that in the fuzzy cases, it is indeed reasonable to use
the partition requirement.



2 Main Idea

What if we can exactly measure instantaneous values? In the idealized
case, when inertia of measuring instruments is so small that it can be safely
ignored, we can measure the exact values x(t1), x(t2), ..., of the signal x(¢) at
different moments of time.

In this case, we get perfect information about the values of the signal at these

moments of time tq, t3, ..., but practically no information about the values of
the signal x(t) at any other moment of time. In other words, we reconstruct
the values x(t1), z(t2), ..., with perfect accuracy (0 measurement error), while

the values z(t) corresponding to all other moments of time ¢ are reconstructed
with no accuracy at all (the only bound on measurement error is infinity).

Even if we take into account that measurements are never 100% accurate,
and we only measure the values x(¢;) with some accuracy, we will still get
the difference between our knowledge of values z(t) corresponding to different
moments of time:

e we know the values z(¢;) with finite accuracy, but

e for all other moments of time ¢, we know nothing (i.e., the only bound of
measurement error is infinity).

This difference does not fit well with the fact that we want to get a good
representation of the whole signal x(t), i.e., a good representation of its values
at all moments of time. Thus, we arrive at the following idea.

Main idea. To adequately represent the original signal z(t), it is desirable to
select the measurement procedures in such a way that, based on these measure-
ments, we reconstruct each value x(¢) with the same accuracy.

Comment. At this moment, we have presented this idea informally. In the
following sections, we will show how to formalize this idea — and we also show
that this idea leads to the partition requirement (or, to be more precise, to a
general formula that includes the partition requirement as a particular case —
with the argument of why namely the partition requirement should be selected
in the fuzzy case).

3 Case of Probabilistic Uncertainty

Description of the case. Let us start with the most studied case of probabilis-

tic uncertainty, when we have probabilistic information about the measurement

def ~ ~
error Am; = m; — m; of each measurement, where m; denotes the result of

measuring the quantity m;.

We will consider the usual way measurement uncertainties are treated in this
approach (see, e.g., [20]): namely, we will assume that each measurement error
Am,; is normally distributed with 0 mean and known standard deviation o, and
measurement errors Am; and Am; corresponding to different measurements
1 # j are independent.



How accurately can we estimate z(¢t) based on each measurement.
Based on each measurement, we know each value m; = [ A;(t) - z(t) dt with
accuracy o. The integral is, in effect, a large sum, so we have

mi =Y Ai(t) - z(t) - At.

Thus, for each moment ¢, we have

Ai(t) - xz(t) - At =my; — ZAZ(S) -x(s) - As, (5)
s#t
and thus,
1 1
x(t):m'mi_m'mi'ZAi(s)'x(s)'As‘ (6)
s#£t

The measurement result m,; is an estimate for the quantity m;, with mean 0
and standard deviation o. Thus, if we know all the values z(s) corresponding
to s # t, then, based on the result m; of the i-th measurement, we can estimate
the remaining value z(t) as

~ def 1 ~ 1
)~ F(t) Y e e - Y Ails) a(s) - As. (T
T~ = T A T A A" < () =(s)- As. (7)
By comparing the formulas (6) and (7), we can conclude that the approximation

error Ax;(t) e (t) — x(t) of this estimate is equal to

Since the measurement error Am; is normally distributed, with 0 mean and stan-

dard deviation o, the approximation error Az;(t) is also normally distributed,
with 0 mean and standard deviation

)= T ar 9)

How accurately can we estimate z(t) based on all the measurements.
For each moment ¢, based on each measurement i, we get an estimate Z;(t) ~
x(t) with the accuracy o; described by the formula (9).



For each estimate, since the distribution of the measurement error is normal,
the corresponding probability density function has the form

~ 2

= _ - exp (_(xz(t) — () ) . (11)
VT oi(t) 2(0i(t))?

Since the measurement errors Am,; of different measurements are independent,

the resulting estimation errors Ax;(t) = Z;(t) —xz(t) are also independent. Thus,

the joint probability density corresponding to all the measurements is equal to

the product of all the values (11) corresponding to individual measurements:

P (1), ... Fa(t)) = L e (-ZW> (12)
(Vm)rtt - ] o4(?) i=0 i

=0

pi(Ti(t))

As a combined estimate Z(t) for x(t), it is reasonable to select the value for
which the corresponding probability (12) is the largest possible. This is known
as the Mazimum Likelihood Method; see, e.g., [21].

To find such a maximum, it is convenient to take the negative logarithm of
the expression (12) and use the fact that —In(z) is a decreasing function — so
the original expression is the largest if and only if its negative logarithm is the
smallest. Thus, we arrive at the need to minimize the sum

~ (T(t) — (1)
3 G0, 1)
2 9 (
pae 20;
this minimization is known as the Least Squares approach.
Differentiating the expression (13) with respect to the unknown z(¢) and
equating the derivative to 0, we conclude that
Do) (0i() P =E(E) - Y (0u(t) 7, (14)

i=0 =0
and thus, that

i(t) = =2 . (15)

n

> (ou(t)~?

i=0
The accuracy o (t) of this estimate can be determined if we describe the expres-
sion (12) in the form

| (e(t) — #(1)?
ﬁ-au)'“p(‘ 26(0))° ) (16)

By comparing the coefficients at (2(t))? under the exponent in the formulas (12)
and (16), we conclude that

1 1
GOE = 2 o an



i.e., equivalently, that
n

(3(8) 72 =D (oalt) > (18)

i=0
In particular, if all the estimation errors were equal, i.e., if we had o;(t) =
o(t) for all 4, then, from (18), we would conclude that

a(t) = N (19)

where N def n + 1 is the overall number of combined measurements.
Substituting expression (9) for ¢;(t) into the formula (18), we conclude that

G = B0 S ()2 (20)

=0

Thus, the requirement that we get the same accuracy for all moments of time
t, i.e., that o(t) = const means that we need to have

n

z:(Ai(t))2 = const. (21)

=0

Discussion. The formula (21) is somewhat similar to the partition require-
ment but it is different: in the partition requirement, we demand that the sum
of the functions A;(t) be constant, but here we have the sum of the squares. On
the other hand, the formula (21) is based on the probabilistic uncertainty, for
which the measurement error decreases with repeated measurements as 1/ VN,
while, e.g., for interval uncertainty (see, e.g., [5, 7, 8, 12, 20]), the measurement
error resulting from N repeated measurements decreases as 1/N; see, e.g. [22].
So maybe by considering different types of uncertainty, we can get the parti-
tion formula? To answer this question, let us consider a general case of how
uncertainties can be combined in different approaches.

4 How Uncertainties Can Be Combined in Dif-
ferent Approaches

Towards a general formulation of the problem. In the general case, be
it probabilistic or interval or any other approach, we can always describe the
corresponding uncertainty in the same unit as the measured quantity.

In the interval approach, a natural measure of uncertainty is the largest
possible value A of the absolute value |Ax| of the approximation error Az =
T — x, where z is the actual value of the corresponding quantity and = is the
measurement result. This value is clearly measured in the same units as the
quantity z itself.



In the probabilistic approach, we can use the variance of Ax — which is
described in different units than z — but we can also take the square root of this
variance and consider standard deviation o, which is already in the same units.

In the general case, let us denote the corresponding measure of accuracy
by A. The situation when we have no information about the desired quantity
corresponds to A = oco. The idealized situation when we know the exact value
of this quantity corresponds to A = 0.

If A and A’ are corresponding measures of accuracy for two different mea-
surements, then what is the accuracy of the resulting combined estimate? Let
us denote this combined accuracy by A x A’.

In these terms, to describe the combination, we need to describe the corre-
sponding function a % b of two variables. What are the natural properties of this
function?

Commutativity. The result of combining two estimates should not depend on
which of the two estimates is listed first, so we should have a * b = b*x a. In
other words, the corresponding combination operation must be commutative.

Associativity. If we have three estimates, then:

e we can first combine the first and the second ones, and then combine the
result with the third one,

e or we can first combine the second and the third ones, and then combine
the result with the first one.

The result should not depend on the order, so we should have (axb)xc = ax(bxc).
In other words, the corresponding operation should be associative.

Monotonicity. An additional information can only improve the accuracy.
Thus, the accuracy of the combined estimate cannot be worse than the accuracy
of each of the estimates used in this combination. So, we get a x b < a.

Similarly, if we increase the accuracy of each measurement, the accuracy of
the resulting measurement will increase too: if a < a’ and b < V', then we should
have a b < a' x V.

Non-degenerate case. If we start with measurements of finite accuracy, we
should never get the exact value, i.e., if a > 0 and b > 0, we should get axb > 0.

Scale-invariance. In real life, we deal with the actual quantities, but in com-
putations, we need to describe these quantities by their numerical values. To get
a numerical value, we need to select a measuring unit: e.g., to describe distance
in numerical terms, we need to select a unit of distance.

This selection is usually arbitrary. For example, for distance, we could con-
sider meters, we could consider centimeters, and we could consider inches or
feet. It is reasonable to require that the combination operation remains the
same if we keep the same quantities but change the measuring unit. Let us
describe this requirement in precise terms.

If we replace the original measuring unit with a new one which is A times
smaller; then all the numerical values are multiplied by A. For example, if we



replace meters by centimeters, then all the numerical values are multiplied by
100. The corresponding transformation z — A - z is known as scaling.

Suppose that in the original units, we had accuracies a and b and the com-
bined accuracy was a*b. Then, in the new units — since accuracies are described
in the same units as the quantity itself — the original accuracies become \-a and
A-b, and the combined accuracy is thus (A-a)* (A-b). This is the combined accu-
racy in the new units. It should be the same as when we transform the old-units
accuracy ¢ = a*b into the new units, getting A- (a*b): (A-a)*(X-b) = A-(axb).
This invariance under scaling is known as scale-invariance.

Discussion. Now, we are ready to formulate the main result.

Definition 1. By a combination operation, we mean a function a x b that
transforms two non-negative numbers a and b into a new non-negative number
and for which the following properties hold:

e for all a and b, we have a x b = b * a (commutativity );
e for all a, b, and c, we have (a*b)*c=ax (bx*c) (associativity);
e for all a and b, we have a xb < a (first monotonicity requirement );

o foralla, b, d, and V', if a < a and b <V, then axb < a’ *xV (second
monotonicity requirement );

e ifa>0 and b >0, then a*b > 0 (non-degeneracy); and

e foralla, b, and X\ > 0, we have (A-a)*(\-b) = A-(axb) (scale-invariance).

Proposition 1. FEvery combination operation has either the form a xb =
min(a, b) or the form a b= (a=? +b=2)"8 for some B > 0.

Proof of this result is, in effect, described in [1] (see also [4]).

Comment. The proof shows that if we do not impose the non-degeneracy condi-
tion, the only other alternative is a*b = 0. Thus, the non-degeneracy condition
can be weakened: instead of requiring that a x b > 0 for all pairs of positive
numbers a and b, it is sufficient to require that a * b > 0 for at least one such
pair.

Discussion. The form min(a,b) is the limit case of the second form when
b — 0.
In the generic case 8 < 0o, a x b = ¢ is equivalent to

a P 4b P =P (22)

Thus, the probabilistic case corresponds to g = 2.

In the situation when we have N measurement results with the same accu-
racy Ay = ... = Ay = A, the combined accuracy A can be determined from
the formula

(z)‘ﬁ = N-AVB, (23)



Thus, we have
A=
N1/8
In the probabilistic case, we indeed have this formula with 8 = 2. The above
interval-case formula corresponds to the case 8 = 1; thus, this is the value of
the parameter 8 corresponding to interval uncertainty.

(24)

5 Which Functions A;(t) Should We Choose:
Case of General Uncertainty

Analysis of the problem. If we measure m; with accuracy A, then, due to the
formula (8) (and similar to the case of probabilistic uncertainty), the estimate
Z;(t) is known with accuracy

A
A;(t) = . 25
(t) A0 A (25)
For the case of min combination formula, the combined accuracy is equal to
A 1
A(t) = min A;(t) (26)

T At max A;(t)

Thus, the requirement that we estimate all the values z(t) with the same accu-
racy means that
max A;(t) = const. (27)
K3
For the generic case 8 < oo, from the formula (22), we conclude that
s (AP
(A@) 7 =55 D_(Au(t)”. (28)

i=1

Thus, the requirement that we get the same accuracy for all moments of time ¢
means that we need to have

n

Z(Ai(t))ﬁ = const. (29)

i=1

General conclusion. The requirement that we get the same accuracy for
reconstructing the value of the signal at each moment of time of ¢ leads to
condition (27) or (29). In particular, for 5 = 1, we get the partition property.

Which value g should we use in the case of fuzzy uncertainty. In the
fuzzy case (see, e.g., [2, 6, 9, 10, 11, 15, 23]), the usual way of propagating
uncertainty — Zadeh extension principle — is equivalent to applying interval
computations for each a-cut. Thus, for analyzing fuzzy data, it makes sense
to use the value of 8 corresponding to interval uncertainty — which, as we have
mentioned, is 8 = 1. For 8 = 1, the formula (29) becomes the partition property.
Thus, the partition property indeed makes perfect sense when analyzing fuzzy
data.
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