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Abstract

The main ideas of F-transform came from representing expert rules.
It would be therefore re reasonable to expect that the more accurately
the membership functions describe human reasoning, the more efficient
will be the corresponding F-transform formulas. We know that an ade-
quate description of our reasoning corresponds to complicated member-
ship functions — however, somewhat surprisingly, most efficient applica-
tions of F-transform use the simplest possible triangular membership func-
tions. There exist some explanations for this phenomenon which are based
on local behavior of the signal. In this paper, we supplement this local
explanation by a global one: namely, we prove that triangular member-
ship functions are the only one that provide the accurate description of
appropriate global characteristics of the signal.

1 Formulation of the Problem

F-transforms: a brief reminder. In many application areas, it turned to be
very efficient to transform the original signal z(¢) into the values proportional to

T = /A <t2ti> cx(t)dt,

where t; = to + i - h for appropriate top and h > 0, and A(t) is a non-negative
function:

e which is equal to 0 outside the interval [—1, 1],



e which, starting at ¢ = —1, increases to 1 until it reaches ¢t = 0,
e which then decreases to 0, and

e for which

t—t;
A Ll =1
24 (5)
1
for all ¢; this last property is known as the fuzzy partition property.

This transformation is known as F-transform; see, e.g., [9, 10, 12, 13, 14, 15].
This transform comes from the general fuzzy approach (see, e.g., [2, 4, 6, 8,
11, 16]), namely, from the idea of describing imprecise (fuzzy) expert knowledge,
of the type “if t is close to t;, then x(¢) is close to z(¢;)”. From this viewpoint,
the function A(t) is a membership function that corresponds to the word “close”.

A somewhat unexpected empirical fact. Intuitively, one would expect that
the closer the function A(t) to how we actually think, the more efficient would be
the results. Empirical studies show that rather complex membership functions
are needed to represent our reasoning; see, e.g., [11]. However, surprisingly, in
many of these applications, very efficient results are obtained when we use a
very simple triangular membership function A(t) =1 — |t|. Why?

One possible “local” explanation — based on uncertainty — was proposed
in [5]; however, not everyone was convinced, so this empirical fact still remains
somewhat a mystery.

What we do in this paper. In this paper, we propose an alternative “global”
explanation for this efficiency, an explanation based on the need to correctly
reconstruct global characteristics of the signal.

2 Local Vs. Global Characteristics: Main Idea

What we mean by local and global characteristics. No measuring in-
strument can provide an instantaneous value of a physical quantity. No matter
at what time ¢ we perform our measurement, the measurement result depends
not only on the value of the signal x(¢) at this moment of time, but also on the
values z(s) at nearby moments of time.

In some cases, we are interested in the local behavior of the signal. In this
case, we try to measure values which are as close to z(t) as possible. F-transform
values are an example of such a local analysis.

In other cases, we are interested in the global trend. In such cases, instead of
concentrating on a short-term time interval, we deliberately measure the signal
over a long period of time.

Resulting idea. To most adequately reconstruct the signal, we should be
able to adequately reproduce both its local and its global characteristics. By



definition, F-transform adequately represents the local characteristics, no mat-

ter what membership function A(t) we select. So, it is reasonable to select a

membership function which most adequately represents global characteristics.
Let us describe this idea in precise terms.

3 Which Global Characteristics Should We Rep-
resent: Discussion

Need for linearization. Signals are usually weak. Thus, for any quantity ¢
that depends on this signal z(¢) — be it local or global — we should be able to
ignore terms which are quadratic or higher order in terms of z(t) and thus retains
only the linear terms in the corresponding dependence. As a result, we should
only consider linear quantities, i.e., quantities of the type ¢ = [ ¢(t) - () dt.

Which linear quantities should we select? Of course, when we perform
F-transform, we lose some information about the signal. Indeed, on each time
interval, we replace infinitely many values z(¢) corresponding to infinitely many
moments of time ¢ from this interval, with finite many values of the corre-
sponding F-transform. Thus, we cannot perfectly reconstruct all possible global
characteristics ¢ — since from the values of all these characteristics, e.g., of the
integrals fioo x(s)ds — we would be able to uniquely reconstruct all the val-
ues z(t).
Thus, we need to select the most appropriate global characteristics.

How to define what is most appropriate? In different situations, different
global characteristics may be more appropriate. In this paper, instead of trying
to list specific notions of appropriateness, we will consider all possible criteria
of this type.

Interestingly, it turns out that all reasonable criteria of this type lead, in ef-
fect, to the same family of optimal global characteristics — and the only way to
reconstruct these characteristics exactly is to use triangular membership func-
tions.

Let us describe all this in precise terms.

4 Towards Precise Formulation of the Problem

Towards describing what is more appropriate and what is less ap-
propriate. As we have mentioned, all global characteristics have the form
q = [q(t) x(t)dt. Thus, selecting a characteristic is equivalent to selecting the
corresponding function ¢(¢).

This function ¢(t) may be discontinuous, as in the above example of a charac-
teristic fjoo z(s) ds. However, at least it should be measurable (non-measurable
functions cannot be defined without using the Axiom of Choice, which means
that they are not definable).



Of course, if we can reconstruct the value [ ¢(t)-z(t) dt, then, for every real
value ¢, we can also reconstruct the related value [(c- ¢(t)) - (t) dt, since this
related value is simply equal to ¢ - [¢(t) - x(t)dt. Thus, strictly speaking, a
characteristics is represented not by a single function, but by the entire family
{c- q(t)}esto of the related functions. So, we arrive at the following definition.

Definition 1. By a characteristic or, alternatively, a family, we mean a family
of the type {c - q(t)}ero, where q(t) is a given measurable function, and ¢ runs
over all possible non-zero real numbers.

Discussion. What do we mean when we say that some characteristic (family)
are more appropriate and some are less appropriate? We mean that we have
some criterion according to which, for every two families F' and G, we can say
one of the three things:

e we can say that F' is more appropriate than G; we will denote this by

G < F;

e we can say that GG is more appropriate than F'; we will denote this by

F <G,
e or we can say that the two characteristics are equally appropriateness; we

will denote this by F' ~ G.

No matter what is the criterion, we have these relations. Thus, we can simply
make these relations the definition of a criterion.

Of course, we need to make sure that these relations are consistent: e.g., if
F is better than G and G is better than H, then F' should be better than H.
Thus, we arrive at the following definition.

Definition 2. By a criterion for selecting a characteristic, we means a pair of
relations (<, ~) that satisfies the following properties:

e for every two characteristics F and G, we have one of only one of three
options: F <G, G<F, and F ~ G;

e if F <G and G < H, then F < H;
o if F<Gand G~ H, then F < H;
o if F~Gand G < H, then F < H;
o ifF~Gand G~ H, then F ~ H;
o '~ F, and

o if F~G, then G~ F.



Discussion. The whole purpose of selecting a criterion is to use this criterion
for selecting the best (most adequate) characteristic, i.e., a characteristic which
is better — according to this criterion — than any other characteristic.

So, if there is no such optimal characteristics, the corresponding criterion
is useless. But what if there are several characteristics which are all the most
appropriate according to the given criterion? In this cases, we can use this non-
uniqueness to optimize something else. For example, if several characteristics
are equally good in terms of accuracy with which we can predict the future
behavior of the signal, then we can select among them the characteristic which
is the easiest to compute. As a result, we get, in effect, a new criterion, according
to which F' is better than G if:

e either F' better than G according to the original criterion,

e or F equivalent to G in terms of the original criterion but better according
to the additional criterion.

If for the new criterion, we still have several different optimal characteristics,
we can then optimize something else, etc., until we reach a final criterion for
which there is exactly one optimal characteristic.

Definition 3.

o We say that a characteristic F is optimal with respect to the criterion
(=<, ~) if for every characteristic G, we have G < F or G ~ F.

o We say that the criterion is final if there exists exactly one characteristic
which is optimal with respect to this criterion.

Need for scale-invariance. A signal z(¢) describes how the value of a physical
quantity = depends on time. We may have a starting point for the corresponding
process, which provides a natural starting point for measuring time, but in
general, the numerical value of time depends on what unit we use for measuring
time. We can use seconds or minutes or hours — the time interval will be the
same but the numerical values will change.

When we replace the original unit for measuring time with a new unit which
is A times smaller, then all numerical values of time are re-scaled, i.e., multiplied
by A. For example, if we go from seconds to milliseconds, all numerical values
are multiplies by 1000. The function ¢(t) in the new unit becomes g(A - ¢).

It is reasonable to require that the relative quality of different characteristics
should not change if we simply change the unit used for measuring time, without
changing anything of substance. In other words, it is reasonable to require that
the criterion be “scale-invariant”. Here is a precise definition.

Definition 4. We say that a criterion (<, ~) is scale-invariant if for every two
functions q(t) and r(t) and for every XA > 0, the following two conditions hold:

o if {c-q()}e <{c r(t)}e, then {c-q(A-t)}e < {c-r(A-t)}e;
o if {c-q(t)}c~{c-T(t)}c, then {c-q(A-t)}c ~ {c-r(A-t)}e.



Discussion. We want to find all membership functions that allow us to re-
construct the most adequate global characteristics. To find these functions, we
will first describe which characteristics are the most adequate. Then, we will
analyze which membership functions allow us to reconstruct the values of these
characteristics from the results of the F-transform.

5 Which Characteristics Are the Most Adequate:
Preliminary Result

Discussion. In the previous section, we argued that the most adequate global
characteristic must be optimal with respect to some final scale-invariant crite-
rion. Let us describe all such characteristics.

Proposition 1. For every final scale-invariant criterion, each optimal charac-
teristic has the form {c-x%}., for some real value B.

Proof. Let us denote the scaling transformation that transforms a family F' =
{c-q(t)}. into a re-scaled family {c¢-q(X-t)}. by Th. In terms of this notation,
scale-invariance means that:

o if F < G, then T)(F) < T»(G); and
e if F ~ @, then T,\(F) ~ T)\(G)

Let (<, ~) be the final scale-invariant criterion. Since this criterion is final,
there exists exactly one optimal characteristic Fipt. Let us prove that this
characteristic is scale-invariant, i.e., that T (Fopt) = Fopt, for all A > 0. (This
proof is similar to the one given in [7].)

Indeed, since Fyp is optimal, it is better than or equivalent to any other
characteristic. In particular, for every G, the characteristic Fyp¢ is better than
or equivalent to T3/ (G): T1/x(G) < Fopt or Ty /A (G) ~ Fopi. By applying scale-
invariance, we conclude that either T)(T/x(G)) < Tx(Fopt) or Ta(T1/A(G)) ~
T\ (Fopt). However, one can easily check that T)(7,(G)) = G.

Thus, for every characteristic G, we have either G < T)(Fopt) or G ~
T(Fopt,). By definition of an optimal characteristic, this means that the char-
acteristic T (Fopt) is optimal. However, for the final criterion, there is only one
optimal characteristic, so we conclude that T (Fopt) = Fope. Thus, the optimal
characteristic is indeed scale-invariant.

By definition, each characteristic has the form {c- ¢(t)}.. Let us denote the
function ¢(t) corresponding to the optimal characteristic by gopt(¢). The fact
that the optimal family is scale-invariant means, in particular, that for every
A > 0, the function gopt (A -t) — which belongs to the re-scaled family T (Fypt) —
also belongs to the original family, i.e., has the form ¢(X) - gopt (t) for some value
c(A): gopt(A-t) = c(A) - gopt(t). It is known that the only measurable functions
satisfying this functional equation are functions of the type C - t%; see, e.g., [1].
The proposition is proven.



Discussion. Let us now find out which membership functions can allow us to
reconstruct these most adequate characteristics.

6 Which Membership Functions Enable Us to
Reconstruct the Most Adequate Global Char-
acteristics

Definition 5. We say that for a membership function A(t), it is possible to
always reconstruct a global characteristic [ q(t) - z(t)dt if for every to and h,
the value of this characteristic can be uniquely determined once we know all the

values
x; = /A <t ;ltz> - z(t) dt.

Case of 8 = 0. A particular case of the most adequate global characteristic is
the case 8 = 0, when ¢(t) = const and the corresponding global characteristic
is simply the integral f z(t)dt = 1. This characteristic can always be recon-

t_ti> =1 for all

structed from the F-transform, since we require that > A (
i

/x(t)dtzi:/A<thti) .x(t)dt:;a:i.

t and thus,

General case. Thus, we should worry only about the case when 8 # 0. In this
case, we have the following result.

Proposition 2. The only membership function A(t) for which it is possible
to always reconstruct a most adequate global characteristic with B # 0 is the
triangular membership function — it can reconstruct the characteristic [ t-x(t) dt
corresponding to = 1.

Comment. This result provides the desired global explanation of why triangular
membership functions are so efficient in F-transform applications.

Proof. Let us assume that for some S # 0, the membership function A(t)
enables us to always uniquely reconstruct the corresponding characteristic

/t5 -a(t) dt.

Let us first consider the case when tg = 0, h = 1, and the signal z(¢) is equal
to 0 everywhere except for the interval [0, 1]. Then, only two F-transform values
are different from 0:

e the value z9 = fol A(t) - z(t) dt, and



o the value z; = fol At —1) - x(t) dt.
The fuzzy partition requirement implies that A(t) + A(t — 1) =1, so
At —1) =1— A(1).

The only way to be able to always reconstruct the value fol t8 . x(t) dt from
these two values, no matter how the signal x(¢) behaves on the interval [0, 1], is
to have ¥ equal to a linear combination of A(t) and A(t—1) = 1 — A(t). Thus,
the function ¢# is a linear combination of A(t) and 1, and hence, A(t) is a linear
combination of t? and 1, i.e., A(t) =a+b-t5.

For ¢t = 1, we must have A(t) =0, so a +b = 0 and thus, A(t) = a- (1 —t7).
For ¢t = 0, we must have A(0) = 1, so we have a = 1 and A(t) = 1 — ¢ for

€ [0,1]. Correspondingly, for s € [—1,0], due to A(t — 1) =1 — A(¢), we have
A(s)=1—-A(s+1) = (s+ 1)~

Let us now consider a signal which is different from 0 only on the interval
[1,2]. For this signal, the desired global characteristic has the form ff t8.x(t) dt,
and the only non-zero values of F-transform are x; = ff(l —(t—=1)8) - z(t)dt

and zo = ff(t — 1)8 . 2(t)dt. Thus, the only way to exactly reconstruct the
global characteristic is to have t# to be a linear combination of 1 — (¢t —1)? and
(t —1)%, i.e., as a linear combination of (¢t —1)% and 1: t® = a - (t — 1)% +b.

Let us show that S = 1. For this, we need to show that cases when g > 1
and 8 < 1 are impossible.

Indeed, differentiating both sides by ¢, we get 8 -t°~! =a- - (t — 1)L,
If B > 1, then for t = 1, we get = 0, which contradicts the assumption that
B> 1. If 8 <1, then for t = 1, we get 8 = 0o — also a contradiction.

Thus, 8 =1, so A(t) = 1 — |t], i.e., we indeed have a triangular membership
function. The proposition is proven.

Comment. Once we have a triangular membership function, it is easy to combine
the F-transform values to get an integral of a linear function. For simplicity,
assume that we start with the signal which is 0 for ¢ < 0, and that A = 1. Then,
the values z(t) corresponding to ¢ € [0, 1], affect the value zq, with the weight
1 — ¢, and the value x1, with weight ¢. If we take the difference x; — x¢, this
difference corresponds to the weight 2¢ — 1 on [0, 1] (and the weight 2 — x for
x € [1,2]).

We can normalize the difference x1 — z to get the coefficient at ¢ on [0, 1]

1
to be equal to 1. For the resulting normalized linear combination 3 (z1 — o),

1 t
on [0, 1], we have the weight t — 2 and on [1, 2], the weight 1 — 7

On the interval [1,2], the next F-transform value x2 corresponds to the
coefficient ¢ — 1 (and 0 before that). Thus, by adding x5 with the appropriate
coefficient, we can make sure that the linear combination continues to have ¢
with coefficient 1 on the interval [1,2] as well. For that, we need to add z5 with

3 3
coefficient 3 Then the resulting linear combination 3" (x1 — x0) + 5 %2 is

1
equal to t — 5 on the whole interval [0, 2].



3
On [2,3], this combination is equal to 3 (3 —t). So, to make sure that
1
we get a linear combination which is equal to ¢t — 3 on the interval [2,3] as

5
well, we need to add x3 with coefficient —, etc. At the end, when we reach the

end of the time interval on which the signal is defined, the corresponding linear
combination gives us the integral

/(t;>~x(t)dt/t-x(t)dt;-/x(t)dt.

Since, as we have mentioned, we can easily determine the integral [ z(t)dt by
adding all the values of the F-transform, we can thus indeed determine the value
of the desired global characteristic [ ¢ - x(t) dt.

Acknowledgments

This work was supported by the Banking University of Ho Chi Minh City, Viet-
nam, and by the US National Science Foundation via grants 1623190 (A Model
of Change for Preparing a New Generation for Professional Practice in Com-
puter Science) and HRD-1242122 (Cyber-ShARE Center of Excellence).

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cam-
ridge University Press, Cambridge, UK, 2008.

[2] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics:
A Historical Perspective, Oxford University Press, New York, 2017.

[3] L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis,
with FExamples in Parameter and State Estimation, Robust Control, and
Robotics, Springer, London, 2001.

[4] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[5] O. Kosheleva and V. Kreinovich, “Why triangular membership functions
are often efficient in F-transform applications: relation to probabilistic and
interval uncertainty and to Haar wavelets”, In: J. Medina et al. (eds.),
Proceedings of the 17th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems IPMU’2018,
Cadiz, Spain, June 11-15, 2018.

[6] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.



[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

H. T. Nguyen and V. Kreinovich, Applications of Continuous Mathematics
to Computer Science, Kluwer, Dordrecht, 1997.

H. T. Nguyen, C. Walker, and E. A. Walker, A First Course in Fuzzy Logic,
Chapman and Hall/CRC, Boca Raton, Florida, 2019.

V. Novak, I. Perfilieva, M. Holcapek, and V. Kreinovich, “Filtering out
high frequencies in time series using F-transform”, Information Sciences,

2014, Vol. 274, pp. 192-209.

V. Novak, I. Perfilieva, and V. Kreinovich, “F-transform in the analysis
of periodic signals”, In: M. Inuiguchi, Y. Kusunoki, and M. Seki (eds.),
Proceedings of the 15th Czech-Japan Seminar on Data Analysis and Deci-
sion Making under Uncertainty CJS’2012, Osaka, Japan, September 24-27,
2012.

V. Novak, I. Perfilieva, and J. Mockot, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

I. Perfilieva, “Fuzzy transforms: Theory and applications”, Fuzzy Sets and
Systems, 2006, Vol. 157, pp. 993-1023.

I. Perfilieva, “F-transform”, In: Springer Handbook of Computational In-
telligence, Springer Verlag, 2015, pp. 113-130.

I. Perfilieva, M. Dankovd, and B. Bede, “Towards a higher degree F-
transform” , Fuzzy Sets and Systems, 2011, Vol. 180, No. 1, pp. 3—-19.

I. Perfilieva, V. Kreinovich, and V. Novak, “F-transform in view of trend
extraction”, In: M. Inuiguchi, Y. Kusunoki, and M. Seki (eds.), Proceedings
of the 15th Czech-Japan Seminar on Data Analysis and Decision Making
under Uncertainty CJS’2012, Osaka, Japan, September 24-27, 2012.

L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338—
353.

10



