
Faster Quantum Alternative to Softmax Selection

in Deep Learning and Deep Reinforcement

Learning

Oscar Galindo, Christian Auyb,
Martine Ceberio, and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

ogalindomo@miners.utep.edu, cayub@miners.utep.edu,
mceberio@utep.edu, vladik@utep.edu

Abstract

Deep learning and deep reinforcement learning are, at present, the best
available machine learning tools for use in engineering problems. However,
at present, the use of these tools is limited by the fact that they are
very time-consuming, usually requiring the use of a high performance
computer. It is therefore desirable to look for possible ways to speed up the
corresponding computations. One of the time-consuming parts of these
algorithms is softmax selection, when instead of selecting the alternative
with the largest possible value of the corresponding objective function,
we select all possible values, with probabilities increasing with the value
of the objective function. In this paper, we propose a significantly faster
quantum-computing alternative to softmax selection.

1 Formulation of the Problem: Need for a
Faster Alternative to Softmax Selection

Need for machine learning in engineering and science. One of the main
objectives of science and engineering in general is to find the state of the world,
to predict the future state of the world, and to find the control and/or design
that leads to a better future state. The state of the world can be described by
values of the corresponding physical quantities. A control can be described by
the values of the corresponding control parameters, and the details of a design
can be described by the values of the corresponding design parameters. In these
terms, the prediction and control problems can be described in a similar way:

1



• we know – e.g., from measurements – the values of some quantities
x1, . . . , xn, and

• we want to find the value of the desired quantity y based on the known
values xi.

In some cases, the situation is straightforward: we know the algorithm
f(x1, . . . , xn) that enables us to estimate y based on the known values xi, and
this algorithm can be feasibly implemented.

However, in many other situations, while the corresponding equations are
known, the resulting system is so complex that the corresponding algorithm
would produce the result way after the event that we are trying to predict. This
is the case, e.g., of predicting tornado trajectories, and of many other practical
problems.

In many other cases, we do not even have the equations, all we have is the
past experience of observing the values xi and the corresponding values y. In

such cases, based on such records
(
x
(k)
1 , . . . , x

(k)
n , y(k)

)
, 1 ≤ k ≤ K, we need

to find a feasible algorithm f(x1, . . . , xn) for which y(k) ≈ f
(
x
(k)
1 , . . . , x

(k)
n

)
for

all k.
In situations when a model exists but is too complicated, we can use the

results y(k) of running this model on different inputs
(
x
(k)
1 , . . . , x

(k)
n

)
to form

the corresponding records. In this application, it is OK that this model takes too
long to run – we can spend as much time as necessary on generating the records,
as long as they help us to eventually come up with the feasible algorithm that
we will later use for actual prediction or control.

The procedure of producing such an algorithm based on the known records
is known as machine learning; see, e.g., [4, 8].

Need for reinforcement learning. In many practical situations, the available
records are not sufficient to reconstruct the algorithm f(x1, . . . , xn). In such
situations, we need to perform additional measurements (or, in case of complex
models, additional simulations). In this case, it is desirable that the computer
will instruct us which values (x1, . . . , xn) to try next, so as to minimize the
measuring effort and ultimately, get the desired feasible algorithm as soon as
possible. Learning that also involves additional requests for data is known as
reinforcement learning; see, e.g., [10].

Deep learning and deep reinforcement learning. Many different machine
learning techniques have been proposed. At present, the most efficient machine
learning technique is deep learning (see, e.g., [4, 8]): crudely speaking, a neu-
ral network with a large number of neurons. This technique has led to many
successes.

Deep learning and deep reinforcement learning: remaining challenges.
One of the main challenges with deep learning and deep reinforcement learning
is that they require a large amount of computation time. In contrast to most
other machine learning techniques which can be easily performed on the user’s

2



computer, deep learning and deep machine learning require the use of high
performance computers. This limitation severely limits the use of deep learning
techniques, especially in engineering applications.

It is therefore desirable to be able to speed up deep learning and deep rein-
forcement learning.

Softmax selection: one of the steps that requires a large amount
of computation time. The main objective of machine learning is to find
a function that provides the best match for all the known records, i.e., for
which, an appropriately defined distance between the observed values y(k) and

the values f
(
x
(k)
1 , . . . , x

(k)
n

)
predicted by the algorithm is the smallest possible.

Since deep learning takes a lot of computation time, a natural idea to speed
up the corresponding computations is to parallelize them. A natural way to
parallelize the process is to run several optimization techniques in parallel for
some time, and select the one that leads to the most promising result, i.e., the
result for which the distance is the smallest possible.

However, in optimization, it is well known that this can lead us to a local
minimum. To avoid local minimum, it is necessary to not always select the best
alternative, it is necessary to sometimes select other alternatives as well – so
that still the best alternative is selected with the highest probability, and not
so good alternatives are selected with much smaller probabilities.

This need appeared way before deep learning. For this purpose, a technique
called simulated annealing was invented (see, e.g., [1, 7]), where, if we want
to minimize an objective function J(a), we select each alternative a with the
probability, e.g., proportional to exp(−c · J(a)) for some value c. Clearly, the
smaller J(a), the higher the probability of selecting the alternative a. When
c → ∞, the probability of selecting any other alternative except for the one
which J(a) attains the minimum tends to 0. From this viewpoint, the above
formula can be viewed as a “soft” version of minimum, where we usually get the
minimum, but sometimes we also get alternatives with a larger value of J(a).
Because of this, this method is also known as softmin.

Similarly, if we want to maximize J(a), we select each alternative a with
probability proportional to exp(c · J(a)). Here too, when c → ∞, we get the
alternative with the maximum value of J(a) with probability 1. So, this method
can be viewed as a soft version of maximum, and it is thus known as softmax.
Softmax is exactly what is usually used in deep learning – although, to be fair,
it should be noted that other probabilistic ways were also tried, and they did
not seem to lead to worse results.

In reinforcement learning, there is an additional need for such softening.
Namely, we would like to produce the values (x1, . . . , xn) for which estimating
y and adding the resulting record will add the largest amount of information to
our knowledge. In this case too, to avoid the local maximum, it is desirable to
use something like softmax instead of the real maximum.

Softmax usually takes much more computation time than the usual optimiza-
tion. Indeed, in optimization, if we know that for some class of alternatives, the
values of the objective functions are smaller than the maximum-so-far (i.e., that

3



the largest value that we have seen so far), then we can simply dismiss all these
alternatives and concentrate on the remaining ones. In contrast, in softmax,
we cannot dismiss anything, we need to take all alternatives into account and
estimate their values J(a) – so that we will be able to generate them with the
corresponding probabilities.

This takes a lot of time. So, to speed up deep learning and reinforcement
deep learning, it is desirable to speed up the corresponding computations. Let us
repeat that it does not have to be necessarily exactly softmax, but we do need
some way to, in general, generate alternatives with larger values of objective
function with higher probabilities and the alternatives with smaller values of
the objective function with lower probabilities.

2 Solution: Quantum Computing Leads to a
Faster Alternative to Softmax Selection

We need a soft version of optimization. Whether we use softmax or any
other alternative, what we are looking for is a “soft” version of optimization, in
the following sense:

• in optimization, we select the alternative with the largest possible value
of the objective function (or the smallest), while

• what we want is to select the alternative with the largest value with a high
probability but also other alternatives with some probability: in general,
the larger the value, the higher the probability.

In view of this fact, to come up with a quantum version of soft optimization, let
us first recall how quantum computing can help with the exact optimization.

How quantum computing can help with exact optimization: a brief
reminder. The main idea of using quantum computing for optimization is
described, e.g., in [2]. This idea is based on one of the most well-known quantum-
computing algorithms: Grover’s algorithm for finding an element in an unsorted
list [5, 6, 9]. In non-quantum computing, the only way to make sure that this
element is found is to check all n elements of this list – and checking all these
elements is sufficient. Thus, in non-quantum computing, the solution of this
problem requires n computational steps.

In contrast, in quantum computing, Grover’s algorithm enables us to find
this element in time O(

√
n). To be more precise, Grover’s algorithm finds

the element with some probability 1 − ε. For any desired value ε > 0, we
can find the number of iterations for which we guarantee the correct answer
with the probability ≥ 1 − ε; and no matter how many iterations we select,
the computation time remains O(

√
n). In particular, we can select so many

iterations that the probability ε of the wrong answer can be smaller than the
probability that the computer itself will fail – or even smaller than 1 mistake
in 20 billion years. For such small ε > 0, we can safely ignore the possibility of

4



a wrong answer and conclude that, from the practical viewpoint, we always get
the correct answer.

Let us show how Grover’s algorithm can be used for optimization. Let us
assume that we have n alternatives, with the values v1, . . . , vn of the correspond-
ing objective function. In mathematical terms, we want to find the index i0 for
which the value vi0 is the largest, i.e., for which vi0 = max

i
vi.

It is important to take into account that from the practical viewpoint, the
values vi are only known with some accuracy δ. Thus, it is sufficient to find the

value which is δ-close to the desired maximum, i.e., for which

∣∣∣∣vi0 −max
j
vj

∣∣∣∣ ≤ δ.
Usually, we know a priori bounds for all the values of the objective function

– like we usually know the lower and upper bound for each physical quantity.
Thus, we know some values m < M for which m ≤ vi ≤ M for all i. In other
words, we know that all the values vi – and, in particular, the desired optimizing
value vi0 – lies in the interval [v, v] = [m,M ].

This interval [m,M ] will be the starting interval of our iterative process, at
each stage of which we will find a narrower interval [v, v] containing vi0 – until
the resulting interval gets width ≤ δ.

The corresponding narrowing can be done as follows. At the beginning of

each narrowing step, we compute a midpoint ṽ
def
=

v + v

2
. Then, we use Grover’s

algorithm to check if there exists an index i for which vi ≥ ṽ. Depending on the
result of applying this algorithm, we can make the following conclusion:

• if there exists an index i for which vi ≥ ṽ, this means that

vi0 = max
j
vj ≥ vi ≥ ṽ.

so we can conclude that the desired largest value vi0 is contained in the
half-size interval [ṽ, v];

• if there is no index i for which vi ≥ ṽ, this means that vi < ṽ for all i
and thus, vi0 = max

j
vj ≤ ṽ; in this case, we can conclude that the desired

largest value vi0 is contained in the half-size interval [v, ṽ].

In both cases, by spending O(
√
n) computational steps of Grover’s algorithm,

we divide the width of the interval [v, v] containing vi0 by half. In k, steps, the
interval’s width decreases to 2−k of its original width M−m. Since the values vi
are known with accuracy δ, it makes no sense to locate the value vi0 with higher
accuracy – so we should stop when the width 2−k · (M − m) of the resulting
interval [v, v] becomes smaller than δ. At this stage, we know that vi0 ≥ v, so
we apply Grover’s algorithm one more time to find the corresponding index i0.

This computation requires k + 1 applications of Grover’s algorithm. The
value k can be determined as the smallest value for which 2−k ·(M−m) ≤ δ, i.e.,

k =

⌈
M −m

δ

⌉
. This value does not depend on n, so the overall computational

complexity of this algorithm is O(
√
n), which, for large n, is much smaller than

5



the fastest possible non-quantum algorithm – non-quantum computations would
require that we look at every single value vi and thus, would require n �

√
n

computational steps.

From quantum computing-based exact optimization to quantum
computing-based analogue of softmax. As we have mentioned earlier,
Grover’s algorithm is an iterative algorithm that provides an answer with some
probability ≥ 1− ε, where the probability of error ε depends on the number of
this algorithm’s iterations.

• Usually, we select this number of iterations in such a way that the proba-
bility ε is very small, to avoid deviations from the actual maximum.

• However, in our problem, we are in interested in deviating from the exact
maximum.

Thus, a natural way to get the desired quantum version of softmax is to decrease
the number of iterations – so that the probability ε becomes larger.

If we use this version of Grover’s algorithm in the above optimization scheme,
we get exactly what we want:

• we get the exact maximum with high probability but also

• we get other, smaller values with a reasonable non-zero probability.

Also:

• in contrast to softmax, that needs O(n) computational steps,

• the proposed quantum computing-based algorithm takes much smaller
time O(

√
n)� n.

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Ex-
cellence).

References

[1] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing,
Wiley, Chichester, New York, Brisbane, Toronto, Singapore, 1997.

[2] C. Ayub, M. Ceberio, and V. Kreinovich, “How quantum computing can
help with (continuous) optimization”, Proceedings of the 12th International
Workshop on Constraint Programming and Decision Making CoProd’2019,

6



Part of the World Congress of the International Fuzzy Systems Associa-
tion and the Annual Conference of the North American Fuzzy Information
Processing Society IFSA/NAFIPS’2019, Lafayette, Louisiana, June 17–21,
2019, Springer Verlag.

[3] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New
York, 2006.

[4] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cam-
bridge, Massachusetts, 2016.

[5] L. K. Grover, “A fast quantum mechanical algorithm for database search”,
Proceedings of the 28th ACM Symposium on Theory of Computing, 1996,
pp. 212–219.

[6] L. K. Grover, “Quantum mechanics helps in searching for a needle in a
haystack”, Physical Reviews Letters, 1997, Vol. 79, No. 2, pp. 325–328.

[7] V. Kreinovich, “Group-theoretic approach to intractable problems,” Lec-
ture Notes in Computer Science, Springer-Verlag, Berlin, 1990, Vol. 417,
pp. 112–121.

[8] V. Kreinovich, “From traditional neural networks to deep learning: towards
mathematical foundations of empirical successes”, In: S. N. Shahbazova et
al. (eds.), Proceedings of the World Conference on Soft Computing, Baku,
Azerbaijan, May 29–31, 2018.

[9] M. Nielsen and I. Chuang, Quantum Computation and Quantum Informa-
tion, Cambridge University Press, Cambridge, 2000.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning. An Introduction,
2nd edition, MIT Press, Cambridge, Massachusetts, 2018.

7


