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Abstract

In their 1983 paper, C. Alsina, E. Trillas, and L. Valverde proved
that distributivity, monotonicity, and boundary conditions imply that the
“and”-operation is min and the “or”-operation is max. In this paper, we
show that all these conditions are necessary for Alsina et al. result to be
true.

1 Alsina et al. Result: Reminder

In [1], it has been proven that for two binary operations ∨ : [0, 1] × [0, 1] →
[0, 1] and & : [0, 1] × [0, 1] → [0, 1], distributivity, monotonicity, and boundary
conditions imply that a∨b = max(a, b) and a& b = min(a, b); see also [2, 3, 4, 5].

Let us formulate this result in precise form. In our formulation, we deviate
slightly from [1]; namely:

• we will consider the derivations of ∨ and & separately;

• we divide boundary conditions into conditions on ∨ and &; and

• we use slightly weaker boundary conditions: e.g., a ≤ a ∨ 0 instead of the
original a = a ∨ 0.

Derivation of max. We consider the following conditions:

• (P1) for all a, b, and c, we have a& (b∨c) = (a& b)∨(a& c) (distributivity);

• (P2) for all a, a′, b, and b′, if a ≤ a′ and b ≤ b′, then a ∨ b ≤ a′ ∨ b′

(monotonicity);
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• (P3) for all a, we have a& 1 = 1 & 1 = a; (first boundary condition);

• (P4) for all a, we have a ≤ a∨0 and a ≤ 0∨a (second boundary condition).

Comment. Actually, it is sufficient to consider distributivity only for b = c = 1.

Proposition 1. For every pair of binary operations, if the conditions (P1)-(P4)
are satisfied, then a ∨ b = max(a, b).

Proof. Due to (P4), we have 1 ≤ 1 ∨ 0. Since 1 ∨ 0 ∈ [0, 1], we conclude that
1 ∨ 0 = 1. Due to monotonicity, 1 = 1 ∨ 0 ≤ 1 ∨ 1. Thus, 1 ∨ 1 = 1.

For b = c = 1, the distributivity condition implies that for all a, we have
a& (1 ∨ 1) = (a& 1) ∨ (a& 1). Since 1 ∨ 1 = 1, this means

(a& 1) = (a& 1) ∨ (a& 1).

Due to the first boundary condition, this implies that a ∨ a = a.
If a ≤ b, monotonicity implies that a ∨ b ≤ b ∨ b = b. On the other hand,

due to monotonicity and to the property (P4), we have b ≤ 0 ∨ b ≤ a ∨ b. So,
b ≤ a ∨ b ≤ b, thus a ∨ b = b.

Similarly, if b ≤ a, then monotonicity implies that a ∨ b ≤ a ∨ a = a.
On the other hand, due to monotonicity and to the property (P4), we have
a ≤ a ∨ 0 ≤ a ∨ b. So, a ≤ a ∨ b ≤ a, thus a ∨ b = a.

In both cases, we have a ∨ b = max(a, b). The proposition is proven.

Derivation of min. A similar result proves that the “and”-operation is equal
to min. For this purpose, we consider the following conditions:

• (Q1) for all a, b, and c, we have a∨(b& c) = (a∨b) & (a∨c) (distributivity);

• (Q2) for all a, a′, b, and b′, if a ≤ a′ and b ≤ b′, then a& b ≤ a′ & b′

(monotonicity);

• (Q3) for all a, we have a ∨ 0 = 0 ∨ a = a; (first boundary condition);

• (Q4) for all a, we have a& 1 ≤ a and 1 & a ≤ a (second boundary condi-
tion).

Comment. Actually, it is sufficient to consider distributivity only for b = c = 0.

Proposition 2. For every pair of binary operations, if the conditions (Q1)-(Q4)
are satisfied, then a& b = min(a, b).

Proof. Due to (Q4), we have 0 & 1 ≤ 0. Since 0 & 1 ∈ [0, 1], we conclude that
0 & 1 = 0. Due to monotonicity, 0 & 0 ≤ 0 & 1 = 0. Thus, 0 & 0 = 0.

For b = c = 0, the distributivity condition implies that for all a, we have
a∨(0 & 0) = (a∨0) & (a∨0). Since 0 & 0 = 0, this means (a∨0) = (a∨0) & (a∨0).
Due to the first boundary condition, this implies that a& a = a.
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If a ≤ b, monotonicity implies that a = a& a ≤ a& b. On the other hand,
due to monotonicity and to the property (Q4), we have a& b ≤ a& 1 ≤ a. So,
a ≤ a& b ≤ a, thus a& b = a.

Similarly, if b ≤ a, then monotonicity implies that b = b& b ≤ a& b. On
the other hand, due to monotonicity and to the property (Q4), we have a& b ≤
1 & b ≤ b. So, b ≤ a& b ≤ b, thus a& b = b.

In both cases, we have a& b = min(a, b). The proposition is proven.

Comment. As one can see from the proofs, the propositions are valid not only
for the binary operations on the interval [0, 1], but also for binary operations on
any linearly ordered set with the smallest element 0 and the largest element 1.

2 Let Us Prove in Both Results, All Four Con-
ditions Are Needed

Derivation of “or”-operations. Let us start with Proposition 1 that derives
the max operation. For each of the conditions (P1)–(P4), we will have an
example of two operations that satisfy the remaining three conditions and for
which the operation a ∨ b is different from max(a, b).

What is we do not require the property (P1). In this case, we can simply
take a∨ b = a+ b−a · b and a& b = a · b. One can easily check that in this case,
we have monotonicity and both boundary conditions.

What is we do not require the property (P2). Let us consider the fol-
lowing two operations:

• if a < 1 and b < 1, then a& b = 0, otherwise a& b = min(a, b);

• if a = b then a ∨ b = a else a ∨ b = a + b− a · b.

One can easily see that for these two operations, the boundary conditions (P3)
and (P4) are satisfied: a& 1 = 1 & a = a and a ≤ a∨0 = 0∨a. Let us show that
these two operations satisfy the distributivity property (P1). To prove this, we
will consider all possible cases.

First, we consider the case when a = 1. In this case, a& b = 1 & b = b,
a& c = 1 & c = c, and a& (b ∨ c) = 1 & (b ∨ c) = b ∨ c, so the distributivity
property turns into a trivial equality b ∨ c = b ∨ c.

To complete the proof, it is thus sufficient to consider only the cases when
a < 1. In such cases:

• it is possible that both values b and c are smaller than 1,

• it is possible that one of these two values is smaller than 1, and

• it is possible that both b and c are equal to 1.

We will consider these three options one by one.
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• In the situation when a < 1, b < 1, and c < 1, we have b ∨ c < 1, thus
a& (b ∨ c) = a& b = a& c = 0. So distributivity turns into the equality
0 = 0 ∨ 0 – which is true for our selection of the “or”-operation.

• In the situation when a < 1 and one of the two values b, c is equal to 1
and another is smaller than 1, we can, without losing generality, assume
that b = 1 and c < 1. In this case, 1 = b ≤ b ∨ c ≤ 1 implies that
b ∨ c = 1. Thus, a& (b ∨ c) = a& 1 = a, a& b = a, and a& c = 0. So, the
distributivity properties takes the form a = a∨ 0, which is indeed true for
the selected “or”-operation.

• Finally, in the situation when a < 1 and b = c = 1, due to 1 = b ≤ b∨c ≤ 1,
we have b ∨ c = 1. Thus, we have a& (b ∨ c) = a& 1 = a, a& b = a& c =
a& 1 = a, and the distributivity property turns into a = a ∨ a, which is
also true for the selected “or”-operation.

In all the cases, distributivity is proven.

What is we do not require the property (P3). Let us take a& b = 0 for
all a and b, and a ∨ b = a + b− a · b. In this case, distributivity takes the form
0 = 0 ∨ 0, which is, of course, always true, and we clearly have monotonicity
(P2) and the second boundary condition (P4).

What is we do not require the property (P4). Let us take a& b = a∨ b =
min(a, b). In this case, we have distributivity, we have monotonicity (P2), and
we have the first boundary condition (P3) – i.e., a& 1 = 1 & a = a.

Derivation of “and”-operations. Let us now consider Proposition 2 that
derives the min operation. For each of the conditions (Q1)–(Q4), we will have
an example of two operations that satisfy the remaining three conditions and
for which the operation a& b is different from min(a, b).

What is we do not require the property (Q1). In this case, we can simply
take a∨ b = a+ b−a · b and a& b = a · b. One can easily check that in this case,
we have monotonicity and both boundary conditions.

What is we do not require the property (Q2). Let us consider the fol-
lowing two operations:

• if a > 0 and b > 0, then a ∨ b = 1, otherwise a ∨ b = max(a, b);

• if a = b then a& b = a else a& b = a · b.

One can easily see that for these two operations, the first and the second bound-
ary conditions are satisfied: a∨0 = 0∨a = max(a, 0) = a and a& 1 = 1 & a ≤ a.
Let us show that these two operations satisfy the distributivity property. To
prove this, we will consider all possible cases.

First, we consider the case when a = 0. In this case, a ∨ b = 0 ∨ b = b,
a ∨ c = 0 ∨ c = c, and a ∨ (b& c) = 0 ∨ (b& c) = b& c, so the distributivity
property turns into a trivial equality b& c = b& c.

To complete the proof, it is thus sufficient to consider only the cases when
a > 0. In such cases:
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• it is possible that both values b and c are positive,

• it is possible that one of these two values is positive, and

• it is possible that both b and c are equal to 0.

We will consider these three options one by one.

• In the situation when a > 0, b > 0, and c > 0, we have b& c > 0, thus
a& (b ∨ c) = a& b = a& c = 1. So distributivity turns into the equality
1 = 1 & 1 – which is true for our selection of the “and”-operation.

• In the situation when a > 0 and one of the two values b, c is equal to
0 and another is positive, we can, without losing generality, assume that
b = 0 and c > 0. In this case, 0 ≤ b& c ≤ b = 0 implies that b& c = 0.
Thus, a ∨ (b& c) = a ∨ 0 = a, a ∨ b = a ∨ 0 = a, and a ∨ c = 1. So, the
distributivity properties takes the form a = a& 1, which is indeed true for
the selected “and”-operation.

• Finally, in the situation when a > 0 and b = c = 0, due to 0 ≤ b& c ≤
b = 0, we have b& c = 0. Thus, we have a ∨ (b& c) = a ∨ 0 = a,
a ∨ b = a ∨ c = a ∨ 0 = a, and the distributivity property turns into
a = a& a, which is also true for the selected “or”-operation.

In all the cases, distributivity is proven.

What is we do not require the property (Q3). Without the first property,
we can have a∨b = 1 for all a and b, and a& b = a ·b. In this case, distributivity
takes the form 1 = 1 & 1 which is, of course, always true, and we clearly have
monotonicity (Q2) and the second boundary condition (Q4).

What is we do not require the property (Q4). Let us take a& b = a∨b =
max(a, b). In this case, we have distributivity, we have monotonicity (Q2), and
we have the first boundary condition (Q3) – i.e., a ∨ 0 = 0 ∨ a = a.

Conclusion. In both cases, we have shown that each of the four conditions is
necessary for deriving min and max.
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