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Abstract

Traditional physics assumes that space and time are continuous. How-
ever, this reasonable model leads to some serious problems. One the ap-
proaches that physicists follow to solve these problems is to assume that
the space-time is actually discrete. In this paper, we analyze possible
computational consequences of this discreteness. It turns out that in a
discrete space-time, we may be able to solve NP-hard problems in poly-
nomial time.

1 Why Discrete Space-Time

Why discrete space. Traditional physics assumes that space and time are
continuous. In most situations, this assumption works well, but a detailed
analysis shows that in some cases, this continuity assumption leads to serious
problems. One of such cases is the attempt to compute the overall energy
of an electron – or of any other electrically charged elementary particle; see,
e.g., [1, 11].

The overall energy of an electron can be computed as the sum of its “rest
energy” – i.e., the energy E0 = m0 · c2 related to its rest mass m0 – and the
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overall energy Eel of its electric field. The electric field ~E(x) of an electron
follow Coulomb’s law according to which the value of this field at a point x at

distance r from the electron is equal to
c

r2
, for some constant c. It is known that

the energy density ρ(x) of an electric field is proportional to the square of the

field itself, so ρ(x) = const ·
(
~E(x)

)2

and thus, ρ(x) =
c1
r4

for some constant c1.

An electron is an elementary particle, which means that it is not consisting
of any interacting sub-particles. According to relativity theory, this implies that
the electron is a single point in space. Indeed, if it would be spatially spread,
it would have contained spatially different locations, then these locations would
not be able to interact immediately – since, according to relativity theory, the
speed of all communications is limited by the speed of light. That would mean
that different parts of an electron act independently – and the main idea of an
elementary particle is that this is not the case.

How that we know how the energy density ρ(x) of the electric field depends
on the spatial location, we can compute the overall energy of this field by inte-

grating this density over the whole space: Eel =

∫
ρ(x) dx =

∫
c1
r4
dx. In the

polar coordinates, we could integrate over each sphere of radius r – which is
equivalent to multiplying by the area 4π · r2 of this sphere – and thus, get

Eel =

∞∫
0

c1
r4
· 4π · r2 dr = c1 · 4π ·

∞∫
0

1

r2
dr.

The resulting integral in the right-hand side is equal to the difference
1

r

∣∣∣∣∞
0

. For

r =∞, this expression is 0, but for r = 0, it is infinite. So, we conclude that the
overall energy of the electron’s electric field is infinite and thus, that the overall
energy of the electron is infinite – which, of course, makes no physical sense.

In this paradoxical result, we used pre-quantum physics. Pre-quantum
physics has many similar paradoxes, e.g.:

• the black body radiation paradox according to which the overall energy
emitted by the black body is infinite, or

• the paradoxical conclusion that atoms are impossible – since an acceler-
ating electrically charged particle emits radiation and thus, electrons will
eventually lose all their kinetic energy and fall on the nuclei.

These other paradoxes are, however, resolved in quantum physics – e.g., the
black body radiation paradox was one of the main motivations for Max Planck
to start quantum physics in the first place [1, 11].

Unfortunately, the above infinite-energy-of-the-electron paradox does not
disappear if we take quantum effects into consideration; see, e.g., [1, 11]. Physi-
cists have proposed several ways of solving this paradox. The mainstream ap-
proach to this paradox is to use the following procedure known as renormaliza-
tion: crudely speaking, we assume that the rest mass of an electron is minus
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infinity, so that the overall energy obtained by adding the rest energy and the
infinite energy of the electric field remain finite.

In precise terms, in renormalization, instead of assuming that the distances
can take any values from 0 to infinity, we artificially assume that distances
cannot be smaller than a certain threshold ε > 0. If we integrate over such
distances only, the integral

Eel(ε) =

∞∫
ε

c1
r4
· 4π · r2 dr = c1 · 4π ·

∞∫
ε

1

r2
dr ∼ 1

r

∣∣∣∣∞
ε

=
1

ε

becomes finite. Thus, we can find the corresponding rest mass m0(ε) for which
the overall energy m0(ε) · c2 + Eel(ε) is equal to the observed total energy of a
stationary electron. As a result, for each ε > 0, we get physically meaningful
finite values of different physical quantities. To find out what exactly the theory
predicts, we then consider the limit values when ε→ 0.

To many physicists, the above procedure sounds more like a mathematical
trick than a reasonable physical idea. Some of these physicists decided on a
different approach:

• in their opinion, the above paradox shows that the usual assumption that
the space-time is continuous (and that arbitrarily small distances are pos-
sible) leads to non-physical infinities;

• thus, it is reasonable to conclude that there is a lower bound on the dis-
tances between spatial points, i.e., the space is discrete.

From discrete space to discrete space-time. The above argument explains
why the space proper is discrete. However, according to relativity theory, space
and time are inter-related. What we consider a proper space (i.e., the set of all
points considered at the same moment of time) depends on the frame of refer-
ence: points which look simultaneous to us will not be simultaneous anymore if
we start moving.

Because of this inter-relation between space and time, once we consider
discrete space, we should consider discrete time as well. Such discrete space-
time models have indeed been seriously considered by physicists, including many
famous one; see, e.g., [2, 3, 4, 8, 9, 10, 12, 13, 14, 15, 16] and references therein.

2 What We Can Compute in a Discrete Space-
Time: Analysis of the Problem

Formulation of the problem. We more or less know what can be computed
in the usual continuous space-time. It turns out that:

• some computational problems are tractable – in the sense that they can
be efficiently solved in the usual space-time – and
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• some are conjectured to be not tractable.

A natural question is: what can we compute if it turns out that space-time is
actually discrete?

To answer this question, let us start by recalling the main concepts of feasi-
bility and tractability related to computations in the usual (continuous) space-
time. For detailed description and analysis of these concepts, see, e.g., [5, 7].

Feasible algorithms: a brief reminder. Whether an algorithm A is feasible
or not depends on how fast its computation time t (i.e., in effect, the number
of the corresponding elementary computational steps) grows with the length n
of the input. When t(n) = n or t(n) = n2 or even t(n) = n3, then for inputs of
reasonable size the computation takes reasonable time; indeed:

• If we have an input of size 1 Kilobyte, i.e., if n = 1000, then for an
algorithm that requires cubic time, we need 109 computational steps –
which is less than a second on a modern computer.

• Even if n = 10 Kilobytes, we need about 103 seconds – less than an hour.

• For n = 100 Kilobytes, we may need a couple of weeks – or, better yet, a
few hours on a highly parallel supercomputer.

On the other hand, if t(n) grows exponentially with n, e.g., if t(n) = 2n,
then the computations become not realistic already for very reasonable input
sizes. For example, for n = 300, the corresponding value 2300 ≈ 10100 is larger
than the number of particles in the Universe.

Because of these and similar examples, a current formal definition of feasi-
bility is that t(n) should be bounded by some polynomial of n; indeed:

• in the first two examples, t(n) = n, t(n) = n2, and t(n) = n3 are all
polynomials, while

• it is known that the exponential function t(n) = 2n grows faster than any
polynomial and thus, cannot be bounded by a polynomial.

Comment. The above formal definition is not perfect: e.g., a function t(n) =
10100 ·n is a polynomial (and thus, feasible from the viewpoint of the formal def-
inition), but it is clearly not practically feasible. However, this formal definition
is the best we have.

Which problems are we solving. Based on the feasibility of algorithms,
we can analyze tractability of problems. In computer applications, we consider
well-defined problems, i.e., problems for which:

• once we have a candidate for a solution,

• we can check, in feasible time, whether this is indeed a solution.
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Coming up with this candidate may be difficult, but once we found it, it should
not be a problem to check. For example, it is often very difficult to prove a
mathematical statement, but, once someone presents the proof in all details,
even a computer can easily check it step-by-step without any difficulty. Such
problems are known as problems from the class NP.

Comment. NP is an abbreviation of Non-deterministic Polynomial; here:

• polynomial means feasible (as in the formal definition), and

• non-deterministic computations means that, in addition to computational
steps, we can make guesses.

In this sense, “non-deterministic polynomial” means that once we have guessed
a solution, checking that this guess is indeed a solution requires feasible (poly-
nomial) time – which is exactly what we mean by a well-defined problem.

NP-complete and NP-hard problems. Some problems from the class NP
can be solved by feasible algorithms. Such problems are known as tractable.
The class of all such problems is usually denoted by P (for Polynomial-time).
Whether all problems from the class NP can be feasibly solved – i.e., whether
the class NP simply coincides with its subclass P – this is still (2019) an open
problem. Most computer scientists believe that P is different from NP, i.e., that
some problems cannot be solved in feasible time – in other words, there are
problems which are intractable.

What we do know is that there exists problems from the class NP which are
as complex as possible – in the sense that every other problem from the class
NP can be reduced to this problem. To be more precise, “reducing” a general
problem A to a general problem B means that:

• given an instance a of the general problem A,

• we can feasibly compute an instance b of the general problem B

so that:

• once we have a solution to the instance b,

• we can feasibly transform it into a solution to the instance a (and every
solution to a can be thus obtained).

Such problems are known as NP-complete.
NP-complete problems form a subclass of a more general class of complex

problems – called NP-hard – to which also all the problems from the class NP
can be reduced, but which do not necessarily belong to NP. For example, many
optimization problems are NP-hard, but they are not necessarily in the class
NP: if someone claims to have found an optimal solution, there is, in general,
no easy way to check this claim rather than comparing this solution with all
other alternatives – and this often takes exponential time.
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To illustrate the notion of reduction, let us give a simple example. Suppose

that we want to solve equations of the type p · x2 + q · 1

x2
= r. Solution of this

equation can be reduced to solving a quadratic equation a · x2 + b · x + c = 0.
Indeed, if we multiply both sides of the original equation by x2, introduce an
auxiliary variable y = x2, and move all the terms into the left-hand side, we get
a quadratic equation p · y2 − r · y + q = 0. Thus, from every instance (p, q, r)
of the original problem, we can find the instance (a, b, c) = (p,−r, q) of the
quadratic-equations problem. Once we know the solutions y of the resulting
quadratic equation, we can find the solutions x of the original equation by
taking x = ±√y.

There are many examples of NP-complete problems. In this paper, we will
use the following example:

• given a list of positive integers s1, . . . , sn,

• divide this list into two parts with the equal sums.

This problem is easy to describe in formal terms if we describe the division into
two classes by introducing auxiliary variables ε1, . . . , εn ∈ {−1, 1}:

• we take εi = 1 if the i-th integer is assigned to the first part, and

• we take εi = −1 if the i-th integer is assigned to the second part.

In these terms, the desirable property is∑
i:εi=1

si =
∑

j:εj=−1

sj ,

i.e., equivalently,
n∑

i=1

εi · si = 0. (1)

How to describe physics in discrete space-time? To analyze what can
be computed in discrete space-time – i.e., by using the corresponding physical
properties – it is important to understand how these physical processes can be
described.

To answer this question, let us recall how physical processes are described
in the usual continuous space-time; for details, see, e.g., [1, 11]. Traditionally,
starting with Newton’s mechanics, physical equations used to be described by
differential equations. For example, the trajectory of a body affected by forces

Fi(t) depending on time can be described by Newton’s second law
d2xi
dt2

= Fi(t);

electromagnetic field is described by Maxwell’s equations, etc.
However, nowadays, new physical theories are no longer formulated in terms

of differential equations. New theories are usually formulated in terms of the
minimum action principle, according to which a quantity called action S is
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minimized. Action S is equal to the integral over the whole space-time of an

auxiliary function (called a Lagrangian) L

(
fi,

∂fi
∂xj

)
whose value at each space-

time point depends on the values, at this point, of the fields fi(x) and of their

first derivatives
∂fi
∂xj

with respect to all four space-time coordinates xj :

S =

∫
L

(
fi,

∂fi
∂xj

)
d4x.

The fact that many traditional physical equations can be described in this form
was known since the early 19th century; it was used to solve some physical prob-
lems, and was, in general, viewed as one of the many alternative descriptions of
a physical theory. However, with the appearance of quantum physics, it became
clear that only theories which can be described in such minimum-action form are
consistent with quantum ideas. Indeed, one of the ways to describe a quantum
version of a physical theory is to use Feynman’s integration over trajectories in
which the corresponding complex-valued wave-function is proportional to the

integral of the expression exp

(
i · S(γ)

h̄

)
over all trajectories γ, where i denotes

the imaginary unit
√
−1 and h̄ is Planck’s constant. When h̄→ 0, this formula

reduced to selecting the trajectory on which the action S attains its smallest
possible value.

In discrete space-time:

• instead of the integral over the whole space-time – i.e., in effect, a weighted
sum of the value of the Lagrangian at all the space-time points – it is natu-
ral to actually have the sum of the values of the corresponding Lagrangian
over all space-time points;

• instead of the derivatives partial derivatives, i.e., expression of the type

lim
∆xi→0

f(. . . , xi, . . .)− f(. . . , xi −∆xi, . . .)

∆xi
,

we should simply have finite differences

f(. . . , xi, . . .)− f(. . . , xi −∆xi, . . .)

∆xi

corresponding to the smallest possible values of ∆xi.

1-D case. In this paper, we consider Lagrangian corresponding to 1-D space.
(This can be easily embedded into our 3-D space.) This means that instead of a
continuum of possible value x of the spatial coordinate, we have discrete values

. . . < x0 < x1 < . . . < xi < . . .
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Similarly, instead of a continuum of possible value t of time, we have discrete
values

. . . < t0 < t1 < . . . < tj < . . .

A field f(x, t) is thus described by its values f(xi, tj) at all space-time
points (xi, tj).

Thus, instead of the derivatives, we have differences of values between nearby
points. So, instead of a spatial derivative, we have the ratios

f(xi, tj)− f(xi−1, tj)

xi − xi−1
.

In other words, the value L(xi, tj) of the Lagrangian at a space-time point
(xi, tj) may depend not only on the values f(xi, tj) of all the physical fields
at this point, but also on the values of these fields at the neighboring spatial
point (xi−1, tj).

Similarly, instead of a temporal derivative, we have the ratios

f(xi, tj)− f(xi, tj−1)

tj − tj−1
.

In other words, the value L(xi, tj) of the Lagrangian at a space-time point
(xi, tj) may depend not only on the values f(xi, tj) of all the physical fields at
this point and at the point (xi, tj−1), but also on the values of these fields at
the previous moment of time (xi, tj−1).

Comment. From the purely mathematical viewpoint, we could start with a more
standard definition of the temporal derivative as the limit

lim
∆t→0

f(x, t+ ∆t)− f(x, t)

∆t

and thus, get a somewhat different discrete version

f(xi, tj+1)− f(xi, tj)

tj+1 − tj
.

This would mean that the value of the Lagrangian L(xi, tj) of the Lagrangian
at a space-time point (xi, tj) may depend also on the values of these fields at
the future moment of time (xi, tj+1). Mathematically, this makes perfect sense.
However, from the physical viewpoint, dependence on the future moment of time
violates our intuition about causality, according to which past events affect the
future and not vice versa. So, to make our model more physically reasonable,
we use the above equivalent definition of the derivative

lim
∆t→0

f(x, t)− f(x, t−∆t)

∆t
.

This definition of a derivative may be somewhat less usual than the standard
one, but it leads to a more physically acceptable description.

8



3 Main Result: How to Solve NP-Hard Prob-
lems in Polynomial Time

Main idea. We will provide an example of a reasonable discrete-space-time
Lagrangian – in the sense described in the previous section – for which the
corresponding minimization is NP-hard. Thus, if we can implement this La-
grangian, then, by setting up proper initial conditions and observing the future
state of the system, we will get a solution to an NP-hard problem.

By definition, as we have mentioned, a problem is NP-hard if every other
problem from the class NP can be reduced to this problem. So, if have a
polynomial-time algorithm for solving one NP-hard problem, then, by applying
the corresponding reduction, we will be able to solve all problems from the class
NP in polynomial (i.e., feasible) time.

Let us now write down the desired Lagrangian.

The Lagrangian: the formula. Let us consider the case when we have three
fields: f(x, t), ε(x, t), and z(x, t). Let us consider the following Lagrangian:

L(xi, tj) = [f(xi, tj)− (f(xi−1, tj) + ε(xi, tj) · f(xi, tj−1))]
2

+[
ε2(xi, tj)− 1

]2
+ [z(xi, tj−1) · f(xi, tj)]

2
. (2)

In other words, nature minimizes the following action:

S =
∑
i,j

L(xi, tj). (3)

How to use this Lagrangian to solve the corresponding NP-hard prob-
lem. Let us assume that we are given an instance of the above problem (1),
i.e., we are given n positive integers s1, . . . , sn. We want to find the values
ε1, . . . , εn ∈ {−1, 1} that satisfy the equation (1).

To find these values εi, at the current moment of time t0, we set the following
initial conditions:

• we set f(xi, t0) = si for i = 1, . . . , n and f(xi, t0) = 0 for all other i;

• we also set z(x0, t0) = z(xn, t0) = 1 and z(xi, t0) = 0 for all other i.

The values of the fields at the next moment of time t1 will then be determined
as the values that minimize the expression (3).

Let us show that if the original instance of the NP-hand problem (1) has a
solution, then this solution will appear as values εi = ε(xi, t1). In other words,
we will have

n∑
i=1

ε(xi, t1) · si = 0. (4)

Indeed, if the current instance of the problem (1) has a solution ε1, . . . , εn,

then we can take ε(xi, t1) = εi and f(xi, t1) =
i∑

k=1

εk · sk. In this case,
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• for all i, we have

f(xi, t1) =

i∑
k=1

εk · sk =

(
i−1∑
k=1

εk · sk

)
+ εi · si = f(xi−1, t1) + ε(xi, t1) · f(xi, t0);

thus, the first term in the expression (2) is equal to 0;

• for all i, we have ε(xi, t1) = ±1, hence ε2(xi, t1) = 1 and therefore, the
second term in the expression (2) is equal to 0;

• for all i 6= 0 and i 6= n, we have z(xi, t0) = 0 hence z(xi, t0) · f(xi, t1) = 0;

• for i = 0, we have f(x0, t1) = 0 thus also z(x0, t0) · f(x0, t1) = 0;

• for i = n, we have f(xn, t1) =
n∑

k=1

εk · sk = 0 (since the values εi solve the

problem (1)), thus also z(xn, t0) · f(xn, t1) = 0; so, the third term in the
Lagrangian is also equal to 0.

Thus, the Lagrangian is equal to 0, so the action is equal to 0 – and since the
action is the sum of squares, 0 is its smallest possible value. So, if the given
instance of the original NP-hard problem has a solution, the action can reach
its smallest possible value 0.

Let us prove that, vice versa, if the action reaches 0, this means that the val-
ues ε(xi, t1) form the solution to the given instance of the original problem (1).
Indeed, the sum of squares is 0, this means that all the squares are equal to 0
and hence, each of the squared terms in the expression (2) is equal to 0.

In particular, from the fact that z(x0, t0) · f(x0, t1) = 0, taking into account
that z(x0, t0) = 1, we conclude that f(x0, t1) = 0. Now, for each i, from the
equality

f(xi, t1)− (f(xi−1, t1) + ε(xi, t1) · f(xi, t0)) = 0,

taking into account that f(xi, t0) = si, we conclude that f(xi, t1) = f(xi−1, t1)+
ε(xi, t1) · si. Since for i = 0, we have f(x0, t1) = 0, we can thus prove, by

induction, that for all i, we have f(xi, t1) =
i∑

k=1

ε(xk, t1) · sk. In particular, for

i = n, we get

f(xn, t1) =

n∑
k=1

ε(xk, t1) · sk.

From the fact that z(xn, t0) · f(xn, t1) = 0, taking into account that
z(xn, t0) = 1, we conclude that f(xn, t1) = 0, i.e., that

n∑
k=1

ε(xk, t1) · sk = 0. (5)
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From the equality ε2(xi, t1) − 1 = 0, we conclude that ε2(xi, t1) = 1 hence
ε(xi, t1) ∈ {−1, 1} and thus, that the values εi = ε(xi, t1) indeed solve the
original instance of the above NP-hard problem.

The statement is proven.

Comment. Discretization of space-time can be viewed as particular example of
quantization – indeed, quantum mechanics started by physicists realizing that
electromagnetic waves of a given frequency (e.g., visible light) cannot have an
arbitrary small energy: there is the smallest amount of such energy (quantum),
and any other amount is proportional to this one. Quantum physics continued
with observing that an atom cannot be in a state with any possible energy:
there are discrete energies, etc.

From this viewpoint, our result about computing in a discrete space-time can
be viewed as a particular case of – broadly understood – quantum computing;
see, e.g., [6]
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