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Abstract

While we have moment-by-moment prices of each stock, we cannot use
all this information to predict the future stock prices, we need to com-
bine them into a few characteristics of the daily stock price. Empirically,
it turns out that the best characteristics are the lowest daily price, the
highest daily price, the opening price, and the closing price. In the paper,
we provide a theoretical explanation for this empirical phenomenon. We
also explain why empirically, it turns out that the best way to find the
stock’s beta coefficient is to consider a convex combination of the about
four characteristics.

1 Formulation of the Problem

Predicting stock prices is important. To decide on the best investment
strategy, it is important to predict future prices of different financial instru-
ments.

Machine learning – currently the best way to predict stock prices. In
the past, complex analytical models were used to predict future stock prices.
However, these models, whether they are linear or nonlinear, provide only an
approximate description of the corresponding dynamics: the real dynamics is
much more complex. It is therefore reasonable to use prediction techniques
which are not limited to any specific class of models. Such techniques are known
as machine learning techniques.
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At present, machine learning techniques – usually, techniques of deep learn-
ing (see, e.g., [2]) indeed provide empirically the best way to predict stock prices.

What input should we use for prediction? Traditionally, most financial
markets report closing daily prices of different financial instruments. Sometimes,
opening prices are also reported, an at present, with everything online, one can
trace moment-by-moment changes in the price of each instrument.

At first glance, it may seem that the more information we use, the more
accurate the predictions will be. To some degree, this is true: if we start with
scarce data and add more data, we get more and more accurate predictions.
However, after a while, adding more data becomes counter-productive, for two
reasons.

First, data comes with noise – e.g., a significant part of moment-by-moment
fluctuations in prices is caused by short-term traders trying to benefit from small
changes in prices. These changes do not help in predicting longer-term trends,
they only obscure the picture.

Second, by their structure, deep neural networks cannot input too much
data. If you try to feed too much data, they will compress it anyway, by using
general data compression techniques. From this viewpoint, it is definitely better
to perform compression tailored to the application area – and thus, leading to
the smallest possible information loss.

First empirical fact. It turns out that the best prediction occurs when we
use the following four characteristics: the smallest daily price, the largest daily
price, the opening price, and the closing price; see [1] and references therein.

First problem. How can we explain this empirical fact?
In this paper, we provide a theoretical explanation for this empirical phe-

nomenon.

Need to estimate the stock’s beta. Of course, skilled financial gurus do not
just use computer predictions, they also add their knowledge and their skills.
To best exercise this knowledge, they need to know the major characteristics
of each financial instrument. One of the most widely used characteristic of this
type is beta β, a parameter describing the linear dependence

r − r0 ≈ β · (rm − r0), (1)

where r is return on the stock (as measured by adding the relative change in
its price and the relative value of the dividends paid), r0 is the risk-free rate of
return (e.g., investment in US bonds), and rm is the average market’s rate of
return.

Which values r and rm should we use? If we only use the closing prices,
then we have no choice: we use the closing price r for the individual stock and
the closing price rm for the whole market. However, if we take more information
into account, we can use different values: we can use opening prices, we can use
min and max prices, we can use different combinations of all these prices.
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Which combination is the best? A natural idea is to select combinations
that leads to the most accurate formula (1) – e.g., the formula with the largest
possible value of R2; see, e.g., [4].

Second empirical fact. It turns out that the best is a linear combination of
the four above-described stock prices: min, max, opening, and closing; see, e.g.,
[1] and references therein.

Second problem. How can we explain this empirical fact?
In this paper, we provide a theoretical explanation for this empirical phe-

nomenon as well.

2 Why Min, Max, Opening and Closing Prices:
Explaining the First Empirical Phenomenon

Towards formulating the problem in precise terms. We start with the
prices p1, . . . , pn at different moments of time. We need to combine these prices
into several characteristics.

Different characteristics correspond to different combination rules. In each
such rule, the combination can be done in real time:

• first, when we observe the first two prices p1 and p2, we combine them
into a single value; let us denote the result of this combination by p1 ∗ p2;

• then, as we observe the third value p3, we combine the previous result
with this new value, thus getting (p1 ∗ p2) ∗ p3, etc.

Alternatively, if for some reason we missed the first value p1, we could first
combine p2 and p3 into a single value p2 ∗ p3, and then, once we learn the value
p1, combine it with our result-so-far, producing the value p1 ∗ (p2 ∗ p3).

The combination result should reflect the stock’s overall behavior, it should
not depend on the order in which we processed the data. Thus, it is reasonable
to expect that we have

(p1 ∗ p2) ∗ p3 = p1 ∗ (p2 ∗ p3), (2)

i.e., in mathematical terms, that the combination operation be associative.

The result of the combination should be within the same bounds as
the combined values. Another natural requirement is that the result p1 ∗ p2
of combining two prices should be within the same range as the original values
p1 and p2. In other words, this result must be between the smallest and the
largest of these two values:

min(p1, p2) ≤ p1 ∗ p2 ≤ max(p1, p2). (3)
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Scale-invariance. The result should not depend on what unit we use, whether
we consider prices in dollar or translate them into Euros or pounds (or Thai
Bahts).

If, instead of the original monetary unit, we use a new unit which is k times
smaller, then all numerical values are multiplied by k. So, in the new units:

• instead of the original value p1, we get k · p1,

• instead of the original value p2, we get k · p2, and

• instead of the combined value p1 · p2, we get k · (p1 ∗ p2).

Instead of combining values in the original units and then transforming to new
units, we could combine the values k·p1 and k·p2 and get the result (k·p1)∗(k·p2).
A natural requirement is that the combination result should not depend on what
monetary units we choose, i.e.:

k · (p1 ∗ p2) = (k · p1) ∗ (k · p2). (4)

Shift-invariance. As we have mentioned in our description of the beta coeffi-
cient, what is important is not so much the actual price of a stock, but rather
the difference pi − p0 between the stock price and the value p0 we would have
gotten if we instead invested this amount in bonds. The bond’s prices also fluc-
tuate, and the change in the bond price from p0 to a different amount p0 + a
is equivalent to a constant shift in all the values of the stock price, from pi to
pi + a. Indeed, after this change, the difference remains the same:

(pi + a)− (p0 + a) = pi − p0.

It is therefore reasonable to require that the result of the combination does
not change is we replace all original values pi with shifted values pi + a. After
this replacement:

• instead of the original value p1, we get p1 + a,

• instead of the original value p2, we get p2 + a, and

• instead of the combined value p1 · p2, we get (p1 ∗ p2) + a.

Instead of combining the original values and then performing the shift, we could
combine the shifted values p1 +a and p2 +a and get the result (p1 +a)∗(p2 +a).
A natural requirement is that the combination result should not depend on
whether we use the original values or the shifted values, i.e.:

(p1 ∗ p2) + a = (p1 + a) ∗ (p2 + a). (5)

We are ready to formulate our main result. No, we can formulate our
main result.

Definition 1. Let a ∗ b be a binary operation that transforms pairs of real
numbers into real numbers.
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• We say that ∗ is associative if it satisfies the formula (2) for all p1, p2,
and p3.

• We say that ∗ is bounded if it satisfies the formula (3) for all p1 and p2.

• We say that ∗ is scale-invariant if it satisfies the formula (4) for all p1,
p2, and k > 0.

• We say that ∗ is shift-invariant if it satisfies the formula (5) for all p1,
p2, and a.

Theorem 1. Every associative, bounded, scale- and shift-invariant operation
has one the following forms:

p1 ∗ . . . ∗ pn = min(p1, . . . , pn); (6)

p1 ∗ . . . ∗ pn = max(p1, . . . , pn); (7)

p1 ∗ . . . ∗ pn = p1; (8)

p1 ∗ . . . ∗ pn = pn. (9)

Vice versa, each of these four operations is associative, bounded, scale- and
shift-invariant.

Proof.

1◦. That all four operations satisfy the desired properties is easy to show. Let
us show that, vice versa, each operation p1 ∗ p2 that satisfies these properties
has only of the four forms.

For this, let us consider three possible relations:

• p1 = p2,

• p1 < p2, and p1 > p2.

2◦. For p1 = p2, the inequalities (3) imply that p1 ∗ p1 = p1.

3◦. For p1 < p2, for a = p1 and k = p2−p1, we get k ·0+a = p1 and k ·1+a = p2.
Thus, due to properties (4) and (5), we have

p1 ∗ p2 = (k · 0 + a) ∗ (k · 1 + a) = (k · 0) ∗ (k · 1) + a = k · (0 ∗ 1) + a.

Thus,
p1 ∗ p2 = α · (p2 − p1) + p1 = α · p2 + (1− α) · p1,

where we denoted α
def
= 0 ∗ 1.

From the condition (3) we conclude that 0 ≤ α = 0 ∗ 1 ≤ 1. Let us now use
associativity. Due to associativity, we have

0 ∗ α = 0 ∗ (0 ∗ 1) = (0 ∗ 0) ∗ 1 = 0 ∗ 1 = α.

Here, 0 ≤ α, so
0 ∗ α = α · α+ (1− α) · 0 = α2.

From the condition α2 = α, we conclude that either α = 0 or α = 1.
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• In the first case, p1 ∗ p2 = p1.

• In the second case p1 ∗ p2 = p2.

4◦. For p1 > p2, for a = p2 and k = p1−p2, we get k ·1+a = p1 and k ·0+a = p2.
Thus, due to properties (4) and (5), we have

p1 ∗ p2 = (k · 1 + a) ∗ (k · 0 + a) = (k · 1) ∗ (k · 0) + a = k · (1 ∗ 0) + a.

Thus,
p1 ∗ p2 = β · (p1 − p2) + p2 = β · p1 + (1− β) · p2,

where we denoted β
def
= 1 ∗ 0.

From the condition (3) we conclude that 0 ≤ β = 1 ∗ 0 ≤ 1. Let us now use
associativity. Due to associativity, we have

β ∗ 0 = (1 ∗ 0) ∗ 0 = 1 ∗ (0 ∗ 0) = 1 ∗ 0 = β.

Here, 0 ≤ β, so
β ∗ 0 = β · β + (1− β) · 0 = β2.

From the condition β2 = β, we conclude that either β = 0 or β = 1.

• In the first case, p1 ∗ p2 = p2.

• In the second case p1 ∗ p2 = p1.

5◦. So, depending on which of the two cases holds for both possible relations
p1 ≤ p2 and p2 ≤ p1, we have four cases:

• if p1 ∗ p2 = p1 for p1 < p2 and p1 ∗ p2 = p2 when p1 > p2, then, in general,

p1 ∗ p2 = min(p1, p2);

• if p1 ∗ p2 = p2 for p1 < p2 and p1 ∗ p2 = p1 when p1 > p2, then, in general,

p1 ∗ p2 = max(p1, p2);

• if p1 ∗ p2 = p1 for p1 < p2 and p1 ∗ p2 = p1 when p1 > p2, then, in general,

p1 ∗ p2 = p1;

• if p1 ∗ p2 = p2 for p1 < p2 and p1 ∗ p2 = p2 when p1 > p2, then, in general,

p1 ∗ p2 = p2.

Thus, we get exactly all four combination operations.
The theorem is proven.

Comment. Interestingly, a similar result can be proven for a different problem:
how the overall emotional experience depends on the emotions experiences at
different moments of time; see, e.g., [3]. In this case too, empirical data shows
that the most important are the extreme and the end experiences.
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3 Why Linear Combination of Four Character-
istics: Explaining the Second Empirical Phe-
nomenon

Main idea. When we combine different characteristics, it is still reasonable to
require boundness and scale- and shift-invariance. However, in contrast to the
previous case when we combined similar quantities, here the quantities we com-
bine are different, so, in principle, we could use different combination operations
for combining different characteristics – and thus, the associativity requirement
becomes more complicated. Also here, in contrast to the previous case, while
the starting price appears first, all three other combined priced appear at the
same time – at the end of the day, so there is no longer a fixed order in which
we should combine these characteristics. We will call the corresponding version
of associativity s-associativity (s for stock).

Let us describe this in precise terms.

Definition 2.

• By a combination operation, we mean a bounded scale- and shift-invariant
operation.

• We say that a function F (c1, c2, c3, c4), where ci are the four characteris-
tics from Theorem 1, is s-associative if for each permutation

π : {1, 2, 3, 4} → {1, 2, 3, 4},

there exist combination operations

∗π(1)π(2), ∗π(1)π(2)π(3), and ∗π(1)π(2)π(3)π(4)

for which

F (c1, . . . , c4) = ((cπ(1)∗π(1)π(2)cπ(2))∗π(1)π(2)π(3)cπ(3))∗π(1)π(2)π(3)π(4)cπ(4).

Comment. In other words:

• first we combine cπ(1) and cπ(2) into cπ(1) ∗π(1)π(2) cπ(2);

• then, we combine the previous result with cπ(3), resulting in

(cπ(1) ∗π(1)π(2) cπ(2)) ∗π(1)π(2)π(3) cπ(3);

• finally, we combine the previous result with cπ(4).

For example, for the trivial permutation π(i) = i, we get the following:

• first we combine c1 and c2 into c1 ∗12 c2;
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• then, we combine the previous result c3, resulting in

(c1 ∗12 c2) ∗123 c3;

• finally, we combine the previous result with c4, resulting in

((c1 ∗12 c2) ∗123 c3) ∗1234 c4.

Theorem 2. Every s-associative function is a convex combination of the four
characteristics ci. Vice versa, every convex combination of the four character-
istics is s-associative.

Proof. It is easy to show that every convex combination operation is a combi-
nation operation in the sense of Definition 2 and thus, every convex combination
of four characteristics is s-associative.

Vice versa, let us assume that a function F (c1, c2, c3, c4) is s-associative. For
the case when c1 = min, c2 = max, c3 = p1, and c4 = pn, we will consider two
permutations: 1324 and 1423.

In the proof of Theorem 1, we showed that each combination operation
p1 ∗ p2 is equal to one convex combination when p1 ≤ p2 and to another one
when p2 ≤ p1. If these convex combinations are different, then the separating
line between these two convex combinations has the form p1 = p2.

Here, c1 ≤ c3 ≤ c2, thus, c1 ∗13 c3 is a convex combination of c1 and c3 which
is bounded from above by c3. From c1 ∗13 c3 ≤ c3 ≤ c2, we conclude that the
value (c1 ∗13 c3) ∗132 c2 is also a convex combination of c1 ∗13 c3 and c2 and is,
thus, a convex combination of c1, c2, and c3, i.e., has the form

(c1 ∗13 c3) ∗132 c2 = a1 · c1 + a2 · c2 + a3 · c3
for some coefficients ai ≥ 0 for which a1 + a2 + a3 = 1. Thus, the function
F (c1, . . . , c4) can be described by two convex combinations of ci. If these ex-
pressions are different, then the separating line has the form

a1 · c1 + a2 · c2 + a3 · c3 = c4,

i.e., the form
a1 · c1 + a2 · c2 + a3 · c3 − c4 = 0. (10)

Similarly, from the fact that c1 ≤ c4 ≤ c2, we conclude that the function
F (c1, . . . , c4) can be described by two convex combinations of ci. If these ex-
pressions are different, then the separating line has the form

a′1 · c1 + a′4 · c4 + a′3 · c3 = c2,

for some coefficients a′i that add up to 1, i.e., the form

a′1 · c1 − c2 + a′3 · c3 + a′4 · c4 = 0. (11)

The equations (10) and (11) cannot describe the same set: the relative signs
are different. Thus we cannot have a separating line. So, the whole function
F (c, . . . , c4) is described by a single convex combination.

The theorem is proven.
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