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Abstract

In many application areas such as pavement engineering, the phenom-
ena are complex, and as a result, we do not have first-principle models
describing the corresponding dependencies. Luckily, in many such areas,
there is a lot of empirical data and, based on this data, many useful em-
pirical dependencies have been found. The problem is that since many
of these dependencies do not have a theoretical explanation, practition-
ers are often hesitant to use them: there have been many cases when an
empirical formula stops being valid when circumstances change. To make
the corresponding empirical formulas more reliable, it is therefore desir-
able to look for theoretical foundations of these formulas. In this paper,
we show that many of such dependencies can be naturally explained by
using symmetries and invariances. We illustrate this approach on the ex-
ample of pavement engineering, but the approach is very general, and can
be applied to other systems as well.

1 Formulation of the Problem

Often, we do not have solid from-first-principles models. In many ap-
plication areas such as pavement engineering, the phenomena are complex, and
as a result, we do not have first-principle models describing the corresponding
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dependencies.

Instead, we have empirical models. Luckily, in many such areas, there is a
lot of empirical data and, based on this data, many useful empirical dependencies
have been found.

Problem: without a theoretical justification, an empirical model is
often not perceived as reliable. The problem is that many of these depen-
dencies do not have a theoretical explanation, practitioners are often hesitant to
use them: there have been many cases when an empirical formula stops being
valid when obstacles change.

Even the great Newton naively believed that, since the price of a certain
stock was growing exponentially for some time, it will continue growing – so he
invested all his money in that stock and lost almost everything when the bubble
collapsed.

To make the corresponding empirical formulas more reliable, it is therefore
desirable to look for theoretical foundations of these formulas.

What we do in this paper. In this paper, we show that many of such
dependencies can be naturally explained by using symmetries and invariances.

Case study. In this paper, we illustrate this approach on the example of
pavement engineering. However, this approach is very general, and can be
applied to other systems as well; see, e.g., [33].

Structure of the paper. In Sections 2 and 3, we describe what are the basic
symmetries, what are the dependencies explained by these symmetries, and
how these dependencies can be combined. In Section 4, we list problems related
to pavement engineering, review what empirical formulas have been found in
this application area, and we show how general symmetry ideas can provide
theoretical justification for these formulas.

2 Basic Symmetries and Related Dependencies

Simplest case. Let us start with the simplest case when we want to the
dependence y = f(x) between two physical quantities x and y.

Difference between mathematical and physical descriptions. From the
purely mathematical viewpoint, the problem seems straightforward: we need to
find the relation between the two numerical values. However, from the physical
viewpoint, we need to take into account that the same physical quantity can be
represented by different numerical values: the specific value depends on what
measuring unit we select (and, for some quantities, on the starting point).

Numerical values of physical quantities depend on the measuring unit.
Let us start with the fact that we can use different measuring units. For example,
we can measure distances in meters or kilometers; the same distance will be
represented by different numbers: 2 km becomes 2000 m. In general, if we
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replace the original measuring unit with a different unit which is λ > 0 times
smaller, all numerical values get multiplied by λ: x→ x′ = λ · x.

Notion of scale-scale (sc-sc) invariance. In many physical situations, there
is no selected measuring unit, so the formulas should not depend on what mea-
suring unit we use.

In physics, such invariance is called symmetry; see, e.g., [20, 54].
Of course, we cannot simply require that the formula remains exactly the

same if we change the unit for x: that would mean that

f(x) = f(λ · x)

for all λ and x – and thus, that f(x) = const, i.e., that there is no dependence
at all. In reality, if we change the unit for x, we need to appropriately change
the unit for y. For example, the formula y = x2 for the area y of a square
with side x remains valid if we switch from meters to centimeters – but then we
need to also change the measuring unit for area from square meters to square
centimeters.

So, the desired property takes the following form: for each λ > 0, there
should exist a value µ > 0 such that if y = f(x), then y′ = f(x′), where

x′
def
= λ · x and y′

def
= µ · y. This property is known as scale-scale-invariance.

Which dependencies are scale-scale-invariant? Substituting y′ = µ · y
and x′ = λ ·x into the formula y′ = f(x′), we get µ · y = f(λ ·x). Here, we have
y = f(x), so f(λ · x) = µ · f(x). Taking into account that µ depends on λ, we
get the following expression:

f(λ · x) = µ(λ) · f(x). (1)

Small changes in x should cause equally small changes in y, so the dependence
f(x) must be smooth (differentiable). From the formula (1), we can conclude
that the function µ(λ) is equal to the ratio of two differentiable functions µ(λ) =
f(λ · x)

f(x)
and is, thus, differentiable too.

Since both functions f(x) and µ(λ) are differentiable, we can differentiate
both sides of the formula (1) with respect to λ. After plugging in λ = 1, we get

x · df
dx

= a · f,

where we denoted

a
def
=

dµ

dλ |λ=1
.

We can separate the variables in this formula if we divide both sides by f and
by x, then we get:

df

f
= a · dx

x
.

Integrating both sides, we get ln(f) = a · ln(x) + C, where C is the integration
constant. Applying the exponential function to both sides of this formula, we
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get f = c · xa, where we denoted c
def
= exp(C). So, every scale-scale-invariant

dependence is a power law.
Vice versa, it is easy to show that every power law has the scale-scale invari-

ance property.

Comment. Actually, smoothness is not necessary: it is sufficient to require that
the dependence y = f(x) is measureable; see, e.g., [1].

What if y depends on several variables? Similarly, for the dependence
y = f(x1, . . . , xv) on several quantities x1, . . . , xv, we could similarly require
that for all possible tuples (λ1, . . . , λv), there should exist a value µ(λ1, . . . , λv)
such that if we have

y = f(x1, . . . , xv), (2)

then in the new units
x′i = λi · xi (3)

and
y′ = µ(λ1, . . . , λv) · y, (4)

we should have
y′ = f(x′1, . . . , x

′
v). (5)

If we plug in the expressions (3) and (4) into the formula (5), we get

µ(λ1, . . . , λv) · y = f(λ1 · x1, . . . , λv · xv). (6)

If we now plug in the expression for y from formula (2) into this formula, we
will conclude that

µ(λ1, . . . , λv) · f(x) = f(λ1 · x1, . . . , λv · xv). (7)

It is known (see, e.g., [1]) that every measurable solution to this functional
equation has the form

y = C · xm1
1 · . . . · xmnn . (8)

Sometimes, we can also select different starting points. Scale-scale-
invariance assumes that we have a fixed starting point for measuring a quantity.
This is true for most physical quantities, but for some physical quantities, we
can select different starting points. For example, for measuring temperature,
we can select, as a starting point, the temperature at which water freezes – and
get the usual Celsius scale – or we can select the absolute zero and thus get
the Kelvin scale. For different purposes, different starting points may be more
appropriate.

If we change a starting point for measuring x to a different starting point
which is x0 units smaller the original one, then this value x0 will be added to
all numerical values of this quantity: x → x′ = x + x0, so that x = x′ − x0.
Similarly, if we change a starting point for measuring y to a different starting
point which is y0 units smaller than the original one, then this value y0 will
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be added to all numerical values of this quantity: y → y′ = y + y0, so that
y = y′ − y0.

Notion of shift-shift (sh-sh) invariance. In many physical situations, there
is no selected starting point, so the formulas should not depend on what measur-
ing unit we use. Of course, we cannot simply require that the formula remains
exactly the same if we change the starting point for x: that would means that
f(x) = f(x+ x0) for all x0 and x – and thus, that f(x) = const, i.e., that there
is no dependence at all. In reality, if we change the starting point for x, we need
to appropriately change the starting point for y.

So, the desired property takes the following form: for each x0, there should

exist a value y0 such that if y = f(x), then y′ = f(x′), where x′
def
= x+ x0 and

y′
def
= y + y0. This property is known as shift-shift-invariance.

Which dependencies are shift-shift-invariant? Substituting y′ = y + y0
and x′ = x+x0 into the formula y′ = f(x′), we get y+y0 = f(x+x0). Here, we
have y = f(x), so f(x+ x0) = f(x) + y0. Taking into account that y0 depends
on x0, we get the following expression:

f(x+ x0) = f(x) + y0(x0). (9)

Small changes in x should cause equally small changes in y, so the dependence
f(x) must be smooth (differentiable). From the formula (9), we can conclude
that the function y0(x0) is equal to the difference of two differentiable functions
y0(x0) = f(x+ x0)− f(x) and is, thus, differentiable too.

Since both functions f(x) and y0(x0) are differentiable, we can differentiate
both sides of the formula (9) with respect to x0. After plugging in x0 = 0, we
get

df

dx
= a,

where we denoted

a
def
=

dy0
dx0 |x0=0

.

We can separate the variables in this formula if we multiply both sides by dx,
then we get:

df = a · dx.

Integrating both sides, we get f = a ·x+C, where C is the integration constant.
So, every shift-shift-invariant dependence is a linear function.

Vice versa, it is easy to show that every linear function has the shift-shift
invariance property.

Shift-to-scaling (sh-sc). Let us consider the case when the dependence re-
mains the same after we apply shift to x and scaling to y. In this case, for every
x0, there exists a value µ(x0) (depending on x0) such that if y = f(x), then
we have Y = f(X), where X = x + x0 and Y = µ(x0) · y. If we plug in the
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expressions for Y in terms of y and X in terms of x into the formula Y = f(X),
we conclude that f(x+ x0) = µ(x0) · y. Here, y = f(x), so we conclude that

f(x+ x0) = µ(x0) · f(x). (10)

It is known (see, e.g., [1]) that every measurable dependence f(x) with this
property has the form

f(x) = A · exp(a · x), (11)

for some A and a.

Comment. If f(x) is differentiable, then the function µ(x0) =
f(x+ x0)

f(x)
is

differentiable too. Thus, we can differentiate both sides of the equation (10)
with respect to x0. As a result, we get

f ′(x+ x0) = µ′(x0) · f(x). (12)

In particular, for x0 = 0, we get

df

dx
= a · f, (13)

where a
def
= µ′(0). We can separate the variables x and f if we multiply both

sides of the equality (13) by
dx

f
, then we get

df

f
= a · dx. (14)

Integrating both sides, we get

ln(f) = a · x+ C, (15)

where C is the integration constant. Applying the function exp(z) of both sides
of the equality (15), we get the desired expression f(x) = A · exp(a · x), with
A = exp(C).

Scaling-to-shift (sc-sh). Let us now consider the case when the dependence
remains the same after we apply scaling to x and shift to y. In precise terms,
we assume that for every λ > 0, there exists a value y0(λ) (depending on λ)
such that if y = f(x), then Y = f(X), where X = λ · x and Y = y + y0(λ).
If we plug in the expressions for Y in terms of y and X in terms of x into the
formula Y = f(X), we conclude that f(λ · x) = y + y0(λ). Here, y = f(x), so
we conclude that

f(λ · x) = f(x) + y0(λ). (16)

It is known (see, e.g., [1]) that every measurable dependence f(x) with this
property has the form

f(x) = a · ln(x) + C, (17)
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for some a and C.

Comment. If f(x) is differentiable, then the function y0(λ) = f(λ · x) − f(x)
is differentiable too. Thus, we can differentiate both sides of the equation (16)
with respect to λ. As a result, we get

x · f ′(λ · x) = y′0(λ). (18)

In particular, for λ = 1, we get

x · df
dx

= a, (19)

where a
def
= y′0(1). We can separate the variables x and f if we multiply both

sides of the equality (19) by
dx

x
, then we get

df = a · dx
x
. (20)

Integrating both sides, we get

f(x) = a · ln(x) + C, (21)

where C is the integration constant.

Which parameter values are more probable: general idea. All the
above families have some parameters that need to be determined: for example,
the power law dependence y = c · xa has two parameters: c and a. A natural
question is: which values of these parameters are more probable?

A possible answer to this question comes from an observation (made in the
1980s by B. S. Tsirelson [55]) that in many cases, when we reconstruct the
signal from the noisy data, and we assume that the resulting signal belongs to a
certain class, the reconstructed signal is often an extreme point from this class;
see also [34, 53]. The paper [55] provided the following geometric explanation to
this fact: namely, when we reconstruct a signal from a mixture of a signal and a
Gaussian noise, then the maximum likelihood estimation (a traditional statistical
technique; see, e.g., [51]) means that we look for a signal which belongs to the
(a priori determined) class of signals, and which is the closest – in the sense of
the usual Euclidean distance – to the observed signal-plus-noise combination.

In particular, if the signal is determined by finitely many (say, d) parameters,
we must look for a signal ~s = (s1, . . . , sd) from the a priori set A ⊆ Rd that is
the closest (in the usual Euclidean sense) to the observed values

~o = (o1, . . . , od) = (s1 + n1, . . . , sd + nd),

where ni denotes the (unknown) values of the noise.
Since the noise is Gaussian, we can usually apply the Central Limit Theorem

[51] and conclude that the average value of (ni)
2 is close to σ2, where σ is the

standard deviation of the noise. In other words, we can conclude that

(n1)2 + . . .+ (nd)
2 ≈ d · σ2.
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In geometric terms, this means that the distance√√√√ d∑
i=1

(oi − si)2 =

√√√√ d∑
i=1

n2i

between ~s and ~o is ≈ σ ·
√
d. Let us denote this distance σ ·

√
d by ε.

Let us first, for simplicity, consider the case when d = 2, and when A is a
convex polygon. Then, we can divide all points p from the exterior of A that
are ε-close to A into several zones depending on what part of A is the closest
to p:

• one of the sides, or

• one of the edges.

Geometrically, the set of all points for which the closest point a ∈ A belongs
to the side e is bounded by the straight lines orthogonal (perpendicular) to e.
The total length of this set is therefore equal to the length of this particular
side; hence, the total length of all the points that are the closest to all the sides
is equal to the perimeter of the polygon. This total length thus does not depend
on ε at all.

On the other hand, the set of all the points at the distance ε from A grows
with the increase in ε; its length grows approximately as the length of a circle,
i.e., as const·ε.

When ε increases, the (constant) perimeter is a vanishing part of the total
length. Hence, for large ε:

• the fraction of the points that are the closest to one of the sides tends to
0, while

• the fraction of the points p for which the closest is one of the edges tends
to 1.

Similar arguments can be repeated for any dimension. For the same noise
level σ, when d increases, the distance ε = σ ·

√
d also increases, and therefore,

for large d, for “almost all” observed points ~o, the reconstructed signal is one of
the extreme points of the a priori set A.

Which parameter values are more probable: case of scale-invariance.
Let us show how the above general idea can be applied to the case of scale-
invariance, when we know that y is increasing with x. In this case, the value a
can take any values from 0 to ∞, so the extreme cases are a = 0 and a =∞.

Of course, literally taking a = 0 or a = ∞ makes no sense, since for each
value x+x0, the power (x+x0)0 is simply equal to 1 – i.e., does not depend on x
at all, while (x+x0)∞ is either 0 (if |x+x0| < 1) or infinity (if |x+x0| > 1). So,
to get non-trivial expressions, instead of directly substituting a = 0 or a = ∞
into the above formula, we need to consider limit cases when a→ 0 or a→∞.
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Let us first consider the case a→ 0. In general, we have

(x+ x0)a = (exp(ln(x+ x0)))a = exp(a · ln(x+ x0)).

For small a ≈ 0, we can expand this expression in Taylor series and keep only
linear terms in this expression:

(x+ x0)a ≈ 1 + a · ln(x+ x0).

Thus, for small a, the expression (33) tends to a linear transformation of a
logarithm:

y = c0 + c1 · ln(x+ x0). (22)

The case when a→∞ can be obtained from this case if we take into account
that when y is related to x by a formula (33) with some a, then x is related
to y by a similar formula, but with an exponent 1/a. When a → 0, then
1/a → ∞. So, the limit dependence corresponding to a → ∞ is the inverse of
the dependencies corresponding to a → 0, i.e., a linear transformation of the
exponential function:

y = c0 + c1 · exp(k · x). (23)

3 Need to Combine Dependencies Correspond-
ing to Basic Symmetries

Need to combine different types of dependencies. In some cases, we have
one of the dependencies corresponding to basic symmetries – e.g., the power law.
However, in many other applications, empirical dependencies are more complex.
How can we describe such more complex dependencies?

First natural idea: taking intermediate quantities into account. A
natural idea is to take into account that in nature, dependencies are rarely
direct: usually, when we see that a change in a quantity x leads to a change in
a quantity y, this means that:

• a change in x changes some intermediate quantity x1,

• the change in x1, in turn, leads to the change in some other intermediate
quantity x2, etc.,

• until we finally teach some quantity xk that directly affects y.

To describe this complex dependence, we need to describe:

• how x1 depends on x, we will denote the corresponding dependence by
x1 = f1(x),

• how x2 depends on x1, we will denote the corresponding dependence by
x2 = f2(x1), etc.,
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• and how y depends on xk, we will denote the corresponding dependence
by y = fk+1(xk).

Then, we have
y = fk+1(xk) = fk+1(fk(xk−1)) = . . . =

fk+1(fk(. . . (f2(f1(x))) . . .)).

In other words, the function f(x) describing the (indirect) dependence between x
and y is a composition of several functions f1(x), f2(x1), . . . , fk+1(xk) describing
direct dependencies.

Comment. It should be mentioned that combination of several dependencies
does not always lead to new functions. For example, one can easily check that
a composition of power laws is also a power law: indeed, e.g., if x1 = f1(x) =
c1 · xa1 and x2 = f2(x1) = c2 · xa21 , then

x2 = c2 · (c1 · xa1)
a2 = (c1 · ca21 ) · xa1·a2 ,

i.e., the dependence of x2 on x has the form x2 = c · xa, where c = c2 · ca21 and
a = a1 · a2.

Second natural idea: combining different dependencies between the
same two quantities. Sometimes, we have to combine the results of two
different effects. If the effect of the first mechanism is denoted by q1 and the
effect of the second one by q2, then a natural way to combine them is to consider
some function

q = F (q1, q2). (24)

What should be the properties of this combination function?
If one the effects is missing, then the overall effect should coincide with the

other effect, so we should have F (0, q2) = q2 and F (q1, 0) = q1 for all q1 and q2.
If we combine two effects, it should not matter in what order we consider

them, i.e., we should have

F (q1, q2) = F (q2, q1) (25)

for all q1 and q2. In mathematical terms, the combination operation F (q1, q2)
should be commutative.

Similarly, if we combine three effects, the result should not depend on the
order in which we combine them, i.e., that we should have

F (F (q1, q1), q3) = F (q1, F (q2, q3)) (26)

for all q1, q1, and q3. In mathematical terms, the combination operation
F (q1, q2) should be associative.

It is also reasonable to require that if we increase one of the effects, then
the overall effect will increase, i.e., that the function F (q1, q2) should be strictly
monotonic in each of the variables: if q1 < q′1, then we should have

F (q1, q2) < F (q′1, q2).
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It is also reasonable to require that small changes to qi should lead to small
changes in the overall effect, i.e., that the function F (q1, q2) should be continu-
ous.

Finally, it is reasonable to require that the operation F (q1, q2) be scale in-
variant in the following sense: if q = F (q1, q2), then for every λ > 0, if we take
q′i = λ · qi and q′ = λ · q, then we should have q′ = F (q′1, q

′
2).

It is known – see, e.g., [47] – that every commutative, associative, strictly
monotonic, continuous, and scale invariant combination operation for which
F (q1, 0) = q1 has the form

F (q1, q2) = (qp1 + qp2)
1/p

(27)

for some p > 0.

4 Case Study: Pavement Engineering

In this section, we show that symmetry approach can explain empirical formulas
related to all stages of pavement engineering.

First, we need to build the road so that the pavement will be sufficiently
stiff. The upper layer of the road is designed by us, so we can make it as stiff
as needed. However, for the road to be stiff, the underlying soil layer must also
be sufficiently stiff. If the soil itself is not sufficiently stiff, we need to enhance
its stiffness by adding additional material. In determining how much additional
material we need, engineers use empirical formulas. In the first subsection of
this section, we show that the above symmetry ideas can lead to a theoretical
explanation for these formulas.

An additional aspect is that the road must be sufficiently stiff under all
possible weather conditions, including rare but possible heavy rains. Again, the
top layers of the road are not much affected by the rain, but the soil can be
seriously affected. To predict how stiff the road will be in different weather
conditions, engineers also use empirical formulas – formulas whose theoretical
explanation is provided in the second subsection of this section.

After the road is built and is being used, we need to periodically gauge its
quality and, if needed, decide which segments of the road need maintenance
and/or repair. To make these decisions, we need to be able to predict how
the quality of the pavement will change with time: first we should repairs the
segments that are expected to deteriorate quickly. In gauging the pavement
quality and in predicting how this quality will change with time, engineers also
use empirical formulas – formulas that we explain in the remaining subsections
of this section.

4.1 Explaining Empirical Formulas Used in Pavement De-
sign

Need for lime stabilized pavement layers. To have a stable road, it is often
necessary to enhance the mechanical properties of the underlying soil layer. The
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most cost-efficient way of this enhancement is to mix soil with lime (sometimes
coal fly ash is also added). Water is then added to this mix, and after a few
days, the upper level of the soil becomes strengthened. The needed amount of
lime depends on the soil.

How to determine the optimal amount of lime. To determine the proper
amount of lime, soil specimens are brought into the lab, mixed with different
amounts of lime, and tested. All chemical processes become faster when the
temperature increases. So, to speed up the testing process, instead of simply
waiting for several weeks as in the field, practitioners heat the sample to a
higher temperature, thus speeding up the strengthening process; this higher-
temperature speed-up is known as curing.

Based on the testing results, we need to predict the strength of the soil in
the field for different possible lime amounts – and thus, select the lime amount
that guarantees the desired strength.

Need for formulas describing the dependence of strength on curing
temperature and other parameters. To be able to make this prediction,
we need to know how the strength depends on the lime content L (which is
usually measured in percentage of lime in the dry weight of the mix). To be
more precise, we need a formula with one or more parameters depending on the
soil. We can then:

• determine the parameters based on the testing results, and then

• use the corresponding formula to predict the soil strength.

It turns out that the resulting empirical formulas differ depending on the
porosity η of the mix, i.e., the percentage of voids in the overall volume of the
soil: for different values of η, we have, in general, different dependencies on lime
content L.

Known empirical formulas. The mix is isotropic, so its mechanical strength
can be characterized by two parameters:

• unconfined compressive strength qu that describes the smallest value of
pressure (force over area) applied at the top of a cylindrical sample at
which this sample fails;

• the tensile strength qt is when the force is applied orthogonally to the
cylinder’s axis.

For both types of strength q, the empirical formulas describing the dependence
of strength on η and L are

q = c1 · ηeη · LeL , (28)

for some parameters c1, eη, and eL; see, e.g., [14, 15, 25, 49, 52].
The corresponding constant c1 depends on the dry density ρ. The depen-

dence on ρ takes the form
c1 = c2 · ρeρ (29)
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for some constants c1 and eρ; see, e.g., [25]. Substituting the formula (2) into
the formula (1), we get

q = c2 · ρeρ · ηeη · LeL . (30)

Our explanation. All three formulas can be explained by scale-scale invari-
ance; see [45] for details.

4.2 Explaining Empirical Formulas that Predict How the
Pavement Will Behave in Different Weather Condi-
tions

Need to take into account water content in road design and manage-
ment. It is important to make sure that the roads retain sufficiently stiff under
all possible weather conditions. Out of different weather conditions, the most
important effect on the road stiffness is produced by rain: rainwater penetrates
the reinforced-soil foundation of the pavement (called subgrade soil) that under-
lies more stiff layers of the road, and the presence of water decreases the road’s
stiffness.

Towards the empirical formulas. The mechanical effect of water can be
described by the corresponding pressure h. In transportation engineering, this
pressure is known as suction.

This pressure is easy to explain based on every person’s experience of walking
on an unpaved road:

• when the soil is dry, it exerts high pressure on our feet, thus preventing
shoes from sinking, and keeping the surface of the road practically intact;

• on the other hand, when the soil is wet, the pressure drastically decreases;
as a result, the shoes sink into the road, and leave deep tracks.

Similarly, the car’s wheels sink into a wet road and leave deep tracks. The effect
is not so prominent on paved roads, but still moisture affects the road quality.

To describe this effect in quantitative terms – and thus, to predict the effect
of different levels of water saturation – we need to find the relation between
the water content and the suction. Usually, for historical reasons, this effect is
described as the dependence of water content θ on suction h – but we can also
invert this dependence and consider the dependence of suction h on the water
content θ. The dependence of θ on h is known as the soil-water characteristic
curve (SWCC, for short).

Until the 1990s, this dependence was described by a power law θ = c · h−m
for some parameters c and m > 0. (Since the suction decreases with the increase
in water content, the exponent −m should be negative.)

This power law formula was first proposed in [10] by R. H. Brooks and
A. T. Corey. Many empirical studies confirmed this dependence; see, e.g., [11,
13, 22, 23, 27, 48, 56].
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This law works reasonably well for intermediate values of θ. However, this
formula is not perfect. For example, for θ → 0, this formula – or, to be precise,
the inverse formula h = const · θ−1/m – implies the physically unreasonable
infinite value of suction pressure. For the important case when the soil is heavily
saturated with water – i.e., when θ is large – it is also not in good accordance
with the empirical data.

As a result of this imperfection, in practice, until the 1990s, the results
of the above power law formula were usually corrected by experts. To get a
better fit with the observations and with the expert estimates, the paper [21]
by D. G. Fredlung and A. Xing proposed a more complex formula

θ = const ·
(
ln(e+ (h/a)b)

)−c
, (31)

for some parameters a, b, and c. This formula has been experimentally confirmed
for a wide range of values of the water content θ; see, e.g., [21, 37, 57]. At present
(2020), this formula – with a minor modification that we will discuss later – is
recommended by the US standards; see, e.g., p. 209 of Appendix DD1 “Resilient
Modulus as Function of Soil Moisture – Summary of Predictive Models” of [32]
and Chapter 5, p. 42 of [30] (see also Section 2.3 of [3]).

Comment. In many applications, to get an even more accurate description,
practitioners multiply the right-hand side of the formula (31) by an additional
factor

C(h) = 1−
ln

(
1 +

h

hr

)
ln

(
1 +

h0
hr

) (32)

for some values hr and h0.

Towards an explanation. As we have mentioned earlier, historically the first
formulas for describing the soil-water characteristic curves were indeed the power
law formulas – and the above derivation explains why these formula provide a
good first approximation. However, as we also mentioned earlier, the power law
is a crude approximation, we need to go beyond power laws. Thus, we need to
consider the case when we have several sequential transformations.

In all these transformations are scale-scale-invariant, then they are all power
laws. In this case, the resulting dependence of y on x is still a power law. To get
beyond the power laws, we need to take into account that for some intermediate
dependencies, we may get different starting points. If we change a starting point
for measuring x to a different starting point which is x0 units smaller the original
one, then this value x0 will be added to all numerical values of this quantity:
x → x′ = x + x0, so that x = x′ − x0. Similarly, if we change a starting point
for measuring y to a different starting point which is y0 units smaller than the
original one, then this value y0 will be added to all numerical values of this
quantity: y → y′ + y0, so that y = y′ − y0.
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If in the new units x′ and y′, we have a power law dependence y′ = c · (x′)a
(motivated by scale-invariance), then in the original units x and y, we will have

y = y′ − y0 = c · (x′)a − y0 = c · (x+ x0)a − y0,

i.e., the form
y = c · (x+ x0)a − y0. (33)

It is thus reasonable to replace one of the intermediate power-law dependencies
with this more general formula.

We have argued that the most probable cases are extreme cases a → 0 or
a → ∞ that are described by formulas (22) and (23). What will then be the
resulting dependence between x and y?

Let us start with considering the case when the intermediate transformation
is described by a logarithm formula (22). In this case,

• first, we have several power-law transformations, which, as we have learned,
are equivalent to a single power-law transformation; as a result, the orig-
inal value x is transformed into a new value x1 = a1 · xb1 for some a1
and b1;

• then, to the resulting value x1, we apply the logarithm transformation
(33), resulting in

x2 = c0 + c1 · ln(x1 + x0) = c0 + c1 · ln(a1 · xb1 + x0);

• finally, we again have several power-law transformations, which are equiv-
alent to a single power-law transformation y = a3 · xb32 for some values a3
and b3, resulting in

y = a3 · (c0 + c1 · ln(a1 · xb1 + x0))b3 . (34)

Let us simplify this formula. Let us simplify this formula, to make it closer
to the desired formula (31). First, we can represent a1 ·xb1 +x0 as c2 ·(a′1 ·xb1 +e),

where we denoted c1
def
=

x0
e

and a′1
def
=

a1
c2

=
a1 · e
x0

. Then,

ln(a1 · xb1 + x0) = ln(c2 · (a′1 · xb1 + e)) = ln(c2) + ln(e+ a′1 · xb1),

and thus,

c0 + c1 · ln(a1 · xb1 + x0) = c0 + c1 · ln(c2) + c1 · ln(e+ a′1 · xb1),

i.e.,
c0 + c1 · ln(a1 · xb1 + x0) = c′0 + c1 · ln(e+ a′1 · xb1),

where we denoted c′0
def
= c0 + ln(c2). This expression, in turn, can be described

as
c0 + c1 · ln(a1 · xb1 + x0) = c′0 + c1 · ln(e+ a′1 · xb1) =
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c1 · (ln(e+ a′1 · xb1) + c′′0),

where c′′0
def
= c′0/c1. Thus,

(c0 + c1 · ln(a1 · xb1 + x0))b3 = cb31 · (ln(e+ a′1 · xb1) + c′′0)b3 .

Multiplying both sides by a3, we conclude that the formula (34) can be described
in the following form

y = a′3 · (ln(e+ a′1 · xb1) + c′′0)b3 , (35)

where a′3
def
= a3 · cb31 .

This is (almost) exactly what we want. The empirical formula (31) can be
viewed as a particular case of the above formula (35), with c′′0 = 0, a′3 = const,
a1 = a−b, and b3 = −c.

Vice versa, any expression (35) with c′′0 = 0 has the form (31). So, we (al-
most) have what we want: a theoretically justified formula: the only difference
is that our formula has one more parameter c′′0 . Who knows, maybe empirically,
we can find some non-zero value of this parameter for which this formula will
be even more accurate than the original empirical formula (31)?

Comments.

• When we describe limit cases of scale-invariance, we had a choice:

– we could have a logarithmic dependence, or

– we could have the inverse (exponential) dependence.

Which dependence we choose depends on which of two quantities we con-
sider as input and which as output. If instead of the dependence θ(h),
we will consider the inverse dependence h(θ), then we will get exponential
function instead of the logarithmic one. Which of the two dependencies
θ(h) or h(θ) is logarithmic and which is exponential cannot be determined
purely theoretically, since we assume the same scale-invariance property
for both quantities; this must be determined empirically. In this particular
case, the dependence θ(h) is logarithmic.

• The additional factor (32) can also be explained the same way: as one
can see, it is exactly one of the two limit cases of power law dependency:
namely, the logarithmic limit case (22).

• A detailed description of this case can be found in [44].

4.3 Explaining Empirical Formulas for Gauging Pavement
Quality

Estimating pavement roughness. Estimating road roughness is an impor-
tant problem. Indeed, road pavements need to be maintained and repaired.
Both maintenance and repair are expensive. So, it is desirable to estimate the
pavement roughness as accurately as possible:
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• if we overestimate the road roughness, we will waste money and other
resources on road segments which are in reasonably good shape, at the
expense of other segments which may need maintenance or repair;

• if we underestimate the road roughness, the road segment will be left
unrepaired and deteriorate even more – as a result of which the cost of its
future repair will skyrocket.

The standard way to measure the pavement roughness is to use the International
Roughness Index (IRI); see, e.g., [5, 17, 18, 50]. This measure of roughness is
recommended by the US standards [5, 17, 18].

Crudely speaking, IRI describes the effect of the pavement roughness on a
standardized model of a vehicle. Measuring IRI is not easy, because the real
vehicles differ from this standardized model. As a result, we measure roughness
by some instruments and use these measurements to estimate IRI. For example,
we can:

• perform measurements by driving an available vehicle along this road seg-
ment,

• extract the local roughness characteristics from the effect of the pavement
on this vehicle, and then

• use these extracted characteristics to estimate the effect of the same pave-
ment on the standardized vehicle.

In view of this difficulty, in many cases, practitioners rely on expert estimates
of the pavement roughness. The corresponding measure – estimated on a scale
from 0 to 5 – is known as the Present Serviceability Rating (PSR); see, e.g., [4,
19].

Empirical relation between measurement results and expert estimates,
on the example of pavement roughness. The empirical relation between
PSR and IRI is described by the following formula:

PSR = 5 · exp(−0.0041 · IRI). (36)

This formula was first proposed by B. Al-Omari and M. Darter in [2], and it
still remains actively used in pavement engineering; see, e.g., [7, 19, 36, 38].

Our explanation. This formula can be explained by shift-scale invariance; see
[41] for details.

4.4 Predicting Pavement Quality: How Pavement Condi-
tion Index Will Change with Time

Empirical formula. The quality of a road pavement is described by a Pave-
ment Condition Index (PCI) that takes into account all possible pavement im-
perfections [6]. The perfect condition of the road corresponds to PCI = 100,
and the worst possible condition corresponds to PCI = 0.
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As the pavement ages, its quality deteriorates. To predict this deterioration,
practitioners use an empirical formula developed in [28]:

PCI = 100− R

(ln(α)− ln(t))1/β
, (37)

where t is the pavement’s age, and R, α are corresponding parameters.

PCI and age: scale-invariance or shift-invariance? We are analyzing how
PCI depends on the pavement’s age t. To apply invariances to our dependence,
we need first to analyze which invariances are reasonable for the corresponding
variables – PCI and age.

For age, the answer is straightforward: there is a clear starting point for
measuring age, namely, the moment when the road was built. On the other
hand, there is no fixed measuring unit: we can measure age in years or in
months or – for good roads – in decades. Thus, for age:

• shift-invariance – corresponding to the possibility of changing the starting
point – makes no physical sense, while

• scale-invariance – corresponding to the possibility of changing the mea-
suring unit – makes perfect sense.

For PCI, the situation is similar. Namely, there is a very clear starting point
– the point corresponding to the newly built practically perfect road, when PCI
= 100. From this viewpoint, for PCI, shifts do not make much physical sense.
If we select 100 as the starting point (i.e., as 0), then instead of the original
numerical values PCI, we get shifted values PCI− 100.

A minor problem with these shifted values is that they are all negative, while
it is more convenient to use positive numbers. Thus, we change the sign and
consider the difference 100− PCI.

On the other hand, the selection of point PCI = 0 is rather subjective. What
is marked as PCI = 0 in a developed country that can afford to invest money
into road repairs may be a passable road in a poor country, where most of the
roads are, from the viewpoint of US standards, very bad; see, e.g., [24]. So,
for PCI (or, to be more precise, for 100− PCI), it probably makes sense to use
scaling.

We cannot directly apply the invariance ideas. In view of the above
analysis, we should be looking for a dependence of y = 100−PCI on x = t which
is invariant with respect to x-scaling and y-scaling. As we have discussed in the
previous section, this requirement leads to y = A · xb, i.e., to 100−PCI = A · tb
and PCI = 100−A · tb.

This formula may be reasonable from the purely mathematical viewpoint,
but in practice, it is a very crude description of what we actually observe. Thus,
the direct application of invariance ideas does not lead to good results.

Let us now apply invariance ideas indirectly. Since we cannot apply the
invariance requirements directly – to describe the dependence of y = 100−PCI

18



on x = t, a natural idea is to apply these requirements indirectly. Namely, we
assume that there is some auxiliary intermediate variable z such that:

• y depends on z,

• z depends on x, and

• both these y-on-z and z-on-x dependencies are, in some reasonable sense,
invariant.

Options. We know that for x and for y, only scaling makes sense. However, for
the auxiliary variable z, in principle, both shifts and scalings may be physically
reasonable. Depending on which of the two types of transformations we use for
z when describing y-on-z and z-on-x dependencies, we get four possible options:

• for both y-on-z and z-on-x dependencies, we use z-shift;

• for both y-on-z and z-on-x dependencies, we use z-scaling;

• for y-on-z dependence, we use z-shift, while for z-on-x dependence, we
use z-scaling;

• for y-on-z dependence, we use z-scaling, while for z-on-x dependence, we
use z-shift.

Let us consider these four cases one by one.

Case when for both y-on-z and z-on-x dependencies, we use z-shift.
In this case, in accordance to the results presented in Section 2, we have z =
A+b ·(x) and y = A1 ·(b1 ·z). Substituting the expression for z into the formula
for y, we get

y = A1 · exp(A+ b · ln(x)) = (A1 · exp(A)) · (exp(ln(x))b = A2 · xb,

where A2
def
= A1 · exp(A). This is exactly the formula coming from the direct

application of invariance requirements, and we already know that this formula
is not very adequate for describing the experimental data.

Case when for both y-on-z and z-on-x dependencies, we use z-scaling.
In this case, we have z = A · zb and y = A1 · zb1 . Thus, here,

z = A1 ·
(
A · xb

)b1
= A2 · xb2 ,

where A2
def
= A1 · Aα1 and b2

def
= b · b1. Thus, in this case, we also get the same

formula as for the direct application of invariance.

Case when for y-on-z dependence, we use z-shift, while for z-on-x
dependence, we use z-scaling. Here, z = A ·xb and y = A1 · exp(b1 · y), thus

y = A1 · exp
(
b1 ·A · xb

)
, i.e., y = A1 · exp

(
b2 · xb

)
, where b2

def
= b1 · A. So, for

PCI = 100− y and x = t, we get the dependence

PCI = 100−A1 · exp
(
b2 · tb

)
. (38)

19



Interestingly, this is one of the formula that was tested in [28] and which turned
out to work not so well as the formula that was selected.

Case when for y-on-z dependence, we use z-scaling, while for z-on-x
dependence, we use z-shift. In this case, z = A + b · ln(x) and y = A1 · zb,
thus y = A1 · (A+ b · ln(x))b1 . So, for PCI = 100− y and x = t, we get

PCI = 100−A1 · (A+ b · ln(x))b1 . (39)

Let us show that this is indeed the desired formula (37).
Indeed, here,

A+ b · ln(x) = (−b) ·
((
−A
b

)
− ln(x)

)
. (40)

For α
def
= exp

(
−A
b

)
, we have ln(α) = −A

b
, so the formula (40) takes the form

A+ b · ln(x) = (−b) · (ln(α)− ln(t)). Thus, the formula (11) takes the form

PCI = 100−A1 · (−b)b1 · (ln(α)− ln(t))b1 ,

i.e., the desired form (1) with R = A1 · (−b)b1 and β = − 1

b1
.

Conclusion. We indeed derived the empirical formula (37) for the decrease of
PCI over time from the general invariance requirements. To be more precise,
from the invariance requirements, we can derive two possible formulas:

• the desired formula (37) – which is in good accordance with the empirical
data, and

• the alternative formula (38) – which is not a good fit for empirical data.

Comment. A detailed description of this case is given in [40, 46].

4.5 Predicting Pavement Quality: How the Amount of
Cracks and Potholes Will Grow with Time

Cracks and potholes. Not only we want to predict how the pavement quality
will change (deteriorate) with time, we also want to predict what exactly will
deteriorate. One of the main ways pavement deteriorates is that cracks and
potholes appear and start growing.

How transportation engineers usually gauge the amount of cracks and
potholes. The amount of cracks is usually gauged the overall length C of the
longitudal cracks outside the direct wheel path. The amount of potholes is
usually gauged by the total area P of potholes.

As the road is used, the quality of the pavement deteriorates, and the values
C and P grow. This growth starts at some small values corresponding to the
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newly built road – age t = 0 – and continues growing until they reach the
maximum – the undesirable bad state when the whole road is covered by cracks
and potholes.

Empirical formulas. According to [31], both growths are described by similar
formulas

C = aC · exp(−bC · exp(−cC · t)); (41)

P = aP · exp(−bP · exp(−cP · t)). (42)

What we want: a brief reminder. We want to find the dependence of the
quantity q (crack or pothole amount) on time t. We know:

• that the for t = 0, the value q(t) is small positive,

• that the value q(t) increases with time, and

• that the value q(t) tends to some large constant value when t increases.

What are possible symmetries here? For crack amount C and for pothole
amount P , there is an absolute starting point – 0, when we have no cracks
and no potholes. However, it makes sense to use different units of length and
different units of area, so scaling makes perfect sense.

For time, as we have mentioned, both shift and scaling make sense.

First idea. If view of the above analysis, let us see if any of the above symmetric
dependencies satisfy the desired property.

Since for q, only scaling makes sense, we can only consider two possibilities:
sc-sc and sh-sc. Let us consider them one by one.

First idea: sc-sc case. In the sc-sc case, we have q(t) = A · ta. Since we
want a non-negative value, we have to take A > 0. Since we want q(t) to be
increasing with time, we have to take a > 0. However, in this case:

• q(0) is zero – while we want it to be positive, and

• q(t) tends to infinity as t increases – while we want it to tend to some
constant.

First idea: sh-sc case. In the sh-sc case, we have q(t) = A · exp(a · t). Again,
since we want a non-negative value, we have to take A > 0. Since we want q(t)
to be increasing with time, we have to take a > 0. In this case:

• q(0) is positive, which is exactly what we wanted, but

• q(t) tends to infinity as t increases – while we want it to tend to some
constant.
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So what do we do? The first idea does not work, so what should we do?
The above arguments about possible dependencies deal with the case when

the quantity y directly depend on the time t. However, in our case, cracks
and potholes do not directly depend on time: what changes with time is stress,
which, in its turn, causes the pavement to crack. In other words, instead of the
direct dependence of the quantity q on time:

• we have q depending on some auxiliary quantity z, and

• we have z depending on time t.

For both dependencies q(z) and z(t) we can have symmetry-motivated for-
mulas. Let us see which combinations of these formulas provide the desired
properties of the resulting dependence q(t) = q(z(t)) – that this value is pos-
itive for t = 0, increases for t > 0, and tends to a finite limit when t → ∞.

Possible options of the q(z) dependence. Since for q, only scaling is possi-
ble, for possible dependencies q(z), we have either the sc-sc option q(z) = A · za
or the sh-sc option q(z) = A · exp(a · z).

First option q(z) = A · za. In this option, when q(z) is sc-sc, it does not make
sense to consider sh-sc or sc-sc options for z(t), since, as one can check, this will
be equivalent to sh-sc or sc-sc symmetry for q(t), and we have already shown
that this is not possible. So, to go beyond previously considered options, we
need to consider two remaining options for z(t): sh-sh option z(t) = a1 · t+C1,
and sc-sh option z(t) = a1 · ln(t) + C1.

In the first case, we have q(t) = A ·za = A ·(a1 ·t+C1)a. We can equivalently

describe it as q(t) = A1 · (t+ c2)a, where A1 = A · (a1)a and c2 =
C1

a1
. The need

to have positive values of q implies A > 0, the need to have q(t) increasing leads
to a > 0, but then, for t→∞, the resulting expression tends to infinity – while
we want it bounded.

In the second case, we have q(t) = A·za = A·(a1·ln(t)+C1)a. Similarly to the
first case, we can equivalently describe this expression as q(t) = A1 ·(ln(t)+c2)a,

with A1 = A · (a1)a and c2 =
C1

a1
. The need to have positive values of q implies

A > 0, the need to have q(t) increasing leads to a > 0, but then, for t→∞, the
resulting expression also tends to infinity – while we want it bounded.

Second option q(z) = A · exp(a · z). In this option, when q(z) is sh-sc, it does
not make sense to consider sh-sh or sc-sh options for z(t), since, as one can check,
this will be equivalent to sh-sc or sc-sc symmetry for q(t), and we have already
shown that this is not possible. So, to go beyond previously considered options,
we need to consider two remaining options for z(t): sc-sc option z(t) = A1 · ta1 ,
and sh-sc option z(t) = A1 · exp(a1 · t).

In the first case, q(t) = A ·exp(a ·z) = A ·exp((a ·A1) · ta1). The need to have
positive values of q implies A > 0. The behavior of this expression depends on
the sign of the product a ·A1.
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• If a · A1 > 0, then the need to have q(t) increasing leads to a1 > 0, but
then, for t→∞, the resulting expression tends to infinity – and we want
it bounded.

• If a · A1 < 0, then the need to have q(t) increasing leads to a1 < 0, but
then, for t → 0, we have t−|a1| → ∞, hence (a · A1) · t−|a1| → −∞, and
q(t) = A · exp((a · A1) · t−|a1|) → 0, but we want the value q(0) to be
positive.

So, the only possible case is the second case, when

q(t) = A · exp(a · z) = A · ((a ·A1) · exp(a1 · t)),

which is exactly the desired formulas (41) and (42).

Conclusion. So, we can conclude that the only symmetry-motivated depen-
dence q(t) for which q(0) > 0 and q(t) increases until some finite number is
the dependence (41) and (42). Thus, we have indeed justified the empirical
dependencies (41) and (42).

Comment. A detailed description of this case is given in [42].

4.6 Predicting Pavement Quality: How Crack Size Will
Change with Time

Which cracks should be repaired first? Under stress, cracks appear in
constructions. They appear in buildings, they appear in brides, they appear in
pavements, they appear in engines, etc. Once a crack appears, it starts growing.

Cracks are potentially dangerous. Cracks in an engine can lead to a catastro-
phe, cracks in a pavement makes a road more dangerous and prone to accidents,
etc. It is therefore desirable to repair the cracks.

In the ideal world, each crack should be repaired as soon as it is noticed. This
is indeed done in critical situations – e.g., after each flight, the Space Shuttle
was thoroughly studied and all cracks were repaired.

However, in most other (less critical) situations, for example, in pavement
engineering, our resources are limited. In such situations, we need to decide
which cracks to repair first. A natural idea is to concentrate our efforts on
cracks that, if unrepaired, will become most dangerous in the future. For that,
we need to be able to predict how each crack will grow, e.g., in the next year.

Once we are able to predict how the current cracks will grow, we will be able
to concentrate our limited repair resources on most potentially harmful cracks.

How cracks grow: a general description. In most cases, stress comes
in cycles: the engine clearly goes through the cycles, the road segment gets
stressed when a vehicle passes through it, etc. Thus, the crack growth is usually
expressed by describing how the length a of the pavement changes during a
stress cycle at which the stress is equal to some value σ. The increase in length
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is usually denoted by ∆a. So, to describe how a crack grows, we need to find
out how ∆a depends on a and σ:

∆a = f(a, σ), (43)

for some function f(a, σ).

Case of very short cracks. The first empirical formula – known as Wöhler
law – was proposed to describe how cracks appear. In the beginning, the length
a is 0 (or very small), so the dependence on a can be ignored, and we have

∆a = f(σ), (44)

for some function f(σ). Empirical data shows that this dependence is a power
law, i.e., that

∆a = C0 · σm0 , (45)

for some constants C0 and m0.

Practical case of reasonable size cracks: Paris law. Very small cracks
are extremely important in critical situations: since there, the goal is to prevent
the cracks from growing. In most other practical situations, small cracks are
usually allowed to grow, so the question is how cracks of reasonable size grow.

Several empirical formulas have been proposed. In 1963, P. C. Paris and
F. Erdogan compared all these formulas with empirical data, and came up with
a new empirical formula that best fits the data:

∆a = C · σm · am
′
. (46)

This formula – known as Paris Law or Paris-Erdogan Law – is still in use; see,
e.g., [9, 26].

Usual case of Paris law. Usually, we have m′ = m/2, in which case the
formula (46) takes the form

∆a = C · σm · am/2 = C · (σ ·
√
a )m. (47)

The formula (46) is empirical, but the dependence m′ = m/2 has theoretical
explanations. One of such explanations is that the stress acts randomly at
different parts of the crack. According to statistics, the standard deviation s of
the sum of n independent variables each of which has standard deviation s0 is
equal to s = s0 ·

√
n; see, e.g., [51]. So, on average, the effect of n independent

factors is proportional to
√
n. Thus, for a crack of length a, consisting of a/δa

independent parts, the overall effect K of the stress σ is proportional to

K = σ ·
√
n ∼ σ ·

√
a. (48)

This quantity K is known as stress intensity. For the power law

∆a = C ·Km, (49)
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this indeed leads to

∆a = const · (σ ·
√
a )m = const · σm · am/2, (50)

i.e., to m′ = m/2.

Empirical dependence between C and m. In principle, we can have all
possible combinations of C and m. Empirically, however, there is a relation
between C and m:

C = c0 · bm0 ; (51)

see, e.g., [12, 16] and references therein.

Beyond Paris law. As we have mentioned, Paris law is only valid for rea-
sonably large crack lengths a. It cannot be valid for a = 0, since for a = 0, it
implies that ∆a = 0 and thus, that cracks cannot appear by themselves – but
they do. To describe the dependence (43) for all possible values a, the paper [8]
proposed to use the expression (46) with different values of C, m, and m′ for
different ranges of a. This worked OK, but not perfectly.

The best empirical fit came from the generalization of Paris law proposed
in [39]:

∆a = C · σm ·
(
aα + c · σβ

)γ
. (52)

Empirically, we have α ≈ 1.

How can we use scale invariance here? It would be nice to apply scale
invariance to crack growth. However, we cannot directly use it: indeed, in the
above arguments, we assumed that y and xi are different quantities, measured
by different units, but in our case ∆a and a are both lengths. What can we do?

To apply scale invariance, we can recall that in all applications, stress is
periodic: for an engine, we know how many cycles per minute we have, and for
a road, we also know, on average, how many cars pass through the give road
segment. In both cases, what we are really interested in is how much the crack
will grow during some time interval – e.g., whether the road segment needs
repairs right now or it can wait until the next year. Thus, what we are really

interested in is not the value ∆a, but the value
da

dt
which can be obtained by

multiplying ∆a and the number of cycles per selected time unit.

Since the quantities
da

dt
and ∆a differ by a multiplicative constant, they

follow the same laws as ∆a – but for
da

dt
, we already have different measuring

units and thus, we can apply scale invariance.

So, let us apply scale invariance. For the case of one variable, scale invari-
ance leads to the formula (3.20), which explains Wöhler law.

For the case of several variables we similarly get the formula (8), which
explains Paris law (46).

Thus, both Wöhler and Paris laws can indeed be theoretically explained –
by scale invariance.
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Scale-invariance also explains how C depends on m: idea. Let us show
that scale invariance can also the explain the dependence (51) between the
parameters C and m of the Paris law (46).

Indeed, the fact that the coefficients C and m describing the Paris law are
different for different materials means that, to determine how a specific crack
will grow, it is not sufficient to know its stress intensity K, there must be some
other characteristic z on which ∆a depends:

∆a = f(K, z). (53)

Let us apply scale invariance. If we apply scale invariance to the dependence
of ∆a on K, then we can conclude that this dependence is described by a power
law, i.e., that

∆a(K, z) = C(z) ·Km(z), (54)

where, in general, the coefficients C(z) and m(z) may depend on z. It is well
known that if we go to log-log scale, i.e., consider the dependence of ln(∆a) on
ln(K), then the dependence becomes linear. Indeed, if we take logarithms of
both sides of the equality (25), we conclude that

ln(∆a(K, z)) = m(z) · ln(K) + ln(C(z)). (55)

Similarly, if we apply scale invariance to the dependence of ∆a on z, we also
get a power law

∆a(K, z) = C ′(K) · zm
′(K) (56)

for some values C ′(K) and m′(K), i.e., in log-log scale,

ln(∆a(K, z)) = m′(K) · ln(z) + ln(C ′(k)). (57)

The logarithm ln(∆a(K, z)) in linear in ln(K) and linear in ln(z), thus it is
a bilinear function of ln(K) and ln(z). A general bilinear function has the form:

ln(∆a(K, z)) = a0 + aK · ln(K) + az · ln(z) + aKz · ln(K) · ln(z), (58)

i.e., the form

ln(∆a(K, z)) = (a0 + az · ln(z)) + (aK + aKz · ln(z)) · ln(K). (59)

By applying exp(t) to both sides of the formula (59), we conclude that the
dependence of ∆a on K has the form

∆a = C ·Km, (60)

where
C = exp(a0 + az · ln(z)) (61)

and
m = aK + aKz · ln(z). (3.33)
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From (3.33), we conclude that ln(z) is a linear function of m, namely, that

ln(z) =
1

aKz
·m− aK

aKz
. (3.34)

Substituting this expression for ln(z) into the formula (61), we can conclude
that

C = exp

((
a0 −

aK · az
aKz

)
+

az
aKz

·m
)
, (64)

i.e., the desired formula (51), C = c0 · bm0 , with

c0 = exp

(
a0 −

aK · az
aKz

)
(65)

and

b0 = exp

(
az
aKz

)
. (66)

Thus, the empirical dependence (51) of C on m can also be explained by
scale invariance.

Generalized Paris Law: analysis of the problem. Let us show that scale
invariance can also explain the generalized Paris law (52).

So far, we have justified two laws: Wöhler law (45) that describes how
cracks appear and start growing, and Paris law (46) that describes how they
grow once they reach a certain size. In effect, these two laws describe two
different mechanisms for crack growth. To describe the joint effect of these two
mechanisms, we need to combine the effects of both mechanisms.

This explains the generalized Paris law. Scale-invariance requires that the
combination has the form (27). If we substitute the expression (45) instead of
q1 and the expression (46) instead of q2 into the formula (27), we get

∆a =
(

(C0 · σm0)
p

+
(
C · σm · am

′
)p)1/p

=

(
Cp0 · σm0·p + Cp · σm·p · am

′·p
)1/p

=

C · σm ·
(
am

′·p +

(
C0

C

)p
· σ(m−m0)·p

)1/p

, (67)

i.e., we get the desired formula (52), with α = m′·p, c =

(
C0

C

)p
, β = (m−m0)·p,

and γ = 1/p.
Thus, the generalized Paris law can also be explained by scale invariance.

Comment. A detailed description of this case is given in [43].
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