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Abstract To make a reasonable decision, we need to have a good knowledge of the
corresponding situation, i.e., a good knowledge of the values of the quantities that
describe the situation. The more information we have, the better decision we can
make. In many practical situations, this information comes from measurements. For
this information, measurement techniques provide justified statistical estimates of
the quantities of interest. In addition to measurement results, we often have expert es-
timates. These estimates provides an additional information about the corresponding
quantities. However, the use of these estimates in decision making faces a prob-
lem: in contrast to measurement results, expert estimates are usually not statistically
justified. Because of this, practitioners are often reluctant to use them. One way to
solve this problem is to calibrate an expert — the same way we calibrate measuring
instruments. In the first two case studies, we show that such a calibration indeed
leads to useful results. The third case study provides an example of another use of
expert knowledge in measurement practice: this knowledge can be used to make
semi-empirical measurement models more explainable — and thus, more reliable.
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1 Introduction

Using expert knowledge is important, but how? To make an adequate decision,
we need to have as much information about the corresponding situation as possible.
For example, in pavement engineering, we need to decide — based on the available
annual budget — which road segments need to be repaired this year and which can
be used one more year without repair. To make this decision, we need to have an
accurate information about the state of different road segments.

In general, large amount of information comes from measurements. However, in
many areas, it is crucial to also use expert knowledge; for example:

¢ With all modern medical tests and measurements, doctor’s intuition is still crucial.
* In spite of all the successes of self-driving cars, it is still not possible to fully
replace a human driver.

It is therefore important to supplement measurement results with expert estimates.
The problem with this is that while measurement techniques provide us with
statistically justified estimates of the values of the corresponding quantities, expert
estimates usually do not come with such justifications. Because of this, practitioners
are often reluctant to use expert estimates in their decision making.
It is therefore desirable to make expert estimates statistically justified. In this
paper, we show, on three case studies, how this can be done.

How can experts help? In order to explain how expert knowledge can be made
statistically justified, let us first recall how expert information can supplement mea-
surement results. To do that, let is recall that in measurement practice:

* we come up with a parametric model of the corresponding class of phenomena,

* we test this model — to make sure that it provides an adequate description of the
phenomena, and

* we use measurements to estimate the parameters corresponding to a given situa-
tion.

How can experts help?

e experts can (and often do) provide such a model, and
» experts can (and do) provide estimates of the corresponding parameters.

Why is this useful? In terms of a model: the currently used model often comes
from a semi-empirical study. Such curve-fitting models are not very convincing, this
can be over-fitting. Experts’ knowledge and intuition can help separate explainable
models from curve-fitting results.

In terms of expert estimations: experts may not be accurate as measurements, but
they are often faster and cheaper to use. They also supplement measurement results,
this making the resulting estimates more accurate.

But how exactly can we use expert knowledge to supplement measurement
results? From the common sense viewpoint, expert knowledge is useful. But how
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can include expert estimates into a measurement-based framework, with its precise
justifications?

A natural idea is to treat an expert as a measuring instrument, and to calibrate
the expert similarly to how we calibrate measuring instruments. Thus, we can get a
statistically justified estimate for the accuracy of expert-generated numbers.

Moreover, we can use this calibration to improve the expert’s estimates. This is
similar to how, once know the instrument’s bias, we can subtract it and get more
accurate results.

Three case studies. To illustrate the above general ideas, we provide three case
studies.

* In the first case study, we show that application of usual linear calibration to
experts can be helpful.

* In the second case study, we provide an example of useful non-linear calibration.

* The third case study explains how expert knowledge can make semi-empirical
models more convincing.

Comment. Preliminary results of the three test studies first appeared in [3, 40, 42].

2 First Case Study: Measurement-Type “Calibration' of Expert
Estimates Improves Their Accuracy and Their Usability —
Pavement Engineering

Experts are often used for estimation. Sometimes, experts are used because no
measuring instruments can replace these experts. For example, in dermatology,
estimates of a skilled expert are often more accurate result than the results of applying
algorithms to measurement results. This is one of the main reasons why, in spite of
numerous experts systems, human doctors are still needed and still valued.

In other cases, in principle, we can use automatic systems, but experts are still
much cheaper to use. An example of such situation is pavement engineering. In
principle, we can use an expensive automatic vision-based system to gauge the
condition of the pavement. However, it is much cheaper — and faster — to use human
raters.

Expert estimates are often very imprecise. Humans rarely have a skill of accu-
rately evaluating the values of different quantities. For example, it is well known
that humans drastically overestimate small probabilities. Correspondingly, humans
underestimate the probabilities which are close to 1; see, e.g., [15] and references
therein.

Since most people’s estimates are very inaccurate, it is difficult to find good
expert estimators. It is well known that there is a high competition to get into
medical schools. Even in pavement engineering, finding a good rater is difficult.
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It is difficult to find good experts: example from pavement engineering. Ac-
cording to a current standard [7], the condition of a pavement is evaluated by using
a special index. This Pavement Condition Index (PCI) combines different possible
pavement faults. To gauge the accuracy of a rater candidate, many locations across the
US use criteria developed by the Metropolitan Transportation Commission (MTC)
of California [28].

A crucial part of the rater certification is a field survey exam. In this exam, a
rater evaluates 24 test sites that have been previously evaluated by expert raters.
Candidate’s PCI values are then compared with the PCI values of the expert rater.
The expert’s values are taken as the ground truth (GT). To certify, the rater must
satisfy the following two criteria:

* at least for 50% of the evaluated sites, the difference should not exceed 8 points,
and
 atleast for 88% of the evaluated sites, the difference should not exceed 18 points.

MTC provided a sample of 18 typical candidates. Out of these candidates, only 5
(28%) satisfy both criteria and thus, pass the exam and can be used as raters.

Problems.

e What can we do to increase the number of available experts?
* And for those who have been selected as experts, can we improve the accuracy of
their estimates?

Calibration. We are interested in situations when expert serve, in effect, as measuring
instruments.

Measuring instruments are usually much more accurate then human experts. Still,
they are sometimes not very accurate. Even when they are originally reasonably
accurate, in time, their accuracy decreases.

When the measuring instrument becomes not very accurate, we do not necessarily
throw it away. For example, supposed that before we step on the scales, the scales
already show 10 pounds. We do not necessarily throw away these scales: instead, we
adjust the starting point.

When a household device for measuring blood pressure starts producing weird
results, the manufacturers do not advise the customers to throw it away and to buy a
new one, they advise the customers to come to a doctor’s office and to calibrate the
customer’s instrument.

In general, calibration is a routine procedure for measuring instruments; see, e.g.,
[41]. In this procedure, we measure the same quantities:

* by using our measuring instruments — resulting in the values xi, . .., x,, and
* by using a much more accurate (“standard”) measuring instrument — resulting in
the values sq,...,s,.

In many cases — like in the above scales example — the main problem is the bias. We
compensate for the bias by subtracting the estimated value. The resulting corrected
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values x; + b are closer to the ground truth s;. A reasonable way to estimate the bias

n
is to use the Least Squares method [41, 44]: 3 ((x; + b) — 5;)> — min.
i=1

In some cases, there is also a relative systematic error, when each value is under-
or over-estimated by a certain percentage. To compensate for this under- and over-
estimation, we need to multiply by an appropriate constant. For example if all the
values are overestimated by 10%, then each ground truth value s; is replaced by the
biased value s; +0.1-s; = 1.1 - s5;. To compensate for this relative bias, we thus need
to multiply all the measurement results by 1/1.1.

In general, to compensate for the relative bias, we need to replace the original
measurement results x; by corrected values a - x; for some a. To compensate for both
absolute and relative biases, we replace x; with a - x; + b.

The values a and b can be found by the Least Squares method:

Z((a -x; +b) —s;)*> - min.
i1

After that, instead of using the original measurement result x produced by the
measuring instrument, we calibrate it into a more accurate value

xX'=a-x+b.

In addition to such a linear calibration, it is sometimes beneficial to use non-linear
calibration. Sometimes, a quadratic or cubic calibration is used — which leads to more

accurate measurement results. In many practical situations, it is also beneficial to

“x+Db
4270 see, e.g., [17, 18, 19, 25, 26, 30].
l+c-x

Idea: let us calibrate experts. A natural idea is that since experts serve as measuring
instruments, we can similarly calibrate the experts. Namely, instead of using the
original expert estimates:

use fractional-linear re-scaling x” =

» we first re-scale the original expert estimates in accordance with the appropriate
calibration function, and then
* we use these re-scaled values instead of the original expert estimates.

As aresult — just like for measuring instruments — we will hopefully get more accurate
estimates.

In some situations, when for some experts, their original estimates were not very
accurate, we may end up with re-scaled estimates of acceptable quality, so we can
use them.

Such calibration is indeed helpful. A good example of the efficiency of such
calibration is expert’s estimations of small probabilities. According to Kahneman
and Tversky [15], these estimates e; are way off.

However, the values e = a - sin?(b - e;) are much more accurate; see, e.g.,
[20, 21, 22, 23]. Namely, for p; < 20%:
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» the worst-case difference between the original estimates e; and the actual proba-
bilities was 8.6% — more than 40% of the original probability value — while

* the worst-case difference between the re-scaled estimates e; and the probabilities
pi 18 0.7% — which is 3.5% of the original probability value, and is, thus, an order
of magnitude more accurate.

We applied our idea to pavement engineering. We started with the 18 rater candi-
dates from the original MTC sample. In the original test, only five of these candidates
passed the exam: rater candidates R6, R8, R9, R14, and R15.

Originally, the rater’s ratings r; were compared with the 24 corresponding ground
truth values s;. Instead, we first found the values a and b that minimize the sum of

24
the squares Y. ((a - r; + b) — s5;)>. Then, we used the re-scaled values ri=a-ri+b
i=1

to compare with the ground truth.
As a result, more experts are selected. Based on the re-scaled ratings, four more
candidates passed the test: candidates R1, R3, RS, and R11. This means that these
four folks can now be used for rating pavement conditions.

Of course, instead of using their original ratings r;, we first need to re-scale these
ratings to r] = a - r; + b for this rater’s a and b. As a result, we can accept 9 raters.
Thus, the acceptance rate is now no longer 5/18 =~ 28%, it is 9/18 = 50%.

For most originally selected experts, re-scaling leads to more accurate estimates.
After re-scaling, one of the originally accepted candidates — R9 — no longer fits. For
this rater, we can use his original ratings.

For the remaining four originally selected raters, re-scaling improves the accuracy
of their estimates:

» for R6, the mean square rating error decreases from 11.21 points to 10.01 points
— a decrease of 9.9%;

o for RS, the mean square rating error decreases from 10.00 points to 8.66 points —
a decrease of 6.4%;

e for R14, the mean square rating error decreases from 8.62 to 6.95 points — a
decrease of 19.4%; and

e for R15, the mean square rating error decreases from 6.47 points to 6.21 points —
a decrease of 4.0%.

Comment. Similarly good results were consistently achieved for several other groups
of rater candidates.
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3 Second Case Study: Relationship Between Measurement
Results and Expert Estimates of Cumulative Quantities, on the
Example of Pavement Roughness

Cumulative quantities. Many physical quantities can be measured directly: e.g., we
can directly measure mass, acceleration, force. However, we are often interested in
cumulative quantities that combine values corresponding to different moments of
time and/or different locations. For example, when we are studying public health
or pollution or economic characteristics, we are often interested in characteristics
describing the whole city, the whole region, the whole country.

Formulation of the problem. Cumulative characteristics are not easy to measure.
To measure each such characteristic, we need to perform a large number of mea-
surements, and then to use an appropriate algorithm to combine these results into a
single value.

Such measurements are complicated. So, we often have to supplement the mea-
surement results with expert estimates. To process such data, it is desirable to describe
both estimates in the same scale:

* to estimate the actual value of the corresponding quantity based on the expert
estimate, and
* vice versa, to estimate the expert estimate based on the actual value of the quantity.

Case study: estimating pavement roughness. Estimating road roughness is an
important problem. Indeed, road pavements need to be maintained and repaired.
Both maintenance and repair are expensive. So, to make a good decision on which
road segments to repair this year, it is desirable to estimate the pavement roughness
as accurately as possible.

* If we overestimate the road roughness, we will waste money on “repairing” an
already good road.

 If we underestimate the road roughness, the road segment will be left unrepaired
and deteriorate further. As a result, the cost of future repair will skyrocket.

The standard way to measure the pavement roughness is to use the International
Roughness Index (IRI); see, e.g., [6, 10, 11, 43]. This measure of roughness is
recommended by the US standards [6, 10, 11].

Crudely speaking, IRI describes the effect of the pavement roughness on a stan-
dardized model of a vehicle. Measuring IRI is not easy, because the real vehicles
differ from this standardized model. As a result, we measure roughness by some
instruments and use these measurements to estimate IRI. For example, we can:

» perform measurements by driving an available vehicle along this road segment,

 extract the local roughness characteristics from the effect of the pavement on this
vehicle, and then

» estimate the effect of the same pavement on the standardized vehicle.
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In view of this difficulty, in many cases, practitioners rely on expert estimates of
the pavement roughness. The corresponding measure — estimated on a scale from 0
to 5 — is known as the Present Serviceability Rating (PSR); see, e.g., [5, 12].

Empirical relation between measurement results and expert estimates. The
empirical relation between PSR and IRI is described by the formula:

PSR = 5 - exp(~0.0041 - IRI).

This formula was first proposed by B. Al-Omari and M. Darter in [4], and it still
remains actively used in pavement engineering; see, e.g., [8, 12, 37, 38]. It works
much better than many previously proposed alternative formulas, such as

PSR =a+b - VIRI

proposed in [29]. However, it is not clear why namely this formula works so well.

What we do in this section. We propose a possible explanation for the above
empirical formula. This explanation will be general: it will apply to all possible
cases of cumulative quantities.

We will come up with a general formula y = f(x) that describes how a subjective
estimate y of a cumulative quantity depends on the result x of its measurement.

As a case study, we will use gauging road roughness.

Main idea. In general, the numerical value of a subjective estimate depends on the
scale. In road roughness estimates, we usually use a 0-to-5 scale. In other applications,
it may be more customary to use 0-to-10 or O-to-1 scales.

A usual way to transform between the two scales is to multiply all the values by
a corresponding factor. For example, to transform from 0-to-10 to 0-to-1 scale, we
multiply all the values by 4 = 0.1. In other transitions, we can use transformations
y — A -y with different re-scaling factors A.

There is no major advantage in selecting a specific scale. So, subjective estimates
are defined modulo such a re-scaling transformation y — A - y.

At first glance, the result of measuring a cumulative quantity may look uniquely
determined. However, a detailed analysis shows that there is some non-uniqueness
here as well. Indeed, the result of a cumulative measurement comes from combin-
ing values measured at different moments of time and/or values corresponding to
different spatial locations. For each individual measurement, the probability of a
sensor’s malfunction may be low. However, often, we perform a large number of
measurements. So, some of them bound to be caused by such malfunctions and are,
thus, outliers.

It is well known that even a single outlier can drastically change the average.
So, to avoid such influence, the usual algorithms first filter out possible outliers.
This filtering is not an exact science; we can set up slightly different thresholds for
detecting an outlier, slightly different threshold for allowed number of remaining
outliers, etc.

We may get a computation result that only takes actual signals into account. With
a different setting, we may get a different result, affected by a few outliers.
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Let’s denote the average value of an outlier is L and the average number of such
outliers is n. Then, the second scheme, in effect, adds a constant - L to the cumulative
value computed by the first scheme.

Yes, there is also some random deviation. However, when the number 7 is rea-
sonably large, then, due to the Large Numbers theorem, these deviations average out
and we get approximately the mean value (see, e.g., [44]) — just like when we flip a
coin many (N) times, the overall number of times when it falls head will be close to
0.5-N.

So, the measured value of a cuamulative quantity is defined modulo an addition of
some value:

Xx — x + a for some constant a.

Motivation for invariance. We do not know exactly what is the ideal threshold,
so we have no reason to select a specific shift as ideal. It is therefore reasonable
to require that the desired formula y = f(x) not depend on the choice of such a
shift, i.e., that the corresponding dependence not change if we simply replace x with
x'=x+a.

Of course, we cannot just require that f(x) = f(x + a) for all x and all a. Indeed,
in this case, the function f(x) will simply be a constant, but y increases with x. But
this is clearly not how invariance is usually defined. For example, for many physical
interactions, there is no fixed unit of time. So, formulas should not change if we
simply change a unit for measuring time: ¢ = A - ¢. The formula d = v - ¢ relating
the distance d, the velocity v, and the time ¢ should not change. We want to make
this formula true when time is measured in the new units. So, we may need to also
appropriately change the units of other related quantities.

In the above example, we need to appropriately change the unit for measuring
velocity, so that not only time units are changed, e.g., from hours to second, but
velocities are also changed from km/hour to km/sec.

So, if we re-scale x, the formula y = f(x) should remain valid if we appropriately
re-scale y. As we have mentioned earlier, possible re-scalings of the subjective
estimate y have the form y — y’ = A - y. Thus, for each a, there exists A(a)
(depending on a) for which y = f(x) implies that y’ = f(x’), where

def def
x'=x+aandy = A-y.

Definition. A monotonic function f(x) is called unit-invariant if for every real
number a, there exists a positive real number A(a) for which, for each x and y:

e ify=f(x),

def
o theny’ = f(x"), where x’ © +aand y </ Ala) - y.

Proposition. A function f(x) is unit-invariant if and only if it has the form
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f(x) =C -exp(=b - x) for some C and b.

Comment. For road roughness, this result explains the empirical formula.

Proof. It is easy to check that every function y = f(x) = C - exp(—b - x) is indeed
unit-invariant.
Indeed, for each a, we have

f(x)=f(x+a)=C-exp(=b-(x+a)) =

C-exp(-=b-x—-b-a)=2A>a)- C- exp(-b-x).

Here we denoted A(a) def exp(—b - a). Thus here, indeed, y = f(x) implies that

y'=fx).
Vice versa, let us assume that the function f(x) is unit-invariant. Then, for each
a, the condition y = f(x) implies that y’ = f(x’), i.e., that 2(a) - y = f(x + a).
Substituting y = f(x) into this equality, we conclude that f(x + a) = A(a) - f(x).
It is known (see, e.g., [2]) that every monotonic solution of this functional equation
has the form
f(x) =C -exp(=b - x) for some C and b.

The proposition is proven.

Conclusions of this section. In pavement engineering, to make a good decision, it is
important to accurately gauge the quality of road segments. Such estimates help us
decide how to best distribute the available resources between different road segments.
So, proper and timely maintenance is performed on road segments whose quality
has deteriorated. Thus, to avoid future costly repairs of untreated road segments.

The standard way to gauge the quality of a road segment is International Rough-
ness Index (IRI). It requires a large amount of costly measurements. As a result, it
is not practically possible to regularly measure IRI of all road segments. So, IRI
measurements are usually restricted to major roads.

For local roads, we need to an indirect way to estimate their quality. To estimate the
quality of a road segment, we combine user estimates of different segment properties
into a single index known as Present Serviceability Rating (PSR).

There is an empirical formula relating IRI and PSR. However, one of the lim-
itations of this formula is that it purely heuristic. This formula lacks a theoretical
explanation and thus, the practitioners may be not fully trusting its results. In this
section, we provide such a theoretical explanation. We hope that the resulting in-
creased trust in this formula will help enhance its use. Thus, it will help to make
road management decisions.
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4 Third Case Study: Normalization-Invariant Fuzzy Logic
Operations Explain Empirical Success of Student Distributions
in Describing Measurement Uncertainty

Traditional engineering approach to measurement uncertainty. Traditionally, in
engineering applications, it is assumed that each measurement error is normally
distributed; see, e.g., [41].

This assumption makes perfect sense from the practical viewpoint: it has been
shown that for the majority of measuring instruments, the measurement error is in-
deed normally distributed; see, e.g., [35, 36]. It also makes sense from the theoretical
viewpoint, since in many cases, the measurement error comes from a joint effect of
many independent small components, and, according to the Central Limit Theorem
(see, e.g., [44]), for the large number of components, the resulting distribution is
indeed close to Gaussian.

Another explanation: we only have partial information about the distribution.
Often, we only know the first and the second moments. The first moment — mean —
represents a bias. If we know the bias, we can always subtract it from the measurement
result. Thus re-calibrated measuring instrument will have 0 mean. So, we can always
safely assume that the mean is 0. Then, the 2nd moment is simply the variance
V=02

There are many distributions with 0 mean and given o . For example, we can have
a distribution in which we have o and —o with probability 1/2 each. However, such
a distribution creates a false certainty — that no other values of x are possible. Out
of all such distributions, it makes sense to select the one which maximally preserves
the uncertainty.

Uncertainty can be gauged by average number of binary questions needed to
determine x with accuracy ¢. Itis described by entropy S = — f p(x)-log, (p(x)) dx;
see, e.g., [14, 32]. Out of all distributions p(x) with mean 0 and given o, the entropy
is the largest for normal p(x).

Need for heavy-tailed distributions. For the normal distribution,

(x)—;-ex (—i)
p _\/E-O' P 202 )"

The “tails” — values corresponding to large |x| — are very light, practically negligible.
Often, p(x) decreases much slower, as p(x) ~ ¢ - x~%; see, e.g., [24, 39]. We
cannot have p(x) = ¢ - x~%, since /000 X~ dx = 400, and we want f p(x)dx =1.
Often, the measurement error is well-represented by a Student distribution
ps(x) = (a+b-x*)7. This is true in geodesy, and in other applications as well.
This distribution is even recommended by the International Organization for Stan-
dardization (ISO) [13].

What we do. How to explain the empirical success of Student’s distribution pg(x)?
In this section, we show that a natural fuzzy-logic-based ([9, 16, 27, 33, 34, 45])
formalization of commonsense requirements leads to pg(x).
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Our idea is to use the fact that uncertainty means that the first value is possible,
and the second value is possible, etc. Let’s select p(x) with the largest degree to
which all the values are possible.

It is reasonable to use fuzzy logic to describe degrees of possibility. An expert
marks his/her degree by selecting a number from the interval [0, 1].

Need for normalization. For “small”, we are absolutely sure that O is small:
HUsman (0) = 1 and max ggman (x) = 1. For “medium”, there is no x with gpeq(x) = 1,
X
SO Max Umed(x) < 1.
X
A usual way to deal with such situations is to normalize p(x) into p’(x) =
p(x)
myaxu(y)
Example: suppose that we knew that x is small, and then we learn an additional

information — that x > 5. Then, ppew (X) = tsman (x) for x > 5 and ppew (x) = 0 for
x < 5, and max ppew (x) < 1. So, to get a normalized function, we need to normalize
X

. Normalization is also performed when we get additional information.

these values fpew (X).

Normalization is also needed when experts use probabilities to come up with the
degrees. Indeed, the larger p(x), the more probable it is to observe a value close to x.
Thus, it is reasonable to take the degrees u(x) proportional to p(x): u(x) = ¢ - p(x).

Normalization leads to u(x) = ﬂ Vice versa, if we have the result u(x) of
max p ()
. _ k)
normalizing a pdf, we can reconstruct p(x) as p(x) = ————.
[ u(y)dy

How to combine degrees. For each x, we get a degree to which x is possible. We
want to compute the degree to which x; is possible and x; is possible, etc. So, we
need to apply an “and”’-operation (t-norm) to the corresponding degrees.

A natural idea is to use normalization-invariant t-norms. We can compute the
normalized degree of confidence in a statement A & B in two different ways:

e we can normalize fg(a,b) to A - fg(a,b);
* or, we can first normalize a and b and then apply an “and”-operation: fg (1-a, 1-b).

It’s reasonable to require that we get the same estimate: fg (1-a,1-b) = A- fg(a, b).

It is known that strict Archimedean t-norms fg (a,b) = f~'(f(a) + f(b)) are
universal approximators; see, e.g., [31]. So, we can safely assume that fg is strict
Archimedean:

¢ = fala,b) & f(c) = f(a) + f(b).

Thus, invariance means that f(¢) = f(a)+ f(b) implies f(1-¢) = f(1-a)+f(2-b).
So, for every A, the transformation 7' : f(a) — f(A4 - a) is additive: T(A + B) =
T(A)+T(B).

Itis known (see, e.g., [1, 2]) that every monotonic additive function is linear. Thus,
f(A-a) = c(2)- f(a) for all a and A. For monotonic f(a), thisimplies f(a) = C-a™%;
see, e.g., [31]. So, f(c) = f(a) + f(b) implies C - ¢c™* =C-a *+C-b~%, and
c=fgla,b)=(a®+b )",
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Deriving Student distribution. We want to maximize the degree

felpr), plx), ) = ()™ + (u(2) ™+ )71

The function a — a~¢ is decreasing. So, maximizing fg (u(xy),...) is equivalent
to minimizing the sum (u(x1))™% + (u(x2))~% + ... In the limit, this sum tends

to 1% f (u(x))~* dx. So, we minimize I under constrains / x-p(x)dx =0 and
u(x)

———— Thus, we minimize | (u(x))~* dx
[ u(y)dy /

[ x* p(x)dx = o2, where p(x) =

under constraints
/x-,u(x)dx:0and /xz-u(x)dx—02~/u(x)dx:0.

Lagrange multiplier method leads to minimizing

/(u(x))_“dx+/ll-/x-u(x) dx+

/12-(/xz-u(x)dx—oz-/y(x)dx)—>min.

Equating the derivative w.r.t. u(x) to 0, we get:

—a- () A x+ -0t =0.
Thus, u(x) = (ap +aj -x +az - x2)™.

For p(x) = ¢ - u(x), we get p(x) = ¢ - (ag+ay - x +as - x*)7™". So, p(x) =
¢ (as - (x —x0)% + ¢1)™. This p(x) is symmetric w.r.t. xo, so, the mean is xo. We
know that the mean is 0, so xg = 0, and p(x) = const- (1+as-x3)~": exactly Student’s
ps(x)!
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5 Auxiliary Results for Section 2

First auxiliary result: why 50%? In the MTC procedure, as the first threshold, we
consider the accuracy with which we should have at least 50% of the measurements.
In other words, we compare the median of the empirical distribution with some
threshold. But why 50%? Why not select a value corresponding to, say, 40% or
60%?

The only explanation that MTC provides is that selecting 50% leads to empirically
the best results. But why? Here is our explanation.

We want to find a parameter describing how distribution of expert’s approximation
errors. This may be the standard deviation, this may be some other appropriate
parameter. We want the relative accuracy with which we determine this parameters
to be as good as possible.

We estimate this parameter based on a frequency f that corresponds to some prob-
ability p. Itis known (see, e.g., [44]) that, after n observations, f — p is approximately
normally distributed, with 0 mean and

olp] = V#

We can measure the relative accuracy both:

» with respect to the probability p of the original event and
» with respect to the probability 1 — p of the opposite event.

We want both relative accuracies to be as small as possible. The relative accuracy
with which we can find the desired probability p is equal to

olpl  [1-p |1 ( 1 1)
p n-p n\p |
Similarly, the relative accuracy with which we can find the probability 1 — p is equal

to
olpl _ [ _ [t
l1-p Nn-(1-p) \n \1-p ’

We need to make sure that the largest of these two values is as small as possible. One
can check that the largest of these two values is
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Vi b))
—-|max|—, ——|-1] =
n p l-p

1 1 1
;.(min(p,l—p) B )

This expression is a decreasing function of min(p, 1 — p). Thus, for the relative
standard deviation to be as small as possible, min(p, 1 — p) must be as large as
possible.

This expression grows from 0 to 0.5 when p increases from 0 to 0.5, then decreases
to 0. Thus, its maximum is attained when p = 0.5 — and this is exactly what MTC
recommends. So, we have a theoretical explanation for this empirically successful
recommendation.

Why 88%. There are many different independent reasons why an expert estimate
may differ from the actual value, so the expert uncertainty can be represented as a
sum of a large number of small independent random variables. It is known — see,
e.g., [44] — that, under reasonable condition, the distribution of such a sum is close
to normal. This result is known as the Central Limit Theorem. Thus, we can safely
assume that the distribution of expert uncertainty is normal.

For a normal distribution with 0 mean, if the probability for the value to be within
+8 is 50%, then the probability for the value to be within +18 is indeed close to
88%. This explains the second part of the MTC test.

Comment. In both cases, our explanations seem to be simple and natural. We would
not be surprised if it turns out that, when selecting the corresponding numbers, the
authors of the MTC test were inspired not only by the empirical evidence, but also
by similar simple theoretical ideas.



